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A critical part of supporting the development of students’ algorithmic thinking is understanding the 
challenges that emerge when students engage with algorithmatizing tasks—tasks that require the creation 
of an algorithm. Knowledge of these challenges can serve as a basis upon which educators can build 
effective strategies for enhancing students’ algorithmic thinking skills. This paper presents three 
illustrative cases of emergent challenges evident as students grapple with the process of creating an 
algorithm. The first challenge highlights discrepancies between the method with which students solve a 
problem and the algorithm they create, and claim would, when implemented, solve the same problem. 
The second challenge pertains to the persistence of students’ normatively incorrect algorithms, despite 
going through multiple iterations of testing and revising. Finally, the third challenge concerns issues 
around the use of test problems for supporting students in their creation of generalized algorithms. These 
three challenges are discussed using student data (illustrative cases) from three different mathematical 
algorithmatizing tasks. Suggestions are put forth for addressing some of these challenges, with a particular 
emphasis on practical pedagogical suggestions for cultivating students’ mathematical thinking in the 
context of algorithmatizing tasks.      
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1. Introduction

Computational thinking (CT) was defined by Wing (2006) as a process that “involves solving 
problems, designing systems, and understanding human behavior, by drawing on the concepts 
fundamental to computer science” (p. 33). Stephens and Kadijevich (2019) posited that CT had four 
main aspects: decomposition, abstraction, algorithmization, and automation. Furthermore, they 
argued that algorithmic thinking (AT) differs from CT only in terms of automation (i.e., CT has the 
additional concern of representing solutions and strategies in ways that computers can process 
them). More specifically, AT involves the processes of creating, testing, and revising an 
algorithm—‘‘a precisely-defined sequence of rules telling how to produce specified output 
information from given input information in a finite number of steps’’ (Knuth 1974, p. 323). 
Furthermore, AT can be regarded as a type of mathematical thinking, centered around algorithms, 
in the same way there are other types of mathematical thinking such as functional thinking, 
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statistical thinking, geometrical thinking and so forth (Stephens & Kadijevich, 2019). 
Efforts to enhance students’ algorithmic thinking skills in mathematics education come in 

different forms, one of which revolves around students engaging with algorithmatizing tasks that 
require creating and articulating an algorithm for solving relatively novel problems (e.g., 
Marrongelle, 2007; Rasmussen et al., 2005; Tupouniua, 2019). Although having students work on 
algorithmatizing tasks has its benefits in terms of enhancing students’ algorithmatizing skills and 
conceptual understanding of traditional algorithms (Carroll, 2000; Futscheck & Moschitz, 2010; 
Son, 2016; Tupouniua, 2019), challenges exist with respect to how educators can support students 
as they are working on these algorithmatizing tasks (see Moala et al., 2019; Peressini & Knuth, 
1998; Tupouniua, 2019). Merely asking students to work on an algorithmatizing task does not 
necessarily mean that students will engage in the processes of algorithmatizing or develop their 
algorithmatizing skills (Tupouniua, 2019). Hence, a critical part of supporting the development of 
students’ algorithmatizing skills is understanding the challenges that emerge when students 
engage with algorithmatizing tasks. Understanding such challenges can serve as a basis upon 
which educators can build effective strategies for supporting students.  

This paper presents three illustrative cases corresponding to three emergent challenges that 
some students encountered as they grappled with creating their own algorithm. These three 
challenges are ones that have been evident throughout my research in mathematics education, 
which primarily focuses on exploring a diverse range of aspects pertaining to algorithmic thinking 
(e.g., Moala et al., 2019; Tupouniua, 2019, 2020, 2023). The first challenge highlights discrepancies 
between the method with which students solve a problem versus the algorithm they create, and 
claim would, when implemented, solve the same problem. The second challenge pertains to the 
persistence of students’ (normatively) incorrect algorithms despite going through multiple 
iterations of testing and revising. The third challenge concerns issues around the use of test 
problems for supporting students in their creation of generalized algorithms. With respect to 
relevant literature, these three challenges are discussed using student data from three different 
mathematical algorithmatizing tasks. Some suggestions are put forth for addressing some of these 
challenges, with an emphasis on practical pedagogical suggestions for cultivating students’ 
mathematical thinking in the context of algorithmatizing tasks.  

2. Research Design 

The data presented in the three illustrative cases were collected as part of a larger ongoing self-
designed study (Tupouniua, 2023) exploring various aspects of students’ algorithmic thinking 
across different educational sectors in New Zealand. This larger study is a continuation of work 
that began during my doctoral study (Tupouniua, 2019) which examined the mechanisms by 
which students’ algorithms emerge. Data for the present study are collected via task-based 
interviews (Maher & Sigley, 2020), in which students work either in pairs or individually on an 
algorithmatizing task in one-hour sessions (with no more than one session on any given day). Past 
studies have shown that algorithmatizing tasks are useful for eliciting students’ algorithmic 
thinking and providing educators with ideas for enhancing students’ algorithmic thinking (e.g., 
Marrongelle, 2007; Rasmussen et al., 2005; Tupouniua, 2019).  

Students are given 45 minutes to work on the task, then a 15-minute follow-up semi-structured 
interview is conducted after every task to clarify and gain more insight into students’ thinking. At 
the time of writing this paper, data had been collected from 43 students (23 university students 
and 20 secondary school students). The 43 students were divided into: eight pairs of university 
students, seven individual university students; seven pairs of secondary school students; and six 
individual secondary students. Each group/individual worked on three different tasks in three 
different sessions. More specific information regarding the tasks presented in each of the 
illustrative cases chosen for this paper are presented in the respective sections (cases) below.  

The topics of all the tasks used in the larger study were chosen so that they were familiar and 
readily accessible, relative to the participants’ mathematical background. The decision to have 
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readily accessible topics meant that the students spent more of the limited time (45 minutes) 
creating and refining their algorithms rather than trying to understand the problem. The 
appropriateness of each task chosen for the study (i.e., its effectiveness for eliciting students’ 
algorithmic thinking) was justified either by its successful implementation in past literature (e.g., 
Tupouniua, 2020a; Zazkis & Chernoff, 2008) or through pilot tests in which the tasks were 
implemented on students from relatively similar mathematical backgrounds to the participants. 
These pilot tests often led to minor revisions of the tasks, mainly in terms of clarifying the 
instructions, and removing unnecessary steps to reduce the time it took for students to reach the 
stages of creating and refining their algorithms. It is worth noting that the three tasks presented in 
the illustrative cases were not specifically designed for the purpose of eliciting the respective 
emergent challenges. The tasks were designed with the foremost goal of eliciting students’ 
engagement in the process of algorithmic thinking more generally. And, although it was 
hypothesized based on pilot tests and previous research (e.g., Moala et al., 2019; Tupouniua, 
2020b) that the tasks would elicit some challenges, the precise nature of these challenges were not 
known a priori. 

In addition to the foregoing information regarding task design, the following criteria were 
used to choose the three tasks presented in the three illustrative cases for this paper: 1) given the 
space limitations in this paper, the task instructions and algorithms elicited are short and concise; 
and 2) the content of each task is straightforward and readily accessible for readers. These criteria 
also emphasize that algorithmic thinking can be encouraged, supported, and elicited in relatively 
basic mathematics tasks. This in turn supports the arguments that algorithmic thinking can be, and 
perhaps should be, developed from early years of school, and that there is a need to explicate the 
reciprocal relationship between computational and mathematical thinking, especially in the earlier 
years of schooling (Stephens & Kadijevich, 2019; Wu & Yang, 2022).  

Each task session was video recorded and transcribed. The overall analysis of data, conducted 
with the help of three research assistants, involved open interpretation (Clement, 2000) and thematic 
analysis using both inductive and deductive code generation methods (Braun & Clarke, 2012). This 
open interpretation method aligns with the openness of the overarching research question of the 
larger study: What challenges emerge when students engage with algorithmatizing tasks? Before 
proceeding any further, it is worth explaining what the term “challenges” means in the context of 
this study. Challenges refer to two types of situations: 1) situations in which the participants 
produce normatively incorrect algorithms; 2) situations in which the participants indicated that 
they did not how to proceed. As such, two main goals guided the data analysis: to identify the 
places in students’ work that corresponded to challenges; and to establish plausible reasons and 
explanations for these challenges.  

The three ensuing sections respectively present the three illustrative cases and discuss the 
challenges evident in each case.  

3. Challenge 1: Students find correct solutions but propose incorrect algorithms 

The first challenge pertains to discrepancies between the method with which students solve a 
problem and the algorithm students create, and claim would, when implemented, solve the same 
problem (cf. Darminto, 2020; Moala, 2019; Tupouniua, 2020b). Note, this challenge differs from a 
similar, more common, situation whereby students can solve specific problems, but are not able to 
create an algorithm that would solve the general class of problems, to which the specific problems 
belong. For instance, a student may be able to solve specific multi-digit addition problems 
correctly (e.g., 23 + 145; 567 + 453; 1354 + 761) but is unable to create and articulate a correct 
algorithm for adding any two multi-digit numbers. To clarify, the situation of interest in this 
section pertains to that in which students solve a problem correctly but then create an algorithm 
that cannot solve the same problem. For example, a student might be able to solve 23 + 145 
correctly, but then produces an algorithm that when implemented fails to produce the correct 
solution for 23 + 145. 
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This challenge is illustrated below using excerpts from the work of two groups of students’—
Jon and Mac (Year 11 students); Rio and Sid (first-year undergraduate students)—on The shuttle 
relay problem (Tupouniua, 2020b).  

3.1. Task and student data  

Figure 1  
The shuttle relay problem (Tupouniua, 2020b) 

 

After reading the task instructions, the students and the interviewer discussed the problem to 
ensure that the students understood how the relay worked and what they needed to create. Below 
are excerpts from the two groups’ work:  

Jon and Mac  

1. Mac: One set is…[writes down 25 x 1 + 25 x 2 + 25 x 3 + 25 x 4]. 
2. Jon: Two fifty…twenty-five times ten. 
3. Mac: Yeah, two hundred and fifty meters. 
4. Jon: Then, two sets is [writes down 25 x 1 + 25 x 2 + 25 x 3 + 25 x 4 + 25 x 5 + 25 x 6 + 25 x 7 + 25 x 

8]. 
5. Mac: Yes, that’s correct, so…[uses calculator]…nine hundred meters. 
6. Interviewer: Can I just ask…what would an algorithm be for calculating the total distance 

covered over two sets? 
7. Mac: We went up to four in the first set, and then eight after two sets, so you’re just doubling the 

distance of the first set. 
8. Jon: Yeah, for two sets it’s just [writes 25 x 10 x 2…Mac nods his head in agreement]. 

Rio and Sid  

1. Sid: [writes 25 x (1 + 2 + 3 + 4) = 25 x 10 = 250] 
2. Rio: That’s the first set [Sid nods in agreement]. Then, next set is [writes 25 x (5 + 6 + 7 + 8) = 25 x 

26 = 650]…third set is… 
3. Sid: This [points to what he wrote: 25 x (9 + 10 + 11 + 12) = 25 x 42 = 1050].  
4. Rio: Cool. So total distance over three sets is…just add ‘em up [writes 25 x 10 + 25 x 26 + 25 x 42 = 

1950].  
5. Sid: Yes yes. 
6. Interviewer: OK, so you’ve calculated the total distance run over three sets. Can you tell me 

what an algorithm could be for…finding the total distance that the students have run over three 
sets would be?  

7. Sid: You start off with ten twenty-five-meter sprints…[points at what Rio wrote in Line 4] then 
each next set, you add on 16, so for three sets the algorithm is [writes 25 x 10 + 25 x (16 x 2)]. 



J. G. Tupouniua / Journal of Pedagogical Research, 7(2), 93-107    97 
 

 

 
 
 

8. Rio: Right, that’s more efficient, then what I did [laughs]…two hundred fifty, then twenty-five by 
sixteen twice, for second and third sets. 

3.2. Analysis and discussion of challenge 1 

In interpreting the excerpts above, as done in previous work (e.g., see Moala, 2019; Tupouniua, 
2020b) I use the term “procedure” to refer to how the students solved a problem (i.e., how they 
found a solution), and the term “algorithm” to refer to what they present as a way of solving the 
problem. The use of these different terms is not merely for ease of discussion, but rather to 
highlight a crucial distinction between two acts (Moala, 2019; Tupouniua, 2019, 2020b): 1) the act of 
solving a given problem correctly; and 2) the act of creating and articulating an algorithm that the 
creator claims would, when implemented, solve the given problem correctly.  

In both excerpts above, discrepancies are evident between how the students found a solution to 
a problem (i.e., their procedure), and the algorithm that they presented for the same problem. For 
instance, Jon’s and Mac’s procedure for finding the total distance covered in two sets was  
25 x 1 + 25 x 2 + 25 x 3 + 25 x 4 + 25 x 5 + 25 x 6 + 25 x 7 + 25 x 8, but their algorithm was  
25 x 10 x 2. Of course, the discrepancy between procedure and algorithm is not a problem per se, 
because a discrepancy between the procedure and the algorithm can be expected to some extent. 
That is, upon reflecting on one’s procedure, one might create a correct algorithm that is a more 
concise and polished form of the procedure. However, the focus of the discussion at hand, is those 
situations in which there is a correct procedure but an incorrect algorithm. So, what are some 
plausible explanations for, and how might students be supported in, such situations? 

Firstly, in alignment with findings from past research (e.g., Moala, 2019; Tupouniua, 2019, 
2020b), the students in the present study (including the two groups above) were at times unaware 
that the algorithm they put forth differed from the procedure they had used to solve a specific 
problem. In other instances, students were aware that their algorithm was not equivalent to their 
procedure (line for line), but they claimed that their algorithm was a refined version of their 
procedure, and that the algorithm would produce the same correct result. In either scenario, 
students seldomly verified whether their algorithm was indeed the same as their procedure or, if 
different, whether the algorithm produced the same correct result as their procedure. Therefore, it 
is important that students are supported in moving beyond assuming that their algorithm is 
correct simply because their procedure is correct. In other words, students need support with 
verifying and validating their algorithms. 

One way educators might provide such support, especially in situations where students claim 
that their algorithm differs from their procedure but still produces the same result, is by 
prompting students to implement both the procedure and the algorithm on specific cases. This is 
often useful because it can uncover the fact that the procedure and the algorithm do not 
necessarily yield the same result (e.g., Moala, et al., 2019; Tupouniua, 2020b). However, for 
situations in which students are unaware of discrepancies between their procedure and their 
algorithm, the aforementioned prompt to implement both the procedure and the algorithm may be 
ineffective because some students will simply implement either the procedure or the algorithm 
twice, as found in past research (Tupouniua 2019, 2020b). In such situations, it may be useful to 
encourage students to write down their procedure while they are solving the problem. Then, after 
creating the algorithm, they can compare it with the procedure to notice discrepancies (Moala, 
2014; Tupouniua, 2019).  

Supporting students’ validation and verification processes can also counter students’ 
assumptions of linearity, which can hinder the development of a correct algorithm despite having 
a correct procedure (Tupouniua, 2019, 2020b). For instance, in Jon and Mac’s case above, they 
assumed that the total distance increases in constant increments of 250 meters. Similarly, Sid and 
Rio’s algorithm contained the assumption that the total distance increases after the first set in 
constant increments of (25 x 16) meters. Such assumptions of linearity have been discussed in past 
studies and recognized as a common obstacle in students’ mathematical thinking (e.g., De Bock et 
al., 2002; Van Dooren et al., 2003). Researchers argue that this assumption becomes ingrained in 
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students’ intuitive knowledge making it persistent in the face of conflicting evidence and correct 
without a need for justification (Fischbein, 1987). The influence that the assumption of linearity has 
on students’ thinking is particularly interesting in the above excerpts because both groups of 
students had a correct procedure for finding the total distance covered over two and three sets, 
respectively. Yet, in both cases, the students examined their procedure, then very quickly 
described it in a linear manner (i.e., linear growth of distance covered in relation to the number of 
sets). Thus, it is fascinating to note how the students’ assumptions of linearity influenced not the 
act of solving the problem (i.e., the procedure) as demonstrated in past studies (e.g., Van Dooren et 
al., 2003; Tupouniua, 2020b) but rather the act of describing how they thought they had solved the 
problem (i.e., the algorithm).  

Furthermore, students’ conceptions of the term “algorithm” can also contribute to the creation 
of an incorrect algorithm despite the use of a correct procedure (e.g., see Moala et al., 2019; 
Tupouniua, 2019, 2020b). For instance, in the follow-up interviews, Rio and Sid declared an 
algorithm to be: “an easy way of finding the distance for many sets.” Jon and Mac described it as 
“a quick way to find the total distance for, like, when you have big sets, like twenty sets, it’ll take 
too long to add up each one!” Such definitions of “algorithm” can be problematic when students 
are prompted to implement and validate their algorithm on a specific small(er) case(s), because the 
students implement their procedure instead of their algorithm (Moala et al., 2019; Tupouniua, 
2020b). This suggests that some students view the procedure as something to use in solving small 
cases (e.g., one set, two sets) while an algorithm is used for solving the large cases (Moala et al., 
2019, Tupouniua, 2020b). Consequently, students might not validate their algorithm on small 
cases, when asked to do so, because it is reserved for large(r) cases. Based on previous research 
(Moala, 2019; Moala et al., 2019; Tupouniua, 2019, 2020b), two suggestions for addressing this issue 
are: a) broadening students’ conceptions of algorithms and their relationship with/to procedures; 
and b) choosing appropriate problems on which students are asked to validate their algorithm—
e.g., students who perceive algorithms as reserved for larger cases, should be given relatively large 
cases to test their algorithm. 

4. Challenge 2: Students’ incorrect algorithms persist through multiple revisions  

The process of creating an algorithm is iterative—an initial algorithm is proposed, tested on certain 
problems, and revised according to the results of the tests (Campbell et al., 1998; Marrongelle, 
2007; Mingus & Grassl, 1998; Rasmussen et al., 2005). The end goal of this iterative process is to 
produce an algorithm that correctly solves all the problems that it is expected to solve. Yet, 
research has found that students can often engage in multiple iterations of testing and revising, 
without producing a correct algorithm (Ashlock, 2001; De Bock et al., 2002; Moala et al., 2019). This 
challenge is illustrated below, using data from the work of two students (Ben and Kai; Year 9 and 
10 respectively) on a task about comparing simple fractions.  

4.1. Task and student data  

The task (Zazkis & Chernoff, 2008) involves creating an algorithm for determining which of two 
simple fractions has a larger magnitude. At the beginning of every session involving this task, the 
participating students listed the different algorithms they knew for comparing two fractions: 1) 
converting fractions into ones with a common denominator, and then comparing the numerators; 
2) subtracting one fraction from the other (a – b); if a – b was positive then a was larger, and if 
negative, then b was larger; 3) converting fractions into decimals/percentages and comparing 
them. The participants were informed that all these algorithms were valid, but for this task they 
needed to devise a different algorithm.  

A chronological summary of Ben and Kai’s algorithms for comparing two fractions is presented 
in Table 1. Ben and Kai began with an initial algorithm, and then engaged in three cycles of testing, 
validating, and revising their algorithm with respect to specific problems for which their current 
algorithm did not produce a correct answer. 
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4.2. Analysis and discussion of challenge 2 

As summarized, in Table 1, Ben and Kai went through multiple iterations of testing and revising 
their algorithm, but after 45 minutes, they still had an algorithm that could not produce the correct 
answer for any pair of simple fractions. In fact, after forty-five minutes of testing and revising, Ben 
and Kai ended up with the same incorrect algorithm they had initially created (i.e., Algorithm 1 
and Algorithm 4 are the same). Of course, having an incorrect algorithm at the end of multiple 
iterations is not unusual (Tupouniua, 2019). However, examining the ways in which Ben and Kai 
revised their algorithms provides some plausible explanations for why incorrect algorithms might 
persist through multiple iterations of testing and revising.  

One plausible explanation revolves around the mechanism of localized considerations (Moala et 
al., 2019), In the context of algorithmatizing, localized considerations refers to the practice of 
evaluating the aptness (Kontorovich et al., 2012) of an algorithm, or a feature thereof, with respect 
to a relatively limited subset of information. For instance, in Ben and Kai’s work, each algorithm 
was created and validated on a very limited sample of problems. And, at no point during the 45-
minute session did they explicitly verify whether their algorithm worked for all simple fractions. 
Localized considerations was apparent in the first revision that Ben and Kai conducted on 
Algorithm 1—they acknowledged that their algorithm did not work on both of 2/6 vs 3/8 and 4/5 
vs 8/10, however their revised algorithm (Algorithm 2) was only validated on the former.  

Note, localized considerations is not always disadvantageous. At the initial stages of algorithm 
design, it can be beneficial to start by creating an algorithm that works on specific (local) problems 
(Futschek & Moschitz, 2010), and then to refine this algorithm multiple times so that it would 
ultimately work for a larger group of problems. As such, the issue in Ben and Kai’s case was not so 
much that they employed localized considerations per se, but rather that they did not effectively 
transition from local to more global problems in their considerations. As aforementioned, Ben and 
Kai’s first revision resulted in an algorithm that worked for only one of the problems that 
motivated the revision of Algorithm 1. This was a common occurrence across a large majority of 
participants who worked on this task—even though students revised an algorithm because it did 
not work for certain problems, the revised algorithm only worked for some of the problems that 
motivated the revisions.  

Another plausible explanation for the persistence of incorrect algorithms lies in the lack of 
validation and verification. For instance, a student might propose the following algorithm for 
subtracting one positive integer from another: subtract the smaller digit from the corresponding (same 
place value) larger digit. This algorithm correctly solves problems such as 56 – 25 = 31, but not 
problems such as 42 – 13 for which it would yield 31. Some would argue that such a student has 
not verified their algorithm, by for example checking whether 13 + 21 yields 42 (e.g., Booth et al., 
2014; Brown & Quinn, 2006). However, in examining Ben and Kai’s case, it can be argued that the 
issue resides not in whether they validated their algorithm, but rather the way in which they 
validated their algorithm(s) (Czocher, 2018; Czocher et al., 2018). Ben and Kai validated their 
algorithm in each iteration by identifying at least one problem for which the algorithm produced 
the correct answer. However, the specific way in which Ben and Kai validated their algorithm is 
problematic (e.g., the algorithm was proven to work only on a subset of problems that motivated 
its revision). As such, it may be useful to encourage students to verify whether the revised 
algorithm correctly solves, at the very least, the problem(s) that motivated the revision (Moala et 
al., 2019; Tupouniua, 2020a). Moreover, students need to be supported with the process of 
determining whether the problems on which they validate and verify their algorithms are 
sufficiently diverse and represent the global set of problems that the algorithm is expected to solve 
(Moala, 2019; Moala et al., 2019; Tupouniua, 2020a). To this effect, the literature and pedagogy 
around proofs/refutations and example/counterexample generation may be useful to consider 
(e.g., Lew & Zazkis, 2019; Pinto & Cooper, 2023; Sinclair et al., 2011).  
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5. Challenge 3: Students “struggle” to create a generalized algorithm

In the previous section, Ben and Kai were given problems for which their current algorithm did 
not produce the correct solution. These problems motivated them to revise their algorithm. In past 
research (e.g., Moala et al., 2019; Tupouniua, 2020a) these problems have been referred to as 
counterexamples to students’ algorithms. In theory, these counterexamples are meant to motivate 
students to construct a generalized algorithm. However, I have also argued (Tupouniua, 2020, 
2023) that past studies commonly construe “generalized algorithm" as an algorithm that correctly 
solves all problems that the teacher/researcher wants the student(s) to solve. Consequently, past 
studies consider all students’ revisions that do not result in a generalized algorithm to be incorrect, 
and they deem all counterexamples that do not motivate a revision that yields a generalized 
algorithm as ineffective. Under such interpretations of “generalized algorithms,” I would be 
inclined to say that a large of majority of students that I have observed engaging in algorithmic 
thinking failed, because they did not create a generalized algorithm. However, as discussed below, 
a slight change in one’s frame of thinking in relation to students’ algorithms and counterexamples, 
can result in not only recognizing the legitimacy of students’ work, but also realizing opportunities 
to support and build on students’ work more effectively. 

5.1. Task and student data 

The data presented below come from the work of Liv and Mel (pseudonyms). At the time of data 
collection, Liv and Mel were primary school teachers enrolled in a masters-level course in 
mathematics education at a New Zealand tertiary institution. Liv and Mel had two and five years 
teaching experience respectively at the primary level. The task (Tupouniua, 2023) at hand invited 
the students to create an algorithm for expanding the expression (a+b)2 where a and b can be any 
two real numbers.  

At the beginning of the session, a discussion between the interviewer and the students took 
place around simplifying and expanding expressions. From this discussion, I gathered that both 
students were able to expand single-variable expressions. But they found it difficult to expand 
multi-variable expressions especially involving exponents greater than one. The table below 
provides a chronological summary of the development of Liv and Mel’s algorithm. Liv and Mel 
began with an initial algorithm, and then engaged in six cycles of testing, validating, and revising 
with respect to specific problems/counterexamples (see right-most column in Table 2). 

As alluded to above, a slight change in one’s frame of thinking can potentially lead to a greater 
appreciation of students’ algorithmatizing processes. Along these lines, I (Tupouniua, 2019, 2020a) 
interpret the notion of student-invented algorithm as having two parts: firstly, a set of instructions 
(SoI) that is intended to enable one to solve specified problems; and secondly, a domain of validity 
(DoV)—a set of problems for which the set of instructions would, according to the student, yield 
the correct answer. The following analysis and discussion highlight some of the affordances of the 
aforementioned interpretation, including a crucial distinction between the problems which 
students intend to solve with their algorithms, and the problems that external sources (e.g., 
teachers, interviewers) want them to solve. 

5.2. Analysis and discussion of challenge 3 

One might say that Liv and Mel, as evidenced by their work in Table 2, made little to no progress 
because they could not get past their initial algorithm, a2 + b2, which does not yield the correct 
solution for the general class of problems that they were asked to solve—all pairs of real numbers a 
and b. However, as alluded to above, this “general class of problems” tends to be pre-determined 
and fixed by an external source (e.g., teacher, researcher) and does not necessarily align with the 
problems that students intend to solve with their algorithms (Tupouniua, 2020a, 2023). The 
external source’s fixed view of “problems to be solved,” especially when it does not align with the 
students’ domain of validity, can be problematic (Tupouniua, 2023). For instance, problems that 
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are counterexamples to the external source, in the sense that they are part of the general class of 
problems which the student’s algorithm does not produce a correct solution, might not be 
perceived as a counterexample by the students because it does not exist in their DoV (Tupouniua, 
2020a, 2023). 

This is evident in the second-third iteration of Liv and Mel’s algorithm. The students were 
given what the interviewer deemed to be a counterexample (a = 1, b = 1) to their algorithm. 
However, this problem was not a counterexample to the students because it was not an element of 
their current DoV (i.e., all pairs of a and b, such that |a| ≠ |b|). On the one hand, one might say 
that the students ignored and dismissed the counterexample they were given (e.g., Zazkis & 
Chernoff, 2008). On the other hand, one could argue that the interviewer had failed to 
acknowledge the DoV of the students’ algorithms, thus giving them a problem which they did not 
intend for their algorithm to solve. Failing to recognize and acknowledge students’ algorithms in 
terms of their set of instructions and domain of validity can result in the external source missing 
out on the small, nuanced gains that students make as they revise their algorithm in response to 
counterexamples (Tupouniua, 2019, 2020a, 2023). This point is discussed further in the following 
paragraphs.  

Throughout their work, Mel and Liv revised the DoV of their algorithm by progressively 
recognizing and identifying exceptions (counterexamples) within their current DoV. Because these 
revisions did not result in an algorithm capable of solving the entire pre-determined general set of 
problems (i.e., all pairs of real numbers a and b), one might deem these revisions unproductive and 
the counterexamples ineffective because they were merely treated as exceptions (Moala et al., 2019; 
Selden & Selden, 1998; Zazkis & Chernoff, 2008). However, I argue that such revisions are 
legitimate, and a sign of progress (Tupouniua, 2020a, 2023). Liv and Mel made progress in their 
work by narrowing the domain of validity for their algorithm to the point where they had 
identified the normatively correct DoV for their algorithm (i.e., (a + b)2 = a2 + b2 for all pairs of a 
and b, such that at least one of a and b is zero). 

Mel and Liv’s progress can go unnoticed, unsupported, and unrewarded if the external source 
maintains a fixed notion of “the problems to be solved” and disregards the dynamic nature of the 
DoVs of students’ algorithms. This type of revision that Mel and Liv conducted, treating 
counterexamples as exceptions, is similar to the process of exception-barring (Lakatos, 1976)—a 
process in which counterexamples are treated as exceptions to a theorem, to delineate a safe 
domain of validity for the theorem. It also aligns with Sierpinska’s (1994) description of conceptual 
understanding, which involves not only looking for universally valid ways of thinking, but also 
identifying the domain of validity of locally correct ways of thinking. 

Moreover, past studies suggest that students’ prior experiences with examples can explain why 
they dismiss counterexamples as mere exceptions that do not affect the validity of their conjectures 
(e.g., Selden & Selden, 1998; Zazkis & Chernoff, 2008). That is, some students understand that a 
few examples do not suffice to prove the universal validity of a conjecture. Consequently, some 
students believe that a few counterexamples do not suffice to disprove a conjecture. Selden and 
Selden (1998, p.1) suggest that “this can happen when a counter-example is perceived as ‘the only 
one that exists’, rather than being seen as generic”.  

However, if generic is interpreted as a representative of a larger class of objects, then it can be 
argued that Liv and Mel considered the counterexamples they were given as generic. For example, 
they viewed a = 2 and b = -2 as a representative of all pairs of a and b, such that |a| = |b|. Liv and 
Mel removed the classes represented by the counterexample from the current DoV to obtain a 
more normatively correct DoV of their algorithm. As such, Liv and Mel’s work suggests that in 
some cases, the issue might not be that students do not consider a counterexample as generic, but 
rather that the general class of which the students perceive a counterexample to be a representative 
does not align with the general class of problems that the external source (e.g., teacher, researcher) 
has in mind (e.g., Tupouniua, 2020a, 2023). Once again, paying attention to the dynamic DoVs of 
students’ algorithms rather than maintaining a fixed view of the problems to solve affords 
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opportunities for educators to build on students’ thinking and offer appropriate counterexamples 
to further support the development of their algorithms (Tupouniua, 2020a, 2023; Zazkis & 
Chernoff, 2008). 

6. Concluding remarks and future directions 

A critical aspect of supporting the development of students’ algorithmic thinking is understanding 
the challenges that emerge when students engage with algorithmatizing tasks. This paper 
presented and discussed three examples of such challenges, which can serve as a basis upon which 
educators can build effective strategies for supporting students. I conclude this paper by 
highlighting some key findings and potential directions for future research. 

This study revealed, among other things, some affordances of paying attention to the processes 
by which students create their algorithms (the how and why), rather than merely the end-product. 
Examining these processes provides valuable insight into the challenges that students encounter. 
For example, as illustrated in Section 4, instead of merely asking whether students have validated 
their algorithm, it is also useful to ask how they are validating their algorithms. Also, as discussed 
in Section 5, changing one’s frame of thinking about notions such as “generalized algorithm” and 
the goals toward which we often expect students to work can uncover certain nuances in students’ 
thinking and reasoning, which in turn provides alternative ways of understanding and supporting 
students’ algorithmic thinking (Tupouniua, 2020a, 2023). 

This study also echoes claims from past research about how algorithmic thinking can 
complement the teaching and learning of mathematical concepts; and similarly, mathematical 
concepts can be taught and learned in a way that develops students’ algorithmic thinking (e.g., 
Rasmussen et al., 2005; Ross, 1998; Stephens & Kadijevich, 2019). The three illustrative cases 
provide some evidence that getting students to engage in the iterative process of creating their 
own algorithms, through algorithmatizing tasks, can not only be a means of developing students’ 
conceptual understanding of mathematical concepts (e.g., comparing fractions, describing rules for 
growing patterns, expanding expressions) but also gives students valuable experience in engaging 
with fundamental constructs and processes of mathematical reasoning such as counterexamples 
and validation. Numerous studies have found that, in terms of problem-solving skills, primary 
and secondary school students who are given opportunities to create their own algorithms 
outperform students who are taught conventional algorithms, particularly in activities which 
present students with relatively novel scenarios (e.g., Clarke, 2005; Futschek & Moschitz, 2010; 
Madell, 1985; Ross, 1998). Hence, there are well-grounded reasons to make more prevalent the use 
of algorithmatizing tasks in mathematics teaching (Ross, 1998; Stephens & Kadijevich, 2008). 

Lastly, the present study focused primarily on the activity and perspective of students. 
Additionally, the results (challenges) presented in this study emerged in non-classroom settings. 
However, if the results of this study are to have any practical impact on pedagogy, then there is a 
need to discuss the challenges described in this study with teachers, and to collaborate on ways to 
effectively enact (if possible) the corresponding pedagogical suggestions. This is a potential avenue 
for future research. Groth (2007) pointed point out that some teachers prefer teaching conventional 
algorithms over giving students opportunities to create their own. Reasons for this preference 
include teacher beliefs such as: the teacher’s primary role is to present ready-made algorithms for 
students to practice; and mathematics development takes place according to a fixed sequence of 
levels. Furthermore, some studies claim that teachers’ insistence on teaching conventional 
algorithms and rejecting the importance of student-invented algorithms can be attributed to 
teachers having low confidence in assessing, and supporting the development of, students’ novel 
and idiosyncratic algorithms (e.g., Groth, 2007; Morrow & Kenney, 1998). Hence, supporting 
students overcome students’ challenges such as those presented in this paper will require further 
research into, among other things, developing teachers’ content and pedagogical knowledge with 
respect to algorithmic thinking. 
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