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Abstract: Recent educational studies in mathematics seek to justify a thesis that there is a conflict 

between students’ intuitions regarding infinity and the standard theory of infinite numbers. On the 

contrary, we argue that students’ intuitions do not match but to Cantor’s theory, not to any theory 

of infinity. To this end, we sketch ways of measuring infinity developed at the turn of the 20th and 

21st centuries that provide alternatives to Cantor’s theory of cardinal and ordinal numbers. Some 

of them introduce new kinds of infinite numbers, others simply define new arithmetic for Cantor’s 

infinite numbers. We also sketch a way how to introduce these new theories in students’ courses. 

To do this the crucial is the concept of an ordered field, since we define the opposition finite vs 

infinite in terms of Archimedean and non-Archimedean fields. 

CANTORS’S PARADISE WITH THE ROTTEN ARITHMETIC 

Cantor established two kinds of infinity: cardinal and ordinal numbers, each with its own 
arithmetic and its own relation greater than. In both cases, the set of natural numbers, ℕ, makes 
the yardstick of infinity, be it the cardinal number ℵ଴ or the ordinal number 𝜔. In fact, the first 
infinite numbers are defined either as the cardinality of the set of natural numbers ℕ, or as the type 
of the well-ordered set (ℕ, <), while the system of natural numbers models the arithmetic of finite 
numbers. Cantor’s theory, thus, assumes that finite numbers are natural numbers, and it attempts 
to extend the system (ℕ, +,⋅ ,0,1, <) where the arithmetic is characterized by commutativity of 
sums and products and compatibility of the “natural order" (it is Cantor’s phrase) with sums and 
products. 

However, since natural numbers share characteristics of both cardinal and ordinal numbers, 
the extension of the system of finite numbers can be carried out in two directions. While Cantor’s 
infinities are supposed to extend the system of finite numbers, they hardly mimic its arithmetic 
whatever direction we choose: sums and products of ordinal numbers are not commutative, the 
order of cardinal numbers is not compatible with their sums and products, e.g.  
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 1 + 𝜔 ≠ 𝜔 + 1, 2𝜔 ≠ 𝜔2,       𝑜𝑟   2 + ℵ଴ = 3 + ℵ଴,   𝑎𝑙𝑡ℎ𝑜𝑢𝑔ℎ   2 < 3. 

Cantor clearly realized these constrains, but he believed infinite numbers do not follow all the rules 
of arithmetic of finite numbers due to their very nature. He even proudly declared that infinite 
numbers do not comply with the Euclid’s law The whole is greater than the part7, since it is 
possible that a set and its subset have the same cardinality. In the 1947’s paper What is Cantor’s 
Continuum Problem?, Gцdel reinforced the belief that there is no alternative to Cantor’s theory of 
infinite numbers. He claimed that when one adopts Cantor’s infinite numbers, there is no room for 
an alternative arithmetic of these numbers. In this paper, Gцdel presents cardinal numbers as 
extending the system of natural numbers (ℕ, +,⋅ ,0,1, <) and seeks to show that “this extension 
can be effected in a uniquely determined manner". 

Despite this, the first alternative to Cantor’s theory has been developed already in 1906, 
and the last decades of the 20th century have brought another non-Cantorian theories. Yet, the no 
alternative attitude to Cantor’s infinite numbers still prevails in the education of mathematics. Here 
is a sample view on supposed relation between students intuitions and mathematical infinity: 

 “There is the ideal, pure, final mathematical structure which is unquestionable as a logical 
construct. And there is the psychological reality of the same concept which may remain complex, 
contradictory, strongly related to intuitive difficulties. That is exactly the case with the concept of 
infinity. Accepting definitions, theorems and logical proofs is one thing. Using the concept of 
infinity in various real, psychological contexts in the process of thinking and interpreting, is 
another. It is fair to suppose that the main source of difficulties which accompany the concept of 
infinity is the deep contradiction between this concept and our intellectual schemes. Genuinely 
built on our practical, real life experience, these schemes are naturally adapted to finite objects and 
events” (Fischbein et al 1979, p. 3). 

 This paragraph clearly manifests the belief that there are neither alternative ways of 
measuring infinity, nor even alternative to Cantor’s arithmetic of cardinal and ordinal numbers. As 
a result, it is believed, that when students seek to extend laws of arithmetic of finite numbers to 
the domain of infinity, their intuitions built on “practical life experience" are on a collision course 
with an iceberg of “ideal, pure, final mathematical structure which is unquestionable as a logical 
construct”. 

Although one may think that there is a kind of necessity linking mathematical theorems 
and definitions, in the case of infinite numbers, there is no such inherent necessity regarding 
definitions themselves. Therefore, when students seek to extend laws of arithmetic of finite 
numbers to the domain of infinity, their intuitions are in conflict but with Cantor’s theory, not with 

 
7 See Euclid, Elements, Book I, Common Notions 5. 
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any possible theory of infinity. In fact, the crucial point is how do one defines a structure of 
finiteness. Cantor’s attitude is clearly focused on finite sets. When teaching students, we can found 
our course on a concept of finite numbers exemplified by fractions or real numbers, rather then a 
finite set. Accordingly the arithmetic of finiteness is defined by axioms of an ordered field, rather 
then the arithmetic of natural numbers. 

In what follows, we sketch some recent developments that shed a new light on intuitions 
concerning infinity. In section § 2, we show how to define a new arithmetic for Cantor’s ordinal 
numbers, and the way how these numbers can be included in a bigger structure of an ordered field. 
In section § 3, we introduce basic definitions concerning an ordered field, as well as infinite 
numbers defined with no reference to sets. Then, in section § 4, we introduce a field of hyperreals 
which includes infinite numbers. Finally, in section § 5, we apply infinite hyperreal numbers to 
introduce a new measure of subsets of ℕ. These new measures, known as numerosities, provide 
an alternative to Cantor’s theory of cardinal numbers.  

NEW ARITHMETIC FOR ORDINAL NUMBERS 

Commutative sums and products of infinite numbers 
 In 1897, Cantor proved the so-called the normal form theorem. It states: For every ordinal 

number 𝛼, there are ordinal numbers 𝜂ଵ, … , 𝜂௛, and natural numbers ℎ, 𝑝௜ ∈ ℕ such that  

 𝛼 = 𝜔ఎభ ⋅ 𝑝ଵ + ⋯ + 𝜔ఎ೓ ⋅ 𝑝௛,     𝑤ℎ𝑒𝑟𝑒     𝜂ଵ > ⋯ > 𝜂௛. 

This representation of 𝛼 is unique. Moreover, it is finite, due to the assumption concerning 
the index ℎ. Based on this theorem, in 1906, Hessenberg introduced the so-called normal sums and 
products of ordinal numbers. Namely, for  

 𝛼 = 𝜔ఎభ ⋅ 𝑝ଵ + ⋯ + 𝜔ఎ೓ ⋅ 𝑝௛,      𝛽 = 𝜔ఎభ ⋅ 𝑞ଵ + ⋯ + 𝜔ఎ೓ ⋅ 𝑞௛, 

their normal sum +௡ and normal product ⋅௡ is defined by8  

 0.5𝑚𝑚𝛼+௡𝛽 =ௗ௙ 𝜔ఎభ ⋅ (𝑝ଵ + 𝑞ଵ) + ⋯ + 𝜔ఎ೓ ⋅ (𝑝௛ + 𝑞௛), 

 𝛼 ⋅௡ 𝛽 =ௗ௙ ∑ଵஸ௜,௝ஸ௛ 𝜔ఎ೔ା೙ఎೕ ⋅ 𝑝௜𝑞௝ . 

Contrary to Cantor’s sums and products, normal sums and products are commutative and 
compatible with the standard order of ordinal numbers, that is  

 𝛼+௡𝛽 = 𝛽+௡𝛼,    𝛼 ⋅௡ 𝛽 = 𝛽 ⋅௡ 𝛼, 

 
8 For the use of this definition, we assume that some 𝑝

𝑖
 or 𝑞

𝑖
 could equal 0. 
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 𝛼 < 𝛽 ⇒ 𝛼+௡𝛾 < 𝛽+௡𝛾,      𝛼 < 𝛽 ⇒ 𝛼 ⋅௡ 𝛾 < 𝛽 ⋅௡ 𝛾. 

Thus, the structure (𝑂𝑟𝑑, +௡,⋅௡, 0,1, <), where 𝑂𝑟𝑑 stands for the class of ordinal numbers, is an 
abelian semigroup. 

Hence, e.g. since 𝜔 = 𝜔 ⋅ 1 + 0, and 1 = 𝜔 ⋅ 0 + 1, we calculate the normal sums of 
𝜔+௡1 and 1+௡𝜔 as follows,  

 1+௡𝜔 = (𝜔 ⋅ 0 + 1)+௡(𝜔 ⋅ 1 + 0) = 𝜔 ⋅ (0 + 1) + 1 = 𝜔 + 1, 

 𝜔+௡1 = (𝜔 ⋅ 1 + 0)+௡(𝜔 ⋅ 0 + 1) = 𝜔 ⋅ (1 + 0) + 1 = 𝜔 + 1. 

Similarly, we calculate  

 2 ⋅௡ 𝜔 = (𝜔 ⋅ 0 + 2) ⋅௡ (𝜔 ⋅ 1 + 0) = 𝜔ଶ ⋅ 0 + 𝜔 ⋅ 2 + 0 = 𝜔 ⋅ 2, 

 𝜔 ⋅௡ 2 = (𝜔 ⋅ 1 + 0) ⋅௡ (𝜔 ⋅ 0 + 2) = 𝜔ଶ ⋅ 0 + 𝜔 ⋅ 2 + 0 = 𝜔 ⋅ 2. 

As is well known, in Cantor’s arithmetic the inequalities hold 1 + 𝜔 < 𝜔 + 1, and 2 ⋅ 𝜔 < 𝜔 ⋅ 2. 

Cantor’s ordinal numbers as elements of an ordered field 
 (Gonshor 1986) shows that ordered field of Conway numbers, as developed in (Conway 

1976/2001), includes the structure (𝑂𝑟𝑑, +௡,⋅௡, 0,1, <); see (Bіaszczyk & Fila, 2020). Hence, each 
Cantor’s ordinal number is subject to ordered field operations, and all rules an ordered field can 
be applied to Cantor ordinal numbers. Therefore, in the field of Conway numbers, next to the 
number 𝜔 there are also numbers such as −𝜔, 𝜔/2 or the inverse of 𝜔, that is 1/𝜔. That is why, 
in the next section we introduce the concept of ordered field, as well as the idea of infinite elements 
of a field. 

BASICS OF THE THEORY OF ORDERED FIELDS 

The idea of an ordered field is a good starting point when we are to introduce new kinds of 
infinite numbers. It is is both simple, and well-known from the high-school courses, as fractions 
and real numbers provide model examples. Still, instead of constructions, we prefer an axiomatic 
account. Thus, our starting point is a simple mathematical idea introduced in an axiomatic fashion, 
rather then “real life experience", as suggested by Fischbein. 

A commutative field (𝔽, +,⋅ ,0,1) together with a total order < is an ordered field when the 
sums and products are compatible with the order, that is9  

 𝑥 < 𝑦 ⇒ 𝑥 + 𝑧 < 𝑦 + 𝑧,      𝑥 < 𝑦, 0 < 𝑧 ⇒ 𝑥𝑧 < 𝑦𝑧. 

 
9 Note, here 𝔽 is supposed to be a set, but it can also be a proper class. Therefore, we can apply the concept of ordered field to Conway 
numbers. 
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In any ordered field we define in a usual way an absolute value, |𝑥|, and a limit of sequence, 
lim

௡→ஶ
𝑎௡. Note, however, that while in real analysis the formula ∀𝜀 > 0 stands for ∀𝜀 ∈ ℝା, in an 

ordered field (𝔽, +,⋅ ,0,1, <) it means ∀𝜀 ∈ 𝔽ା. 

The term 𝑛 is defined by  

 𝑛 =ௗ௙ 1 + 1+. . . +1ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௡ି௧௜௠

, 

while 
௡

௠
=ௗ௙ 𝑛 ⋅ 𝑚ିଵ. On this basis we assume that any ordered field includes natural numbers ℕ 

and rational numbers ℚ. In fact, the field of fractions (ℚ, +,⋅ ,0,1, <) is the smallest ordered field. 

In every ordered field, we can define the following subsets of 𝔽:  

 𝕃 = {𝑥 ∈ 𝔽: (∃𝑛 ∈ ℕ)(|𝑥| < 𝑛)}, 

 𝔸 = {𝑥 ∈ 𝔽: (∃𝑛 ∈ ℕ)(
ଵ

௡
< |𝑥| < 𝑛)}, 

 Ψ = {𝑥 ∈ 𝔽: (∀𝑛 ∈ ℕ)(|𝑥| > 𝑛)}, 

 Ω = {𝑥 ∈ 𝔽: (∀𝑛 ∈ ℕ)(|𝑥| <
ଵ

௡
)}. 

The elements of these sets are called limited, assignable, infinity, and infinitely small 
numbers respectively. Here are some obvious relationships between these kinds of elements, we 
will call them ΩΨ rules,   

    1.  (∀𝑥, 𝑦 ∈ Ω)(𝑥 + 𝑦 ∈ Ω, 𝑥𝑦 ∈ Ω),  

    2.  (∀𝑥 ∈ Ω)(∀𝑦 ∈ 𝕃)(𝑥𝑦 ∈ Ω),  

    3.  (∀𝑥)(𝑥 ∈ 𝔸 ⇒ 𝑥ିଵ ∈ 𝔸),  

    4.  (∀𝑥 ≠ 0)(𝑥 ∈ Ω ⇔   𝑥ିଵ ∈ Ψ).  

Archimedean axiom 
 When to the axioms of an ordered field we add the so-called Archimedean axiom, we 

obtain the class of Archimedean fields. Here are some equivalent forms of the Archimedean axiom:   

    1.  (∀𝑥, 𝑦 ∈ 𝔽)(∃𝑛 ∈ ℕ)(0 < 𝑥 < 𝑦 ⇒ 𝑛𝑥 > 𝑦),  

    2.  (∀𝑥 ∈ 𝔽)(∃𝑛 ∈ ℕ)(𝑛 > 𝑥),  

    3.  lim
௡→ஶ

ଵ

௡
= 0,  
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    4.  (∀𝑥, 𝑦 ∈ 𝔽)(∃𝑞 ∈ ℚ)(𝑥 < 𝑦 ⇒ 𝑥 < 𝑞 < 𝑦),  

    5.  For any Dedekind cut (𝐴, 𝐵) of (𝔽, <) obtains10  

 (∀𝑛 ∈ ℕ)(∃𝑎 ∈ 𝐴)(∃𝑏 ∈ 𝐵)(𝑏 − 𝑎 <
ଵ

௡
), 

    6.  Ω = {0}.  

Versions A1 and A2 are well-known, both in the mathematical as well as the historical 
context. A1 in the following form (∀𝑥, 𝑦 ∈ 𝔽)(∃𝑛 ∈ ℕ)(𝑛𝑥 > 𝑦) originates from Euclid’s 
Elements, Book V. It characterized the ancient Greek structure of magnitudes, specifically, line 
segments; see (Bіaszczyk & Fila 2020). In modern times, it is included as an axiom of Euclidean 
geometry. In calculus courses, A3 is usually presented as a theorem rather than an axiom, however 
the Archmimedean axiom follows from some versions of the continuity of real numbers, or is 
explicitly included in other versions (see section 3.2. below). A6 reveals that in a non-Archimedean 

field the set of infinitesimals Ω contains at least one positive element, say 𝜀. Then, by ΩΨ rules, 
ఌ

௡
, 

as well as, 𝑛 ⋅ 𝜀 are also infinitesimals. 

Real numbers 
The field of real numbers is defined as a commutative ordered field (𝔽, +,⋅ ,0,1, <) in which 

every Dedekind cut (𝐿, 𝑈) of (𝔽, <) satisfies the following condition:  

 (∃𝑥 ∈ 𝔽)(∀𝑦 ∈ 𝐿)(∀𝑧 ∈ 𝑈)(𝑦 ≤ 𝑥 ≤ 𝑧). (C1 

Here are some other equivalent forms of C1: 

    1.  If 𝐴 ⊂ 𝔽 is a nonempty set which is bounded above, then there exists 𝑎 ∈ 𝔽 such 
that 𝑎 = sup𝐴.  

    2.  The field is Archimedean and every Cauchy (fundamental) sequence (𝑎௡) ⊂ 𝔽 has 
a limit in 𝔽.  

    3.  The field is Archimedean and if {𝐴௡|  𝑛 ∈ ℕ  } ⊂ 𝔽 is a family of descending, 
closed line segments, then ⋂௡∈ℕ 𝐴௡ = ∅.  

The above definition is based on the so called categoricity theorem which states that every 
two ordered fields that satisfy C1 are isomorphic. In that sense, the field of real numbers is the 
unique complete ordered field. Morever, the field of real numbers is the biggest Archimedean field, 
in the sense any Archimedean field is isomorphic to some subfield of real numbers. As a result, 

 
10 For the remainder, a pair (𝐴, 𝐵) of non-empty sets is a Dedekind cut of a totally ordered set (𝑋, <) iff: (1) 𝐴 ∪ 𝐵 = 𝑋, (2) (∀𝑥 ∈ 𝐴)(∀𝑦 ∈

𝐵)(𝑥 < 𝑦). 
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any field extension of real numbers is a non-Archimedean field, and includes infinitely small and 
infinite numbers. Based on these mathematical facts, we define a finite number is an element of 
the field of real numbers. We could also provide a historical motivation for such a definition. It 
would basically refer to the long-standing tradition of Euclidean geometry, and to the 18th century 
mathematics, first of all, to Euler’s legacy; see (Bіaszczyk & Fila 2020).  

The field of hyperreals 
In this section, we provide a specific field-extension of real numbers, namely the field of 

hyperreals (non-standard real numbers). Since (Robinson 1966), many different approaches to 
non-standard reals have been developed. The one presented below is based on the so-called 
ultrapower construction. The set ℝ∗ is defined as the quotient class of the set of sequences of real 
numbers, ℝℕ, with respect to a specific relation defined on the set of indexes ℕ. We begin with 
that relation. 

Ultrafilter on the set ℕ 
We start with the definition of an ultrafilter on the set ℕ, and present some basic results 

concerning ultrafilters. 

Definition 1 A family of sets 𝒰 ⊂ 𝒫(ℕ) is an ultrafilter on ℕ if (1) ∅ ∉ 𝒰, (2) if 𝐴, 𝐵 ∈ 𝒰, 
then 𝐴 ∩ 𝐵 ∈ 𝒰, (3) if 𝐴 ∈ 𝒰 and 𝐴 ⊂ 𝐵, then 𝐵 ∈ 𝒰, (4) for each 𝐴 ⊂ ℕ, either 𝐴 or its 
complement ℕ\𝐴 belongs to 𝒰. 

Take the family of sets with finite complements,  

 {𝐴 ⊂ ℕ: ℕ\𝐴     𝑖𝑠  𝑓𝑖𝑛𝑖𝑡𝑒 }. 

This family is usually called the Fréchet filter on ℕ. Indeed, it obviously satisfies conditions (1)–
(3) listed in the Definition 1. Note, however, that neither the set of odd numbers nor the set of even 
numbers has a finite complement, hence, the Fréchet filter is not an ultrafilter. Still, by applying 
the Axiom of Choice it can be extended to an ultrafilter. In what follows, let 𝒰 be a fix ultrafilter 
on ℕ which extends the Fréchet filter. 

Thus, we know that for every 𝑘 ∈ ℕ, the family 𝒰 includes the set  

 ℕ\{0,1,2, . . . , 𝑘}, 

since sets of this kind belong to the Fréchet filter. Moreover, the set ℕ also belongs to 𝒰, since it 
belongs to the Fréchet filter. Next, due to the condition (4) of Definition (1), for any subset 𝐴 of 
ℕ, either 𝐴, or ℕ\𝐴 belongs 𝒰. We apply this fact to prove, e.g. an equivalence (1), as explained 
below. Finally, it can be shown that the following proposition holds. 



                              MATHEMATICS TEACHING RESEARCH JOURNAL      150     
                              Special Issue on Philosophy of Mathematics Education 
                              Summer 2020 Vol 12 no 2 
 
 

 
 

Readers are free to copy, display, and distribute this article as long as the work is attributed to the author(s) and Mathematics 
Teaching-Research Journal Online, it is distributed for non-commercial purposes only, and no alteration or transformation is 

made in the work. All other uses must be approved by the author(s) or MTRJ. MTRJ is published by the City University of New 
York. http://www.hostos.cuny.edu/mtrj/ 

 

Theorem 1 For any subsets 𝐴ଵ, . . . , 𝐴௡ of ℕ such that 𝐴௜ ∩ 𝐴௝ = ∅, 𝑖 ≠ 𝑗. If ⋃௡
௜ୀଵ 𝐴௜ ∈ 𝒰, 

then 𝐴௜ ∈ 𝒰 for exactly one 𝑖 such that 1 ≤ 𝑖 ≤ 𝑛. 

By applying this proposition, one can show that relations <∗ defined on the set ℝ∗ and ℕ∗ 
are actually total orders. 

 Extending the field of real numbers 
Here, we sketch how to extend the field of real numbers (ℝ, +,⋅ ,0,1, <) to a non-

Archimedean field of the hyperreals.11 The set ℝ∗ is defined as the quotient class of ℝℕ with 
respect to the following relation  

 (𝑟௡) ≡ (𝑠௡) ⇔ {𝑛 ∈ ℕ: 𝑟௡ = 𝑠௡} ∈ 𝒰. 

Thus, ℝ∗ = ℝℕ/𝒰. 

New sums and products are defined pointwise, that is  

 [(𝑟௡)]+∗[(𝑠௡)] = [(𝑟௡ + 𝑠௡)],    [(𝑟௡)] ⋅∗ [(𝑠௡)] = [(𝑟௡ ⋅ 𝑠௡)]. 

New total order is defined by  

 [(𝑟௡)] <∗ [(𝑠௡)] ⇔ {𝑛 ∈ ℕ: 𝑟௡ < 𝑠௡} ∈ 𝒰. 

Hence, the product and sum of hyperreals [(𝑟ଵ, 𝑟ଶ, . . . )] and [(𝑠ଵ, 𝑠ଶ, . . . )] gives [(𝑟ଵ ⋅ 𝑠ଵ, 𝑟ଶ ⋅

𝑠ଶ, . . . )], and [(𝑟ଵ + 𝑠ଵ, 𝑟ଶ + 𝑠ଶ, . . . )] respectively. The relation [(𝑟ଵ, 𝑟ଶ, . . . )] <∗ [(𝑠ଵ, 𝑠ଶ, . . . )] holds 
when, for example, the set {𝑛 ∈ ℕ: 𝑟௡ < 𝑠௡} equals ℕ minus some finite set (though the definition 
of order <∗ also includes other cases). 

Standard real number, 𝑟 ∈ ℝ, is represented by the class [(𝑟, 𝑟, 𝑟, . . . )], i.e., the class of a 
constant sequence (𝑟, 𝑟, 𝑟, . . . ). Note that the sequence representing standard real number, e.g. 1, 
can take the same value from some index on, for example  

 1 = [(1,1,1,1. . . )] = [(0,0,1,1, . . . )]. 

Owing to the above definitions, we employ the same symbols for real numbers in the standard and 
non-standard context; we will also employ the same symbols for sums, products and order relation 
in the standard and non-standard context. 

It follows from the notion of ultrafilter that the following relation holds  

 [(𝑟௡)] ≠ [(𝑠௡)] ⇔ {𝑛 ∈ ℕ:  𝑟௡ ≠ 𝑠௡} ∈ 𝒰. (1) 

 
11 For details, consult (Bіaszczyk & Major 2014), (Bіaszczyk 2016). 
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Due to this fact, we can control, e.g. an inequality such as this one [(𝑟௡)] ≠ 0. This fact, in 
turn, enables to show that the quotient structure is really an ordered field. 

In the next section, we consider hyperreal numbers represented by sequences of natural 
numbers, that is [(𝑛௝)], where (𝑛௝) ⊂ ℕ, for instance  

 𝛼 = [(1,2,3, . . . )] = [(𝑛)]. (2) 

According to the definition of product, we have  

 𝛼ଶ = [(1,2,3, . . . )] ⋅ [(1,2,3, . . . )] = [(1ଵ, 2ଶ, 3ଶ, . . . )] = [(𝑛ଶ)]. 

Then, the hyperreal number 
ఈ

ଶ
 is determined by the following equalities  

 
ఈ

ଶ
= [(1,2,3, . . . )] ⋅ [(

ଵ

ଶ
,

ଵ

ଶ
,

ଵ

ଶ
, . . . )] = [(

ଵ

ଶ
,

ଶ

ଶ
,

ଷ

ଶ
, . . . )] = [(

௡

ଶ
)]. 

Similarly, that is point-wise, we define the hyperreal number √𝛼, namely  

 √𝛼 = [(√1, √2, √3, . . . )] = [(√𝑛)]. 

In a similar way, the floor function is defined, namely  

 ⌊[(𝑟௝)]⌋ = [(⌊𝑟௝⌋)]. 

Hence, hyperreal numbers such as  

 ⌊
ఈ

ଶ
⌋     𝑎𝑛𝑑     ⌊√𝛼⌋, 

are represented by sequences of natural numbers, namely  

 ⌊
ఈ

ଶ
⌋ = [(⌊

௡

ଶ
⌋)],      ⌊√𝛼⌋ = [(⌊√𝑛⌋)]. 

More specifically,  

 ⌊
ఈ

ଶ
⌋ = ⌊[(

ଵ

ଶ
,

ଶ

ଶ
,

ଷ

ଶ
, . . . )]⌋ = [(⌊

௡

ଶ
⌋)] = [(0,1,1,2,2,3,3, . . . )]. 

Note that with natural numbers, the following equalities obtains ⌊
௡

ଶ
⌋ + ⌊

௡

ଶ
⌋ = 𝑛 or ⌊

௡

ଶ
⌋ + ⌊

௡

ଶ
⌋ + 1 =

𝑛, depending on whether 𝑛 is even or odd. Similarly, ⌊
ఈ

ଶ
⌋ + ⌊

ఈ

ଶ
⌋ = 𝛼 or ⌊

ఈ

ଶ
⌋ + ⌊

ఈ

ଶ
⌋ + 1 = 𝛼, 

depending on whether the set of even numbers belongs or not to the ultrafilter 𝒰. Yet, we skip a 
discussion needed to justify this claim. 
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 Extending natural numbers 
 In this subsection, we apply the ultrapower construction, as explained above, to natural 

numbers (ℕ, +,⋅ ,0,1, <). As a result, we obtain the nonstandard (and uncountable) model of Peano 
arithmetic (ℕ∗, +,⋅ ,0,1, <). Thus, the set ℕ∗ is the quotient class of ℕℕ with respect to the 
following relation  

 (𝑛௝) ≡ (𝑚௝) ⇔ {𝑗 ∈ ℕ: 𝑛௝ = 𝑚௝} ∈ 𝒰. 

New sums and products are defined pointwise, new total order is defined by  

 [(𝑛௝)] <∗ [(𝑚௝)] ⇔ {𝑗 ∈ ℕ: 𝑛௝ < 𝑚௝} ∈ 𝒰. 

A standard natural number, 𝑛 ∈ ℕ, is represented by the class [(𝑛, 𝑛, 𝑛, . . . )]. Like in the case of 
hyperreals, we employ the same symbols for natural numbers, as well as for their sums, products 
and order, in the standard and non-standard context. 

Again, from the fact that the Fréchet filter is the subset of 𝒰, it follows that both the 
constant sequence (2,2,2, . . . ), and a sequence (𝑛௝) which on a finite set of indexes 𝐴 takes 0, and 
for other indexes takes 2, i.e.,  

 𝑛௝ = ൜
0,  𝑓𝑜𝑟  𝑗 ∈   𝐴 ,
2,           𝑓𝑜𝑟  𝑗 ∈   ℕ  \  𝐴 ,

 

represent number 2,  

 [(2,2,2, . . . )] = 2 = [(𝑛௝)]. 

For the rest of our presentation, we call nonstandard natural numbers numerosities, and give a 
special role for the number 𝛼, as defined by formula (2): we will show that 𝛼 is the numerosity of 
the set ℕ. 

To unify developments of this and the previous sections, we can define nonstandard natural 
numbers as a subset of the set of hyperreals as follows  

 ℕ∗ = {[(𝑛௝)] ∈ ℝ∗ | {𝑗 ∈ ℕ | 𝑛௝ ∈ ℕ} ∈ 𝒰}. 

It is up to the reader to decide which option he/she finds easier to follow. 

The Whole is Greater Than the Part 
In section 2, we presented the alternative arithmetic to Cantor’s ordinal numbers, in this 

section, we provide an alternative to Cantor’s cardinal numbers. 

Galileo is believed to be the first who identified the seemingly paradoxical fact that the set 
of even natural numbers, 2ℕ in short, is equinumerous with the set of all natural numbers, ℕ. 
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Viewed from the Cantorian perspective, it is simply because these two sets are of the same 
cardinality. Moreover, within the Cantorain framework, these sets are presented as a model 
counterexample to the law The whole is greater than the part, where part is interpreted as being a 
subset, while the relation greater-than refers to the cardinality of sets. Recently, however, Vieri 
Benci and Mauro Di Nasso developed a theory in which countable sets comply with the old 
Euclid’s law interpreted in such a way that part means subset, and is greater-than refers to a new 
kind of infinite number called numerosities. In this approach, 𝑛𝑢𝑚𝑒𝑟𝑜𝑠𝑖𝑡𝑦(𝐴) <

𝑛𝑢𝑚𝑒𝑟𝑜𝑠𝑖𝑡𝑦(𝐵), whenever 𝐴 ⊈ 𝐵; see (Benci & Di Nasso, 2019). 

Numerosities 
 We present a simplified version of the theory of numerosities, as developed in (Benci & 

Di Nasso, 2019). It considers subsets of ℕ only. Still it exemplifies an alternative to the Cantor’s 
theory. Within Cantor system, every subset of ℕ is either a finite set or a set with the cardinality 
ℵ଴, that is, for every 𝐴 ⊂ ℕ, either 𝐴 ∼ ℕ or 𝐴 ∼ 𝑛, for some 𝑛. The theory developed by Benci 
and Di Nasso gives the same result regarding finite sets. Yet, infinite subsets of ℕ have a smaller 
numerosity than the numerosity of ℕ, while to the very set ℕ the nonstandard number 𝛼, as defined 
by the formula (2) above, is assigned. 

 How to measure subsets of ℕ by numerosities 
 The key role in Benci and Di Nasso’s theory plays the way how numerosities are ascribed 

to subsets of ℕ. Here is this definition. 

Let 𝐴 be a subset of ℕ. We define a function 𝜑஺: ℕ ↦ ℕ଴, by  

 𝜑஺(𝑛) = {𝑎 ∈ 𝐴  |  𝑎 ≤ 𝑛}. (3) 

Usually, the symbol 𝑋 stands for the cardinal number of the set 𝑋. Here, yet, it stands for 
natural number, since for any 𝑛, the set {𝑎 ∈ 𝐴  |  𝑎 ≤ 𝑛} is finite. Thus, we may interpret the 

symbol {𝑎 ∈ 𝐴  |  𝑎 ≤ 𝑛} as follows how many elements of the sets 𝐴 are less or equal to 𝑛. 

Definition 2 The numerosity of the set 𝐴 is the nonstandard natural number 𝜈ఈ(𝐴) 
represented by the sequence (𝜑஺(𝑛)), that is  

 𝜈ఈ(𝐴) = [(𝜑஺(𝑛))], 

 = [(𝜑஺(1), 𝜑஺(2), 𝜑஺(3), . . . )]. 

Here are some examples. 1) Let us start with finite sets, e.g. a two–elements set 𝐴 = {𝑘, 𝑙}, 
with 𝑘 < 𝑙. We have,  
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 𝜑஺(𝑛) = ቐ

0,  𝑓𝑜𝑟  𝑛 < 𝑘 ,

1,            𝑓𝑜𝑟  𝑘 ≤   𝑛 < 𝑙 ,

2,  𝑓𝑜𝑟  𝑙 ≤   𝑛 .

 

Since for all but finite number of 𝑛 we have 𝜑஺(𝑛) = 2, the numerosity of 𝐴 equals 2, that is 
𝜈ఈ(𝐴) = 2. 

In a similar way, we obtain that numerosity of the set 𝐴 = {𝑎ଵ, . . . , 𝑎௞} equals 𝑘. 

2) Now, we assign a numerosisty to the set of natural numbers ℕ. To this end, observe that 
𝜑ℕ(𝑛) = 𝑛, for every 𝑛. Hence, the sequence (𝜑ℕ(𝑛)) is (1,2,3, . . . ), and  

 𝜈ఈ(ℕ) = [(1,2,3, . . . )] = 𝛼. 

This fact explains the role of the index 𝛼: it is the numerosity of the set ℕ and other numerosities 
rely on this basic fact. 

3) Now, let us calculate the numerosity of the set of even numbers 2ℕ = {2,4,6, . . . }. One 
can easily figure our the first terms of the sequence (𝜑ଶℕ(𝑛)). These are as follows  

 𝜑ଶℕ(1) = 0, 𝜑ଶℕ(2) = 1, 𝜑ଶℕ(3) = 1, 𝜑ଶℕ(4) = 2, 𝜑ଶℕ(5) = 2, . .. 

Thus, (𝜑ଶℕ(𝑛)) = (0,1,1,2,2,3, . . . ), and, finally  

 𝜑ఈ(2ℕ) = [(0,1,1,2,2,3, . . . )] = ⌊
ఈ

ଶ
⌋. 

4) Finally, by induction, we can prove the general rule  

 𝐴 ⊈ 𝐵 ⇒ 𝜈ఈ(𝐴) < 𝜈ఈ(𝐵). (4) 

According to Benci and Di Nasso, it justifies the old law The whole is greater than the 
part, even when applied to infinite sets. In fact, rule (4) applies to subsets of the set ℕ. Still, the 
domain of numerosities can be extended to the subsets of real numbers. 

 SUMMARY We argued that although students intuitions may not fit to Cantor’s theory, 
there are new theories that could match these intuitions. Generally, the conflict concerns rules of 
an ordered field and whether or not they can be extended on the realm of infinite numbers. While 
Cantor’s arithmetic of ordinal numbers hardly mimics these rules, within a new framework, the 
arithmetic of ordinal numbers can be redefined in such a way that they comply with the rules of 
an ordered field. Moreover, numerositie, on the hand, provide an alternative to Cantor’s cardinal 
numbers, on the other, as elements of the field of hyperreals, they are also subject to the rules of 
an ordered field. 
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