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An unplugged approach to teaching enables students to explore Computational Thinking without using a 
computer. It might appear that if students are to learn programming, they should focus on computer-
based work; however, it appears that using “unplugged” activities before engaging in computer-based 
coding (programming) activities for each unit of work leads to better outcomes for students in the same 
amount of time. In this paper we explore why this could be the case, by reviewing literature that reports 
on these experiences, and also using different theoretical lenses (Notional Machines, Semantic Profiles, and 
the Zone of Proximal Development) to analyse how the combination of experiences can engage students. 
We also explore how the approach integrates with mathematics education. 
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1. Introduction

“Unplugged” is a pedagogical approach for introducing students to computer science without 
having to involve computers (Bell & Vahrenhold 2018). Its genesis in the 1990s was around 
introducing primary school students to computer science, and included giving these students 
deeper mathematical experiences that relate to advanced ideas from Computer Science (CS), such 
as graph algorithms and tractability, as well as fundamental ideas, such as data representation, 
sorting algorithms and data compression (Bell, Rosamond & Casey 2012). The unplugged 
approach (and the resources shared through the “CS Unplugged” website)  have since become 
widely used to support Computational Thinking (CT) teaching at all levels of K-12. 

Unplugged activities are generally presented as games, magic tricks and puzzles, but are 
designed to exercise the kind of thinking that computer scientists engage in, such as finding 
algorithms and data representations that will work effectively on a computational device, and that 
will work well for the person who is using the software on that device (Bell, Rosamond & Casey 
2012, Bell & Vahrenhold 2018). For example, the speed of different algorithms for the same task is 
explored through searching algorithms (sequential search, binary search and hash tables) that have 
been adapted to a format that is engaging for young students, but still demonstrates the same 
performance issues and benefits that would be observed if implemented in a computer program. 
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One form of this is cards with values face-down on the table, where the students know that the 
cards are in increasing order of value, but they must try to minimise how many they look under to 
find a particular value. This naturally leads them to using a variation of binary search, and opens 
the possibility of exploring its performance, for example, if the number of cards was doubled (it 
takes almost no extra time), which can be extrapolated to searching thousands or even millions of 
items very efficiently. Other activities uncover everyday applications of computer science ideas, 
such as how check digits work in product codes, leading to the general idea of error detection and 
correction. 

These unplugged activities can be a prelude to programming, since they are well defined and 
students understand the mechanisms through engaging with them physically. This has led to 
“plugging it in” activities, which provide students with computer programming challenges based 
on the unplugged activities they have been doing. 

Another style of unplugged activity is directed at understanding elements of programming, 
such as sequence, loops or variables. These ones also lead directly to programming activities, but 
the focus of the learning is on programming language elements, rather than the bigger picture of 
issues addressed in computer science. This kind of activity is explored further in Section 3 below. 

The “unplugged” approach was originally designed in the 1990s for outreach in a classroom 
when it was unlikely that computers would be available, or where time was limited and would be 
wasted getting students set up on devices. In many countries now students have much better 
access to computers, and the “unplugged” approach is being used for teaching curriculum 
material rather than just for outreach. In this situation, the teacher has more regular time with 
students, and is better able to develop concepts over a longer period, whereas outreach is more 
focussed on creating interest in a short period. 

Despite the improved availability of computers, unplugged teaching has remained popular - for 
example, Falkner et al. (2019) report that “Unplugged programming” is used by a similar number 
of teachers to those who use block-based and text-based programming, even in high schools. This 
may be partly because teachers with little computing background are more comfortable starting off 
with familiar materials instead of having to grapple with the perceived - and often real - challenges 
of working with software, but it also appears to reflect positive learning experiences using this 
approach. The unplugged approach addressed a need because it could be used in any context, 
without teachers having to choose software and get it installed, and it saved them worrying that 
students might get into a situation that the teacher couldn’t help them out of. 

This carries the risk that a class might never proceed to working with computers, and in 
particular, it might prevent students from having an experience of programming a computer. This 
was never the intention of the unplugged approach, as it was created as a gateway to the richness 
of computer science, which includes programming. One reaction to this is to eschew the 
unplugged approach altogether, and focus only on students using devices, which highlights the 
importance of showing teachers ways of connecting unplugged activities to programming. 
However, a more compelling reason to combine unplugged and programming has emerged: 
unplugged has been found to work well to support students learning programming (Hermans & 
Aivaloglou, 2017), where students have gained more from learning programming after having an 
unplugged experience. 

Unplugged also remains a valuable tool for introducing teachers to Computational Thinking, 
particularly if they are sceptical about their ability to understand this new topic (Curzon et al., 
2014). It also provides a way to reduce “screen time” for those who are concerned that 
Computational Thinking might be mainly about being on devices. There are other approaches to 
introducing students to Computational Thinking, but they need to be considered in the light of 
who they are available to. For example, robotics can be highly motivating, but may only be 
available to schools that have ready funding; conversely, web-based systems are accessible to 
anyone who has a web-browser, including web-only devices such as a Chromebook.  
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In this paper we address the question of the relative value of using an unplugged approach 
compared with having students working on computers. Not surprisingly, there is a variety of 
research that supports the idea of not choosing between the two, but rather, working out how to 
combine them for the best outcomes. We explore ways of connecting unplugged activities with 
programming, including some new activities designed specifically to introduce programming 
concepts such as sequence, variables, iteration and selection; these activities can then be linked 
directly to programming challenges, including Parsons problems (Du, Luxton-Reilly and Denny, 
2020) and the PRIMM approach (Sentance et al. 2019) to develop students’ programming skills. We 
also explore more general “plugging it in” activities that provide programming links for more 
traditional unplugged activities, such as data representation and algorithms. We analyse why the 
unplugged approach is effective at engaging students by reviewing how it works through the 
lenses of Notional Machines, Semantic Profiles, and the Zone of Proximal Development. This  approach 
to Computational Thinking is then connected to mathematics teaching. 

2. Unplugged Activities and Computational Thinking 

The CS Unplugged approach connects well to teaching Computational Thinking (Bell 2018; Bell & 
Lodi 2019, Caeli & Yadav 2019), and it integrates well with other subjects, particularly mathematics 
(Moursund 2006; Dorling & White 2015). 

There are several definitions of Computational Thinking that share common properties, but 
focus on different views of computation or education (Curzon et al. 2019). Given our focus on 
programming here, we will use a definition given by Wing that specifically draws attention to the 
computation: 

Computational thinking is the thought processes involved in formulating problems and their 
solutions so that the solutions are represented in a form that can be effectively carried out by an 
information-processing agent (Wing, 2011). 

In a conventional context, the solutions would be represented as computer programs, and the 
“information-processing agent” is the computer. However, unplugged activities (such as the ones 
found on the website csunplugged.org) map well to a broader view, where the “information-
processing agent” is typically a student who is governed by strict rules of a particular activity, 
such as only being able to follow the instructions “left”, “right” or “forward” in a sequence; or only 
being able to compare two values and take one of two paths (i.e. an “if” statement); or being 
restricted to looking under one cup at a time (indexed access to an array). 

Although originally used as an outreach tool for experts visiting schools, where the time and 
resources weren’t available to engage students with programming on a computer, it has since 
become popular for use in the classroom (Bell, Rosamond & Casey, 2012; Bell & Vahrenhold, 2018). 
Teachers around the world have been expected increasingly to introduce their students to 
elements of Computational Thinking (Yadav, Hong & Stephenson, 2016), and the unplugged 
approach has been an easy starting point because it uses familiar materials, and avoids the 
challenges of working with digital devices (Faber et al., 2017; Falkner et al. 2019). However, this 
can lead to an “unplugged only” approach, which can lead students to miss the connection to 
digital devices (Feaster et al., 2011; Taub, Armoni & Ben-Ari, 2012; Wohl, Porter & Clinch, 2015), 
and miss out on experiencing the power of programming.  

Of course, Computational Thinking isn’t just about developing programming skills in young 
students, since they are not directly preparing as programmers, and many may not pursue that as 
a career pathway. However, it is valuable to develop their self-efficacy and understanding of the 
concepts and range of knowledge needed to live in a digital world, particularly for younger 
students for whom education is about developing general skills and knowledge. Pe ́rez (2018) 
explores the “dispositions” of computational thinking (tolerance for ambiguity, persistence, and 
collaboration), stressing their relevance across a range of educational domains. 
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3. Unplugged and Programming 

The unplugged computing approach would appear to be antithetical to teaching programming, 
and might be seen as a compromise that should only be used if devices aren’t available (which was 
indeed the situation when it was developed in the 1990s, and remains the case in some 
contemporary schools that don’t have access to power, let alone computers). Once devices are 
available, it would be tempting to focus on getting students to write programs (sometimes referred 
to as “coding”), and this is consistent with a constructionist approach. 

However, despite the increasing availability of devices to teach computer programming, the 
unplugged approach has remained popular. While this could be due to the attraction of working 
with familiar physical resources rather than having to wrangle devices and software, there is also a 
strong sense that students are learning something valuable from the unplugged activities (Thies & 
Vahrenhold, 2016). Another  factor may be the widely expressed concern that too much “screen 
time” isn’t good for students’ health or learning outcomes; see for example Sigman (2012), 
Neophytou, Manwell & Eikelboom (2021), Pardhan et al. (2022). 

A turning point in the understanding of the value of using unplugged activities compared with 
teaching programming was the work of Hermans and Aivaloglou (2017), who found that 
unplugged activities seem to act as a catalyst when combined with programming; their results 
showed that spending about half of the students’ time on unplugged activities and half on 
programming led to better outcomes than spending the same total time on programming only. In 
particular, they found that students’ level of programming skill was similar with both approaches, 
but the students’ self-efficacy and programming vocabulary was higher when the programming was 
prefaced by unplugged activities. 

A related observation was made by Wohl, Porter & Clinch (2015), who experimented with 
delivery of three approaches to teaching computer science to young students (Scratch, Cubelets 
and unplugged) in different orders and found that students had the highest level of understanding 
after engaging with the unplugged session. They observed that if unplugged is to be used, 
students found it most engaging when it was the first of the approaches used, and they observed 
that working with devices first didn’t work as well: “it seems when unplugged is put in context of 
the more ‘technological’ sessions it is viewed as being less exciting” (p. 59). They also noted that 
“after the unplugged session the pupils were most engaged in the concepts of computer science. 
However, after the Scratch session the pupils had the most relevant ideas for things to try next” (p. 
59). This again points to the value of combining the two, to gain both benefits - engagement with 
concepts, and inspiration to implement their own ideas. 

This also matches approaches such as “Use-Modify-Create” (Lee et al., 2011) and “PRIMM” 
(Predict-Run-Investigate-Modify-Make) (Sentance et al., 2019), where students are encouraged to 
engage with digital artefacts before programming, developing playfulness and curiosity before 
creating their own programs (Schulte, 2012). 

Li et al. (2022) performed a meta-analysis and found that the unplugged approach “should be 
used more for primary school students”, while a more programming centred approach “should be 
used more for secondary students” (p. 8008). The work reported below is focussed on primary 
school teachers because that is where introductory programming and computational thinking is 
taught in the local curriculum, but the discussion should be read with the understanding that it 
may not apply to advanced programming classes. 

We should emphasise that the discussion below assumes that an unplugged activity “before” 
programming applies to individual concepts on a small scale; for example, students might 
experience an activity that introduces the concept of a variable, and then they implement that 
concept in a programming language, so in a series of lessons students are alternating unplugged 
experiences with programming activities.   

As well as creating a context for programming where students have engaged with the subject 
before having to learn details of a programming language environment, unplugged activities also 
provide very precise scenarios that students can implement as a program after practising the 
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algorithms physically, so they are already very familiar with how they work. For example, the 
“parity magic trick” involves counting how many black and white cards there are, which students 
may have practised a number of times in order to do the trick successfully, and therefore will be 
very familiar with what the output is for various inputs, including extreme cases (such as all cards 
being the same colour). This approach has been made explicit in the “Plugging-it-in” section of 
csunplugged.org. 

4. Unplugged Pedagogy  

Here we analyse how the unplugged approach works through three theoretical lenses that have 
been applied elsewhere to computing education: the Notional Machine (Du Boulay, O’Shea, & 
Monk, 1981), Semantic Profiles (Maton, 2013) and the Zone of Proximal Development (Vygotsky & 
Cole, 1978). 

4.1. Notional Machines 

One way of explaining why unplugged activities seem to have a positive effect on programming 
skills is through the Notional Machine (NM). The Notional Machine is a conceptual computer 
created by teachers to facilitate learners’ understanding of hidden aspects about computers and 
programs at run-time. It represents something learners can (mentally) interact with so the teacher 
can draw their attention to hidden aspects of computing. A Notional Machine is implicit in all 
programming teaching methods (Du Boulay, O’Shea & Monk, 1981; Robins, Rountree & Rountree, 
2003; Sorva, 2013).  

The Notional Machine is not necessarily taught in programming classrooms or introduced to 
learners explicitly, but often stays as an abstract model of a computer created by the teacher in the 
context of teaching (Fincher et al., 2020). Accurate Notional Machines underpin successful 
performance in Computational Thinking and understanding Notional Machines is a prerequisite 
for effective teaching of computing (Bower and Falkner, 2015). Attention to Notional Machines 
becomes important when introducing students to computing via programming, irrespective of it 
being implicit or explicit in the teachers’ or learners’ thinking.  

Wing’s definition of Computational Thinking introduced above uses the concept of an 
information processing agent (which is referred to elsewhere as a computational agent) to perform 
computation, much like a Notional Machine. The typical goal of Computational Thinking is to 
produce an algorithm or a computer program. Computational Thinking encourages solutions to be 
defined rather clearly and implemented easily using a computer, as if they are expressed in the 
form of a set of instructions to a “computational agent” for processing. Nevertheless, the 
Computational Thinking definition has provided flexibility for the computational agent to be 
either human or machine as long as it follows a particular instruction set precisely and blindly, 
executing the steps without consideration for what the purpose of the program is.  

Unplugged pedagogy facilitates conceptualisation and mental model development in learners 
by providing a physical experience of relevant computing concepts and making them more 
relatable and reachable for students. Unplugged makes use of fellow students or physical objects 
to act as computational agents, especially in learning to program. For example, the “Kidbots” 
activity involves giving instructions to a fellow student (the “bot”) to move around a grid drawn 
on the ground to reach a target square (Figure 1), where all the instructions are written in advance 
of being executed. Another activity uses a flip book (Figure 2) to represent a variable; the nature of 
the flipbook enforces the concept that a variable can store only one value, and it can be accessed or 
updated.  In the early stages of learning to program, working with physical computational agents 
like these allows learners to comprehend aspects of a Notional Machine without having to be 
exposed to any programming language.  

In many cases the Notional Machine is implicit, and not explicitly understood by teachers who 
are new to computing or programming. In cases like Kidbots, however, the Notional Machine of a 
physical computational agent of this nature is explicitly visible, and the rules it can follow are 

http://csunplugged.org/
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easily articulated and understood. This is very useful with younger learners, where the teaching 
goal might primarily be developing a reasonably solid understanding of programming concepts, 
rather than knowing a particular programming language or actual implementation. Teachers can 
also develop a shared understanding with their students, which can be scaffolded to a much more 
refined Notional Machine later, both as the learners’ as well as teachers’ programming knowledge 
grow. Having tangible computational agents like this enables learners to exercise their 
understanding (i.e. their mental model), instead of it being hidden in the machine (computer) and 
being primarily conceptual, giving them deeper insights into the elements of computing. A 
computational agent facilitates a teacher’s consciousness of their own mental model against the 
Notional Machine they are expected to teach, especially if the teachers are computing novices. 
Computational agents thus become good stepping stones to scaffolding to a robust Notional 
Machine. 

Figure 1 
The Kidbot activity from CS Unplugged 

 

Figure 2 
Representing variables using a flipbook 

 

Models of computation are very simple and highly visible within the unplugged style learning 
activities; they provide simple rules (such as “you can only take one of the two paths based on 
comparing two numbers”, which can later map to the idea of an “if” statement), and are designed 
to scaffold students to understand genuine computational challenges (such as sorting algorithms, 
data representation and intractable problems). The tangible nature of unplugged activities enables 
establishing successful mental models in learners, and moving from unplugged to plugged-in 
programming activities enables teachers to establish increasingly better mental models that are 
closer to a robust Notional Machine. It also allows learners to mature their mental models by 
avoiding (or at least, recognising) possible misconceptions when they build on their prior 
understanding from the physical experience to understanding the expected Notional Machine. The 



B. Munasinghe et al. / Journal of Pedagogical Research, 7(2), 56-71    62 
 

 

 
 
 

pathway through unplugged activities gives early success and a positive experience, before 
potential complications in a “plugged-in” setting, such as setting up an account, learning the 
interface of the development environment, and understanding the syntax of a programming 
language.  

This view gives insight into why a combination of unplugged and programming experience can 
be effective, and how unplugged pedagogy becomes a good scaffolding strategy to learning 
programming. 

4.2. Semantic Profiles 

Here we look into reasons for the effectiveness of the unplugged approach through the lens of 
Semantic Profiles, a concept based on Legitimation Code theory (Maton, 2013). LCT encompasses 
several dimensions, including the dimension of Semantics, which explores the context-dependence 
of knowledge (semantic gravity - SG) and the degree of complexity of practices, dispositions and 
contexts (semantic density - SD). For example,  both SG and SD can be relatively weaker (-) or 
stronger (+) in a continuum of strengths, and vary during a teaching session. Semantic profiling 
provides a graphical representation of how, during a lesson, meaning shifts between simpler 
knowledge and more context-dependent knowledge. Semantic waves are formed by shifts in 
meaning in both directions between the SG+/SD- and SD+/SG- range in a continuum (identified 
as the semantic range), and offer a potential means of traversing this range in classroom practice. 
These waves identify learning moments, as the teacher and students explore ideas, moving back 
and forth (in a process referred to as unpacking and re-packing) between students' existing 
knowledge and new concepts that the teacher wishes to introduce.  

Curzon et al. (2020) have already analysed unplugged activities using this approach, and have 
shown how an unplugged computing activity forms a semantic wave covering a wide semantic 
range. Here we extend this to professional development classes for teachers where unplugged is 
used to support teaching programming: using an unplugged activity to introduce a programming 
concept first and then moving to programming using a computer. This combined approach is also 
referred to as ‘alternating unplugged’. We studied the Semantic Profiles of two different 
approaches of teaching students to program (i.e. a traditional plugged-in only approach, and an 
alternating unplugged approach) in two teachers’ professional development (PD) courses in 
introductory programming, mostly novice to programming.  

In the alternating unplugged approach, a set of carefully designed unplugged activities were 
used to introduce distinct programming concepts (sequence, variables and selection). Each activity 
was followed by a plugged-in exercise in the Scratch programming language, given as a Parsons 
problem (Parsons & Haden, 2006), where the teachers were given the blocks needed to implement 
a program, and had to put them together in the correct structure. In the plugged-in only course, 
the traditional, straight-to-program approach was used to introduce the same three concepts using 
the same set of Parsons problems, but without using any unplugged activity.   

The participants in our study were 152 pre-service teachers and 31 in-service teachers. The 
participants’ self-efficacy towards both teaching Computational Thinking topics and towards 
computer programming were measured using the same questionnaire instruments, before and 
after the PD course. The teaching self-efficacy was measured based on the Teaching Self-efficacy 
Scale developed by Schwarzer et al. (1999) and computer programming self-efficacy was measured 
based on scales developed by Ramalingam and Wiedenbeck (1998) and Kukul et al. (2017). Based 
on the teachers’ responses to the self-efficacy questionnaire, both approaches could cover a similar 
amount of content within the same amount of time without hindering the teachers’ self-efficacy. 
However, we observed that with the unplugged combined approach teachers spent comparatively 
less time programming, yet achieved the same learning objectives.  

Figure 3 shows heuristically drafted Semantic Profiles of the two lesson approaches (each over 
three concepts), based on independent observations from two observers. The observers took notes 
and discussed with each other how the students had engaged at the various stages of the lessons, 
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but the curves shown are necessarily only a heuristic representation of what the observers saw in 
how the lesson was delivered, and how they perceived students were progressing. The Semantic 
Profile of the traditional, plugged-in only approach, indicated by the red line in Figure 3, is ‘high-
flattening’ (stays in the higher region of the continuum), with very limited connections made to 
learners’ existing knowledge. Comparatively, the Semantic Profile of the alternating unplugged 
approach covers a much larger semantic range as indicated by the blue lines.   

Although an unplugged approach can form a clear wave-like profile that covers a large 
semantic range (Curzon et al. 2020), had the programming lesson been unplugged only, the 
Semantic Profile would be ‘low-flattening’ (stays in the lower region of the continuum), without 
having to complete the learning objective by actually writing a program. This shows how an 
approach that uses unplugged activities to introduce the concept and then extend it to a plugged-
in exercise successfully manages to avoid the two semantic extremes in a programming classroom. 
Moreover, a similar amount of content and learning objectives can be achieved with less screen 
time. 

Figure 3 
Semantic Profiles of introductory programming with and without unplugged examples 

 

We observed that a teacher’s approach to delivering an unplugged activity could determine the 
overall shape of the profile. Figure 4 shows two possible starting points of a Semantic Profile in 
two different approaches to unplugged in a programming classroom. Figure 4(a) is when a teacher 
explains concept upfront, then relates to the context. Figure 4(b) is when teacher moves to the 
unplugged exercise with limited or no reference to computing concepts and draws out ideas to 
scaffold context to concept as the lesson progresses. In a programming class, the teacher might 
start with high SD (e.g. introduce the learning objective up front), unpack the ideas before doing 
the unplugged activity and repack the ideas afterwards, shifting along the SD+/SG- to SG+/SD- 
continuum, forming a more defined semantic wave. For outreach or other situations, a teacher 
might start with low SD and high SG (e.g. simply launch into a magic trick without explaining the 
purpose) and then gradually pack the ideas drawn out from learners with concepts, to bring the 
learners to a higher SD region, forming a more step-like profile than a wave.  However, in either 
scenario, the unplugged activity causes it to cover a large semantic range. 
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Figure 4 
Starting point of a semantic profile: (a) teacher explains the concept upfront, then relate to context (b) 
teacher moves to doing the activity and draw out ideas to scaffold context to concept 

 

4.3. Zone of Proximal Development 

Unplugged computing uses students’ playful engagement in physical activities appropriate to 
their abilities and understanding to explain computing concepts in a simple manner. Therefore, the 
learning experience during an unplugged computing activity can also be seen as very similar to 
the learners’ development described by the concept of Zone of Proximal Development (ZPD). The 
ZPD is described as the distance between individual performance and assisted performance, thus a 
knowledge development zone in which a student operates with assistance of a more 
knowledgeable other (MKO), bringing them along a learning process that utilises their level of 
competence and/or skill to learn challenging knowledge and/or difficult content (Vygotsky & 
Cole, 1978; Vygotsky, 1986).  

During an unplugged computing activity, students, most often novice or beginner, use their 
existing knowledge to learn or understand a computational concept by linking their everyday 
knowledge into the technical context introduced, with the guidance of a teacher (MKO). The 
teacher guides the learners by simple hints or posing simple questions. Peer learning moments that 
involve a knowledgeable peer during a learning process are also very common in an unplugged 
computing activity. Both of these influences are central to the ZPD (see further discussion in 
Section 5 below). Thus, engaging in an unplugged computing activity ideally situates the learner 
within the ZPD, providing an environment both for successful learning and for fostering effective 
dispositions. 

When studying the behaviour of the Semantic Profiles of unplugged lessons, particularly in 
learning programming, heuristically the ZPD can be seen as related to the rate of change of a 
Semantic Profile of the activity, essentially shifting students back and forth between existing and 
new knowledge while learning a programming concept. The unplugged activity is designed based 
on knowledge already familiar to the student (therefore high in semantic gravity) and computing 
concepts introduced are mostly technical and challenging (high in semantic density) for them. 
Therefore during unplugged computing lessons, traversing along the semantic range over time 
inevitably forms semantic waves, as well as situating the learning process well within the ZPD. 

The relationship between different slopes in a Semantic Profile to ZPD is shown in Figure 5. The 
smoother and more gradual upshifts along the semantic range during a learning exercise, the more 
firmly it situates a learner within the ZPD. Mixing unplugged learning in lessons helps to achieve 
this overall effect in their Semantic Profiles, while forming many clear local semantic waves during 
the lesson. Nevertheless, it should be noted that covering a larger semantic range too fast may 
push the learner into anxiety, and conversely if too slow, into boredom (these terms as used by the 
original ZPD authors). 
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Figure 5 
Mapping from the concepts of Semantic Profiles (lower graph) to ZPD (upper graph). The vertical dotted 
lines mark the phenomena of particular interest between the two 

 

5.  Unplugged and Mathematics Education 

Mathematics education is a much older and larger discipline than computing education, but there 
are many areas of overlap. The recent Encyclopedia of Mathematics Education (Lerman, 2020), for 
example, has entries on core computing topics such as Algorithmics, Algorithms, 
Computational/Algorithmic Thinking.  There are also entries that strongly relate to CS 
Unplugged, such as those on Embodied Cognition, Inquiry-Based Mathematics Education, 
Manipulatives in Mathematics Education, Mathematical Games in Learning and Teaching, and 
Zone of Proximal Development in Mathematics Education. As already noted, the origin of CS 
Unplugged was interwoven with concepts from mathematics education. The “Family Maths” 
programme of the 1970s, and MEGA-Math in the 1980s, were seminal influences, and “The 
Unplugged project began out of an interest in providing engaging and accessible ways of 
introducing children to big ideas from mathematics and computer science” (Bell, Rosamond & 
Casey, 2012, p. 400). 

Given that the significance and popularity of information technology and computing have 
driven the emergence of unplugged computing education as a distinct and active field in its own 
right, with its own growing body of literature, it is probably timely to emphasise that in terms of 
both its origins and broader context, unplugged approaches have strong overlaps with the general 
field of mathematics education. The role of computational thinking in mathematics education, for 
example, is explored in detail and compared with “mathematical thinking” by Pe ́rez (2018), see 
also extensive reviews in Barcelos et al. (2018) and Nordby, Bjerke & Mifsud (2022). In some cases 
it isn’t even possible to draw a clear line between the disciplines of Computer Science and 
Mathematics. This is seen particularly in the area of theoretical computer science, where a formal 
and mathematical approach is taken to computational problems; programs can be seen as a 
mathematical entity subject to proofs of correctness, data structures are relationships with 
mathematical properties, automata are imaginary machines that help us reason about the limits of 
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computation, and so on. In fact, one of the authors of CS Unplugged, Mike Fellows, has said 
somewhat facetiously that “Computer Science is the rock-and-roll of mathematics” (Bell, 
Rosamond & Casey 2012, p. 438) - it can be seen as a form of mathematics that might not be 
completely pure, but is in widespread popular use and has practical applications. Since unplugged 
activities are done without a computer, many of the activities are inherently mathematical 
(although not all of them; for example, activities based on human-computer interaction could be 
seen as essentially psychology or design experiments). In a grade-school context, many of the 
activities are easily recognisable as exercising arithmetic skills - for example, adding up the check 
digit in a product code to see if the formula works motivates students to exercise basic arithmetic 
skills - but then asking them to find a digit that could be changed yet still produces the same check 
digit moves into the realm of algebra, and even more so when considering how two adjacent digits 
could be swapped to still produce the same checksum. Many other activities exercise both 
arithmetic skills and algebraic skills as students work out what is possible, and what “has to be” 
(i.e. an informal proof), for example, exploring the patterns in binary representations or two-
dimensional parity checks. 

In the context of the topics explored in this paper, it is no surprise that the pedagogical theories 
considered in Section 4 have correlates in the mathematics education literature. The Notional 
Machine in computing is similar to the use of Function Machines in early Algebra, and other forms 
of explicit calculation strategies and algorithms. In general terms these are examples of models that 
are deployed for pedagogical purposes (Sorva, 2013; Robins, 2019). Modelling theory distinguishes 
between conceptual models (objective and publicly shared), and mental models (individual 
knowledge structures), where mental models may accurately reflect conceptual models to varying 
degrees (Hestenes, 2010; Sorva, 2013). Both kinds of models have been the focus of considerable 
attention within mathematics education.  

The International Community of Teachers of Mathematical Modelling and Applications 
(ICTMA) is an “organisation that exists to promote Applications and Modelling (A&M) in all areas 
of mathematics education - primary and secondary schools, colleges and universities”2.  It has 
published several books in the series International Perspectives on the Teaching and Learning of 
Mathematical Modelling3 including Modeling students' mathematical modeling competencies (Lesh, 
Galbraith, Haines & Hurford, 2010) and Mathematical Modelling in Education Research and Practice 
(Stillman, Blum & Biembengut, 2015). There are many other examples in the broader mathematical 
literature, see for example the SimCalc project (Roschelle, Kaput & Stroup 2012), a summary 
would be well beyond the scope of this brief overview! Hestenes (2010) suggests that “Students 
should become familiar with a small set of basic models as the content core for each branch of science, 
along with selected extensions to more complex models” (p. 33). The notional machine in computing 
education is one such basic model, and as discussed above a progression of Notional Machines can 
serve as a focus for the development of learners’ mental models at various stages of learning. 

Although less widespread than the use of models, Semantic Profiles and other concepts from 
Legitimation Code Theory (LCT) have also been explored in mathematics education. Focusing on 
the transition from first to second year mathematics courses, Conana, Solomons and Marshall 
(2022) used an analysis of the Semantic Profiles of typical classes to motivate changes. These  
included for example “a deliberate focus on widening the semantic range in classroom sessions 
through referring to specific examples wherever feasible”, and “exploring and unpacking a range 
of representations” (p. 217); in conjunction with other interventions the effect was “significant 
changes in student’s attitudes towards Mathematics learning, as well as in their learning 
outcomes” (p. 220). Doran (2021) explores the interaction of mathematics, images and language in 
physics, with a significant focus on “knowledge through mathematics” (p. 172). Using the 
construct of “semantic plane” (defined by dimensions of density and gravity), and examples based 
on derivation and quantification, Doran shows how technical meaning can be built in ways that 
                                                           
2 https://www.ictma.net/index.html 

3 https://www.springer.com/series/10093/books  

https://www.ictma.net/index.html
https://www.springer.com/series/10093/books
https://www.springer.com/series/10093/books
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move from relatively common-sense and empirical meanings to technical and theoretical. Further 
examples of the use of LCT in mathematics education can be found on the Legitimation Code 
Theory Website4. Dankenbring (2021) reviews applications of semantic gravity in STEM education 
in the domains of lecture design, syllabus / curriculum design, assessment design, teaching 
practices and professional development. For a discussion of LCT in STEM education generally see 
Winberg, McKenna and Wilmot (2020). 

Vygotsky’s Zone of Proximal Development (ZPD) has such a broad and enduring impact on 
educational theory and practice that it has almost certainly (whether recognised or not) influenced 
every teaching discipline. In Russia, disciples of Vygotsky (particularly Leonid Vladimirovich 
Zankov) developed his ideas into a system of mathematics education.  This “Zankov system”, 
which was “verified by large scale pedagogical experiments conducted in 1970s at public schools” 
is still (as of 7 years ago) in use in Russian schools (Guseva and Solomonovich, 2016, p. 775). In the 
US in the 1980s and 1990s the National Council of Teachers of Mathematics (NCTM) Standards 
documents emphasised the importance of social interaction and communication in mathematics 
education, ideas which “can be traced back to the ideas of Lev Vygotsky” and the ZPD (Steele, 
1999, p. 38). In one highly influential study (Goos, Galbraith & Renshaw, 2002) the authors present 
a three year study of social interaction and metacognitive activity in senior secondary school 
mathematics classrooms, with a focus on the factors which fostered a “collaborative zone of 
proximal development” (p. 207); they reported that the impact of “challenge”, which is central to 
the ZPD, emerged as a major “stimulus for mathematical thinking” (p. 218). Roth (2020) briefly 
summarises literature on the ZPD in mathematics education, including recent developments and 
the different ways in which the theory has been “reworked” or “reformulated”.  

In summary, there are many overlaps between unplugged approaches in computing education 
and related topics in mathematics education. The three theoretical lenses applied to unplugged 
teaching in Section 4 above, the Notional Machine (conceptual and mental models), Semantic 
Profile, and the Zone of Proximal Development, are all (albeit to varying degrees) active areas of 
research in mathematics education. 

6. Conclusion  

Using unplugged activities before programming can lead to better outcomes for students in the 
same amount of time. In this paper we have explored why this could be the case, by reviewing 
literature that reports on these experiences, and also using different theoretical lenses to analyse 
how the combination of experiences can engage students. 

Unplugged activities are a way of exposing learners to an easily accessible and explicit Notional 
Machine for a simple computational activity, such as instructing a “Kidbot”. Through a careful 
progression of activities, and the introduction of actual programming tasks, the underlying 
Notional Machines continue to provide scaffolding and support for users as they grow more 
sophisticated, eventually (ideally) transitioning to the machines underlying full programming 
languages. 

Within a given teaching activity the use of unplugged elements increases the potential semantic 
range for both learners and teachers, facilitating the use of learners’ existing knowledge and 
concrete experience as a foundation for learning more abstract or technical concepts. Analysing 
activities in terms of their Semantic Profile raises useful questions. At what semantic level does an 
activity begin? Does its progression draw on learners’ existing knowledge and experience in order 
to support its goals at the abstract / technical level? Are there sharp transitions that need to be 
carefully managed?  

Aspects of a Semantic Profile analysis map very usefully into the well established context of the 
Zone of Proximal Development. Is a learning activity as a whole situated within the target 
learners’ ZPD? Does the activity progress too quickly or too slowly, potentially leading to 
frustration or boredom?   
                                                           
4 https://legitimationcodetheory.com/publications/database/tag/mathematics/  
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Combining these various theoretical frameworks provides plausible explanations for the 
efficacy of unplugged activities. It also allows educators to explicitly explore and answer questions 
that may facilitate the design and delivery of effective learning experiences. Finally, there is of 
course a significant overlap between unplugged computing and various topics in mathematics 
education, and the two areas are able to support each other. All of the theoretical lenses used in 
this paper are also in use, to varying degrees, in mathematics education (and other fields). As such, 
one of the goals of this paper is to highlight the significance of each field and community of 
practice to the other, so as to share knowledge on topics of possible interest and support 
collaboration. 
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