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A substantial body of research has documented that the types of knowledge that mathematics teachers draw 

upon during their practice often differs from the knowledge of individuals working in other fields. Drawing 

on the Mathematical Knowledge for Teaching (MKT) Framework and the School Mathematics Teaching 

Pedagogical Content Knowledge (SMTPCK) Framework, we investigated the knowledge that mathematics 

preservice secondary teachers (M-PSTs) used when solving quadratic equations and talking about teaching 

this topic during task-based interviews. Most of the M-PSTs were able to draw on their Common Content 

Knowledge (in MKT) and Content Knowledge in a Pedagogical Context (in SMTPCK) for procedures such as 

using the quadratic formula and completing the square. the M-PSTs, however, more often struggled and 

expressed uncertainty when asked to draw on their Specialised Content Knowledge (in MKT) and Clearly 

Pedagogical Content Knowledge (in SMTPCK) to, for example, provide multiple representations to support 

student learning. Our findings support persistent calls from professional organisations for a series of courses 

in secondary mathematics teacher education programs that provide opportunities for M-PSTs to engage with 

and investigate secondary mathematics content from an advanced perspective. Such experiences have the 

potential to enhance development of several domains of M-PSTs’ MKT and SMTPCK. Similarities, differences, 

affordances, and limitations of MKT and SMTPCK frameworks are discussed. 
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Introduction 

As documented broadly in research, the knowledge that mathematics teachers use in their work is quite 

different from the mathematical knowledge needed in other professions (e.g., Ball et al., 2008; Chick, 

2007; Heid et al., 2015; Schifter, 2001; Shulman, 1986, 1987). Shulman (1986) proposed that 

teachers must not only be capable of defining for students the accepted truths in a domain [mathematics 

in this case]. They must also be able to explain why a particular proposition is deemed warranted, why it is 

worth knowing, and how it relates to other propositions, both with the discipline and without, both in theory 

and in practice (p. 9).  

In an effort to elevate the profession of teaching, Shulman also highlighted the idea that content 

knowledge and pedagogical knowledge were not distinct domains and proposed Pedagogical Content 

Knowledge (PCK), a specialised form of professional knowledge of teachers situated at the intersection 

of these domains. He asked questions such as, “Where do teacher explanations come from? How do 

teachers decide what to teach, how to represent it, how to question students about it, and how to deal 

with problems of misunderstanding?” (Shulman, 1986, p. 8). Since Shulman’s introduction of PCK to the 

education research community, many scholars have taken up this construct to describe the work of 

teachers (e.g., Depaepea et al., 2013; Kind, 2009; Koehler et al., 2014); this includes development and 

investigation of PCK in mathematics education (e.g., Ball et al., 2008; Chick, 2007; Depaepea et al., 2013). 
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Researchers have documented the development of specialised knowledge and skills for teaching 

elementary mathematics (e.g., Ball et al., 2009; Kazemi & Franke, 2004); however, some researchers have 

suggested that the proposed domains may not be discrete (e.g., Copur-Gencturk et al., 2019) and noted 

challenges as they applied these conceptualisations of mathematical knowledge to a secondary 

mathematics context (e.g., Asquith et al., 2007; Speer et al., 2015). For example, Speer et al. (2015) 

suggested that distinctions between Common Content Knowledge (CCK) and Specialized Content 

Knowledge (SCK) described as part of the Mathematical Knowledge for Teaching (MKT) framework (Ball 

et al., 2008) may be less obvious at the secondary level than at the elementary level. They proposed that 

other ways of thinking about teachers’ knowledge, such as attention to using students’ mathematical 

thinking to make instructional decisions, might be a fruitful area for further research and development. 

To build on work related to secondary mathematics teachers’ knowledge, we conducted task-based 

interviews with mathematics pre-service teachers (M-PSTs) to investigate their algebraic thinking and 

how they would hypothetically engage their future students as they worked on algebra tasks. We 

investigated what M-PSTs knew and were able to do related to algebraic equations given this topic’s 

prominent place in secondary mathematics curricula (e.g., International Association for the Evaluation 

of Educational Achievement [IEA], 2013; Organisation for Economic Co-operation and Development 

[OECD], 2019). In this paper, we report our findings from tasks focused on the teaching and learning of 

quadratic equations. This follows research conducted by the authors that focused on linear equations 

(Alvey et al., 2016). The specific questions under investigation in this study were: What explanations do 

M-PSTs provide as they solve quadratic equations? What types of mathematical knowledge do M-PSTs 

utilise when they solve quadratic equations and when they make conjectures about students’ thinking 

related to solving quadratic equations? 

Literature Review 

Mathematics Teacher Education 

The Conference Board of Mathematical Sciences (CBMS), a collaboration of 18 professional 

mathematical organisations in the United States, published The Mathematical Education of Teachers II 

(MET II) (CBMS, 2012) to explicate recommendations for mathematics teacher preparation. The authors 

suggested that to understand their future students’ thinking, M-PSTs need not only mathematics 

education courses, but also mathematics courses designed specifically for them (hereafter, 

“Mathematics for Teachers” courses) that address big mathematical ideas, build connections within and 

beyond mathematics, and provide opportunities to study K–12 mathematics from an advanced 

standpoint. That is, these courses should “emphasise the inherent coherence of the mathematics of high 

school, the structure of mathematical ideas from which the high school syllabus is derived” (p. 63), thus 

providing opportunities for M-PSTs to experience mathematics as learners in tandem with a focus on 

their future students’ thinking. The Association of Mathematics Teacher Educators (AMTE, 2017) in their 

Standards for Preparing Teachers of Mathematics echoed this call, stating the need for “the equivalent 

of an undergraduate major in mathematics that includes three courses with a primary focus on high 

school mathematics from an advanced viewpoint” (p. 136). 

Murray et al. (2018) reached a similar conclusion about the need for Mathematics for Teachers 

courses, which they called “connecting” courses, using data from 17 countries in the Teacher Education 

and Development Study in Mathematics (TEDS-M). They found that “the correlations between content 

knowledge [CK], pedagogical content knowledge [PCK], and the opportunity to learn mathematics were 

modest and often low globally” (p. 19), which suggested that CK and PCK do not necessarily develop 

together in mathematics courses. That is, more opportunities to learn mathematics does not necessarily 

enhance PCK. Despite persistent calls for Mathematics for Teachers courses, Newton et al. (2014), in a 

survey of U.S. secondary mathematics teacher education programs, found that although most programs 

were aligned with the MET II recommendations for the majority of mathematics and methods courses, 

few programs met the course recommendations for Mathematics for Teachers courses. These courses, 
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missing from many programs, may serve M-PSTs by enhancing their knowledge for teaching 

mathematics. 

Mathematics Teacher Knowledge 

The professional knowledge and practices of mathematics teachers are complex; therefore, it comes as 

no surprise that the work of exploring and theorising their knowledge and practices is also complex. 

Building on Shulman’s (1986, 1987) notion of PCK, many ways of framing the knowledge and practices 

of mathematics teachers have emerged around the world, including: (a) Knowledge Quartet (e.g., 

Rowland et al., 2005); (b) Professional Competence of Teachers, Cognitively Activating Instruction, and 

the Development of Students’ Mathematical Literacy (COACTIV) (e.g., Kunter et al., 2013); (c) 

Mathematical Understanding for Secondary Teaching (MUST) (e.g., Heid et al., 2015); and (d) 

Mathematics Teacher’s Specialised Knowledge (MTSK) model (e.g., Carrillo-Yañez et al., 2018). In this 

study, we utilised two such frameworks, the MKT framework developed by Ball and colleagues in the 

United States (e.g., Ball et al., 2008) and School Mathematics Teaching Pedagogical Content Knowledge 

(SMTPCK) developed by Chick and colleagues in Australia (e.g., Chick, 2007, Chick & Beswick, 2018). 

Mathematical Knowledge for Teaching (MKT) 

Ball et al. (2008) theorised the MKT framework with six domains—three domains in Subject Matter 

Knowledge and three domains in Pedagogical Content Knowledge (See Appendix A). Subject Matter 

Knowledge includes CCK, SCK, and Horizon Content Knowledge (HCK). CCK is described as “the 

mathematical knowledge and skill used in settings other than teaching” (p. 399); whereas the SCK 

domain distinguishes mathematical knowledge that is unique to the profession of teaching. Teachers 

also need HCK, knowledge of what mathematics content came before a topic and what content will 

come after, as they help students navigate the mathematical landscape. Pedagogical Content 

Knowledge includes Knowledge of Content and Students (KCS), Knowledge of Content and Teaching 

(KCT), and Knowledge of Content and Curriculum (KCC). KCS involves teachers knowing information 

about their students that is relevant for teaching mathematics—what the students might already know, 

what they might struggle with, and what they might find interesting or motivating. Teachers must also 

be able to make instructional decisions based on their knowledge of mathematical content—how best 

to introduce a topic and what sequence of activities will help students understand the topic. This 

knowledge is referred to as KCT. Finally, KCC involves familiarity with a wide range of curricular materials. 

Since the introduction of the MKT framework, scholars have utilised, adapted, and measured these 

domains (e.g., Hill et al., 2005; Lai & Clark, 2018; McCrory et al., 2012). Given that much of the research 

that explores MKT has been conducted at the elementary level (e.g., Ball et al., 2008; Hill et al., 2005; Lai 

& Clark, 2018) and the ongoing debates about the application of the MKT domains at the secondary 

level (e.g., Speer et al., 2015), further investigation of MKT in a secondary mathematics context is 

warranted.  

School Mathematics Teaching Pedagogical Content Knowledge (SMTPCK) 

In a series of studies (e.g., Chick, 2007; Chick et al., 2006; Chick & Beswick, 2018), Chick and colleagues 

developed and utilised the SMTPCK Framework to categorise and describe aspects of the work of 

mathematics teachers (See Appendix B). SMTPCK includes a set of “component knowledge areas” 

presented in one of three points along a continuum indicating the blend of pedagogy and content 

knowledge: (a) Clearly PCK (CPCK) in the centre of the continuum, (b) Content Knowledge in a 

Pedagogical Context (CKiPC) on one end of the continuum, and (c) Pedagogical Knowledge in a Content 

Context (PKiCC) on the other end of the continuum. For example, CPCK would include teacher 

knowledge related to the cognitive demand of mathematical tasks and the use of representations of 

mathematics concepts. Aspects of CKiPC would be more mathematical in nature, including teachers’ 

knowledge about deconstructing content to key components and mathematical structures and 

connections. Finally, PKiCC includes knowledge that is more pedagogical in nature, such as developing 
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learning goals and assessment strategies (see Chick & Beswick, 2018, pp. 479–482 for the complete 

framework; also see Appendix B). Chick and colleagues have used this framework in a wide range of 

mathematics education contexts (e.g., decimal understanding with primary teachers, Chick et al., 2006; 

calculus with secondary teachers, Maher et al., 2015). The developers describe the framework as 

providing a set of filters/lenses through which to examine elements of teachers’ PCK. 

Besides being grounded in Shulman’s work and used by researchers to describe the knowledge and 

practices of mathematics teachers, MKT and SMTPCK have much in common. The frameworks were 

both designed by observing and talking with teachers about their work and both have been used across 

multiple mathematics topics, with most early work focused on elementary teachers’ knowledge and 

practices related to numbers and operations. The developers of both frameworks have explicitly 

acknowledged the complex nature of isolating and exploring aspects of teachers’ knowledge, the 

limitations of categorising knowledge, and the challenging, if not impossible, task of measuring the 

knowledge. Although these frameworks both seek to describe mathematical knowledge for teaching, 

there are differences as well. For example, PCK is one of two major domains of MKT; the other is SMK. 

In contrast, SMTPCK only includes aspects of PCK. Whereas the domains of MKT are represented in an 

oval (often referred to as the “egg”) (see Ball et al., 2008, p. 403) with three domains of SMT on one side 

and three domains of PCK on the other side, SMTPCK is described as a continuum with “Clearly PCK” in 

the centre, more content-focused PCK on one end of the continuum, and more pedagogy-focused PCK 

on the other end. Although developers of both frameworks have emphasised the non-discrete nature 

of the domains, the continuum model underscores this feature. 

Algebra Teaching and Learning 

Given algebra’s role as a gatekeeper to both advanced mathematics courses and career opportunities, 

Moses and colleagues deemed access to algebra a civil right (e.g., Moses & Cobb, 2001). As a result of 

this perceived role, successful completion of at least one algebra course is now required of most 

students in the United States to earn a high school diploma (Teuscher et al., 2008). In a literature review 

of “what is known about early and universal algebra” in the United States, Stein et al. (2011) confirmed 

that increasing numbers of students are taking algebra and taking it earlier, pointing out inconsistencies 

for who has access to early algebra and mixed outcomes for students taking early algebra across the 

studies. Hoffer et al. (2007) administered a national survey to algebra teachers who also reported 

challenges related to students’ poor preparation and lack of motivation to learn algebra. In 2007, Kieran 

synthesised recommendations (e.g., National Council of Teachers of Mathematics, 1989, 2000) and 

research (e.g., Arcavi, 2003; Stacey & McGregor, 1999) that promoted a broader vision of teaching 

algebra be taken (e.g., multiple representations, realistic problem settings, use of technological tools). 

Included was a study that focused on symbolic manipulation and formula memorisation. Another was 

related to providing opportunities for students to make meaning of algebraic concepts. These calls for 

moving beyond a “letter-symbolic and symbol-manipulation view” (Kieran, 2007, p. 747) of algebra were 

certainly not novel, as evidenced by Kieran’s inclusion of research conducted in the early twentieth 

century; rather, she continued to build this case. Recommendations for expanding the conceptions of 

what it means to know and do algebra beyond symbolic manipulation continue, including calls for more 

robust understandings of algebraic procedures and flexible use of such procedures (e.g., Litke, 2020); 

early algebraic thinking focused on equivalence, use of variables, and generalization (e.g., Blanton, 

2022); and experiences building expressions, functions, and equations to model situations (AMTE, 2017). 

Although algebra’s place in both professional and school mathematics is well established and, as 

described above, researchers have studied many aspects of teaching and learning algebra, critical areas 

remain understudied. For example, although a fundamental part of current secondary mathematics 

curricula (e.g., IEA, 2013; OECD, 2019), few research studies have explored solving quadratic equations 

and inequalities. 
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Quadratic Equations and Inequalities 

A search for research and practitioner articles focused on quadratic equations and inequalities 

uncovered few results but included research published in Mathematics Teacher, in which non-traditional 

pedagogical strategies were recommended (e.g., Allaire & Bradley, 2001; Gunter, 2016). There were also, 

however, several studies in which the authors described challenges faced by either secondary 

mathematics students (Eraslan & Aspinwall, 2007; Vaiyavutjamai & Clements, 2006; Zakaria & Maat, 

2010) or teachers (Huang & Kulm, 2012) in their knowledge and teaching of quadratics.  

Vaiyavutjamai and Clements (2006) expressed concern about the lack of attention to the study of 

quadratic equations in extant mathematics education research. In their study of students in Thailand, 

they conducted interviews before and after teaching lessons that focused on solving quadratic 

equations using three methods (i.e., factorisation, completing the square, quadratic formula). Although 

the students performed better after the lessons, the authors noted that most gains in knowledge were 

“rote learned knowledge and skills” and little “relational” understanding was evident in the post-lesson 

interviews, particularly for the lower achieving students. Of concern for the authors were students’ 

“misconceptions” related to variables and the fundamental question of “what quadratic equations 

actually are” (p. 73). They proposed a functions approach to teaching quadratic equations as a promising 

alternative to “traditional” teaching methods used widely in mathematics classrooms around the world 

at that time. 

Zakaria and Maat (2010) conducted an error analysis of the work of secondary mathematics students 

in Indonesia as they solved quadratic equations using the three methods studied by Vaiyavutjamai and 

Clements (2006). They noted that most student errors were transformation or process skill errors 

indicating challenges selecting appropriate solution methods and correctly performing the methods 

once selected. In an analysis of a tenth-grade student’s work on problems involving quadratics, Eraslan 

and Aspinwall (2007) noticed several challenges encountered by the student, including recognizing 

connections and translating between representations of quadratic functions. They proposed that 

teachers facilitate explicit discussions about the benefits and limitations of various forms of quadratic 

equations and the relationships between the forms to address the challenges. Huang and Kulm (2012), 

in a study that aimed to identify challenging algebra topics for middle school teachers, included several 

items that used multiple representations to investigate teachers’ understanding related to solving 

quadratic equations and inequalities. They highlighted errors related to limited knowledge about (1) 

using algebraic or graphic representations with flexibility, (2) negotiating the use of various forms of the 

equation, and (3) following algebraic operation properties.  

All articles, regardless of whether focused on student or teacher learning and whether they explicitly 

addressed pedagogy or research, noted the challenges inherent in the teaching and learning of 

quadratic equations and inequalities. Therefore, we continue this work to contribute to the limited 

knowledge base related to the teaching and learning of quadratic equations. In particular, we attended 

to explanations given by M-PSTs, the knowledge they explicitly drew upon when solving the tasks, and 

how they anticipated responding to students. 

Methods 

Participants 

The participants for the study were 12 M-PSTs enrolled in a mathematics teacher preparation program 

at a large Midwestern university in the United States; an open invitation was presented to the secondary 

mathematics methods course and all volunteers participated. Four of the M-PSTs were in a post-

Baccalaureate teacher licensure program and held an undergraduate degree in a STEM field, while the 

other eight were in their final year of a teacher education program in which they were earning an 

undergraduate degree in mathematics education. Eight participants were female and four were male; 

all names used in this article are pseudonyms.  
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Data Collection 

To investigate M-PSTs’ knowledge, we conducted semi‐structured, task-based interviews (Maher & 

Sigley, 2014) focusing on the knowledge that teachers need to teach content related to solving algebraic 

equations and inequalities. We conducted this study with the recognition that knowledge is unique to 

each teacher; that is, what each of them knows and can do is informed by their own learning experiences 

and informs their own teaching practices. The mathematics tasks utilised were designed to elicit what 

M-PSTs know and can do, as well as how they might work with students on the tasks. Many of the tasks 

also included opportunities for M-PSTs to review and reflect on hypothetical student responses.  

A semi-structured interview protocol was used to ensure that the interviews were conducted in a 

consistent manner (Merriam & Tisdell, 2016); this protocol was piloted with two M-PSTs who were not 

currently in methods. Following the pilot, we refined the follow-up questions that would be asked when 

PSTs said or did specific things (e.g., Follow-up Question 2: If PST mentions “taking the square root” of 

both sides, ask them how they know that they can do this.). In addition, because the pilot interviewees 

expressed some trepidation when they were not sure how to complete a problem, we added a statement 

explaining more about our purposes: “From time to time, I may ask you questions such as: ‘What are 

you thinking? Why did you do that? What does that mean? etc.’ My questions are not to indicate that 

you are doing anything right or wrong. I only want to understand more about what you are thinking in 

each circumstance.”  

Although the full interview protocol included 12 tasks related to solving equations and inequalities 

(e.g., solving linear inequalities with visual representations, solving quadratic equations by factoring, 

solving rational equations), we have limited the scope of the research described in this article to three 

tasks that addressed quadratic equations. These tasks address aspects of solving quadratic equations 

that often pose challenges for students to learn and teachers to teach, including completing the square 

(see Task 1), using the discriminant and quadratic formula (see Task 2), and understanding extraneous 

solutions (see Task 3). We recognise that M-PSTs may have known and been able to do things that they 

did not demonstrate during the interview. As Maher and Sigley (2014) suggested, task-based interviews 

are “intended to elicit in subjects estimates of their existing knowledge, growth in knowledge, and also 

their representations of particular mathematical ideas, structures, and ways of reasoning” (p. 579).  

The task-based interviews were video recorded and the M-PSTs’ written work on each task was 

collected. A member of the research team transcribed each interview, and another checked it for 

accuracy. 

Data Analysis 

In order to avoid a deficit perspective of teacher knowledge, the M-PSTs’ responses were analysed first 

by asking the questions: What do the M-PSTs seem to know? What are they able to do? Initially, two 

members of the research team independently used constant comparison to develop a set of open codes 

for what the M-PSTs said and did as they completed the subtasks, creating research memos throughout 

the process that detailed their decision-making and emergent questions (Glaser & Strauss, 1967; 

Strauss, 1987; Teppo, 2015). Once the set of codes were established collaboratively, the researchers 

engaged in a second round of independent coding in which they reviewed the transcripts, coding each 

using the set of finalised codes, and extracted transcript excerpts that provided evidence for the codes. 

More notes were added to the research memos throughout this part of the process to further refine the 

codes and identify additional codes. From that analysis a “task summary” was developed for each 

subtask, which included: (a) codes that identified what M-PSTs seemed to know about the task, and (b) 

codes that identified what M-PSTs did in response to the task. 

To illustrate the analytic process, we briefly describe the analyses for Task 1, which asked M-PSTs to 

solve the quadratic equation, 6𝑥2 + 7 = 9𝑥2 − 41. Nine codes were identified in responses to the 

question, “What do the M-PSTs seem to know?” and five codes in responses to, “What do the M-PSTs 

seem to be able to do?” For each code, we note how many and which participants were identified with 

the code, and present samples of transcript excerpts in Table 1.  
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Table 1 

Task 1 Sample Codes 

 Number of 

M-PSTs  

(N = 12) 

Sample data excerpt 

What do the M-PSTs seem to know? 

Taking the square root of a 

variable produces two solutions. 

11 “Since it’s a square root, there’s two answers, plus 

and negative.”  

Taking the square root is the 

same as raising to the one-half 

power. 

4 “You would have to square root x, and another way 

of thinking of that is x to the one-half power.”  

What do the M-PSTs seem to be able to do? 

Use square root procedure for 

solving 

10 “But when we take the square root of both sides ... or 

when we have an expression such as x squared is 

equal to the 16 as we did, there's two ways ... two 

numbers that we can square to get to 16. And these 

numbers are 4 times 4 and negative 4 times negative 

4. And both of these equals 16.” 

Verify solutions 4 “And then we would check the other one [begins to 

plug in negative four to see if it works] as well and it'll 

be the same.” 

 

The tasks and responses were examined through the lenses of the MKT and SMTPCK frameworks, 

documenting the types of knowledge that may have been needed and/or that M-PSTs used to complete 

the questions in each task. We acknowledge the challenges in categorizing teacher knowledge in this 

way, as do the developers of the frameworks, as well as the possibility that certain knowledge or actions 

could be categorized in multiple ways. Nevertheless, the categories in both frameworks provide 

information about the knowledge that may need further development in teacher education programs. 

To date, no study has used these two frameworks, with similar foundations and developed in parallel 

timeframes on different sides of the globe, to explore mathematics teacher knowledge using the same 

data set. In addition to our primary analysis, we consider our data through the two lenses.  

Findings 

In this section, we first present each task and discuss the types of knowledge elicited by the task. Then, 

we report the explanations given and knowledge drawn on by the M-PSTs as they completed the task. 

Task 1 

Explain how you would solve the following equation:  6𝑥2 + 7 = 9𝑥2 − 41. 

 

Through the lens of the MKT framework, the task required M-PSTs to draw on their CCK to solve the 

equation and their SCK to explain their reasoning. In the SMTPCK framework, the task elicited Procedural 

Knowledge within CKiPC for solving and Explanations within CPCK for explaining the solution. 

Eleven of the 12 M-PSTs successfully solved the quadratic equation in Task 1. Several strategies 

were used by the participants. Ten participants used a procedure involving square roots to solve the 

quadratic as their first strategy. For example, Faith used a square root procedure after originally solving 

the equation by factoring, and Cassidy solved the equation using the quadratic formula. Using the 
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language of MKT, it could be said that the M-PSTs drew on their CCK to solve the equation. In relation 

to SMTPCK, there was evidence of two categories within the CKiPC domain: Procedural Knowledge and 

Methods of Solution as the M-PSTs solved the equation. 

We identified both similarities and differences in the actions and reasoning of the 11 M-PSTs that 

resulted in solving the equation 𝑥2 = 16. Adam, the one participant who did not solve Task 1 

successfully, responded with “4” (see Figure 1). While solving the equation, Adam stated, “I’m gonna get 

x squared equals sixteen, I think, and x equals four. So, yes, that’s what I’m gonna do. Is that right?” This 

final question suggested that Adam was uncertain about his result. When describing how he might 

explain his solution to high school students, Adam stated, “x equals square root of sixteen. So, there’s 

this step between here where you can’t skip with kids. Cause then you understand that taking this 

[exponent] away means putting this [square root] in.”  

 

Figure 1. Adam’s solution to x2 = 16. 

By acknowledging steps that you “can’t skip with kids,” Adam drew on his KCS in the MKT framework 

as he “anticipate[d] what students are likely to think and what they will find confusing” (Ball et al., 2008, 

p. 401). He demonstrated the use of two categories of knowledge in CPCK in the SMTPCK framework: 

Cognitive Demand of Task as he identified an aspect of the task that may be challenging and 

Explanations as he explained, albeit omitting one solution, his procedure.     

As Isaac solved the equation (see Figure 2), he explained: 

The last thing we have here is x squared, which is the same as saying x times x … So, taking the square root 

of both sides, we are left with 4 is equal to x. But when we take the square root of both sides, there are two 

ways, two numbers that we can square to get to 16. These numbers are 4 times 4 and negative 4 times 

negative 4 … And both of these equals 16 … And therefore, x is equal to 4 and x is equal to negative 4. 

Like Adam, Isaac drew on his Explanations knowledge, but his explanation was enhanced as he 

described both how he solved it and why the procedure worked. 

 

Figure 2. Isaac’s solution to x2 = 16. 

When the interviewer prompted Isaac to describe how he knew he could take the square root of 

both sides, Isaac responded: 
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You can take the square root because we know that this is x times x for whatever this x, … If we think of it in 

terms of exponents. It would be the same as taking each thing to the one half. So, let's see, 4, and when you 

raise an exponent to an exponent, you multiply exponents, so 2 times and then, to the one half, is x to the 

one, which is x. 

Isaac continued to use his Explanations knowledge, as well as knowledge of Structure and 

Connections in CKiPC, to provide multiple ways to think about square roots. Four other M-PSTs 

demonstrated subtle variations of Isaac’s work. For example, Faith did not include the square root 

symbol (see Figure 3). 

 

Figure 3. Faith’s solution to 𝑥2 = 16. 

When Dakota was confronted with 16 = 𝑥2, the way she wrote and described her work was 

somewhat different (see Figure 4): 

So, we know that to undo a square, we do a square root because we always want to do the opposite. We 

divide to get rid of multiplication. We subtract to get rid of addition. We take square roots to get rid of 

squares. So, we have to do the same thing to both sides…. whenever we do take the square root, we have 

to add this plus or minus out front. So, square root of x squared takes away this squared, so it's just x. So, x 

can be a positive 4 or a negative 4…A lot of the college kids don't like this plus or minus, so, I would guess 

high school kids probably forget it, too. 

 

Figure 4. Dakota’s solution to x2 = 16. 

Dakota compared taking the square root “to get rid of squares” to the relationships between other 

operations (e.g., subtracting to get rid of addition). She emphasised that one must add the plus or minus 

sign and drew on her KCS about college students to generalise this reasoning to high school students. 

In her work and description, Dakota demonstrated knowledge from four SMTPCK categories, three in 

CPCK (i.e., Student Thinking, Student Affect, Explanations) and one in CKiPC (i.e., Structure and 

Connections). Three other M-PSTs included notation like Dakota’s, with some variation. For example, 

Kassidy wrote the square root symbol on the 16 only, as shown in Figure 5. 
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Figure 5. Kassidy’s solution to x2 = 16. 

At the same point in his solution, Jackson showed the work in Figure 6 and responded, 

So, x equals plus minus four, and the reason it's plus minus four, cause if you square a number, it's always 

going to be positive. So, I guess the step before that actually, when you take the square root of an x-squared, 

you should get absolute value of x equals four. Which means the same thing, for students, to be plus or 

minus four. 

   

Figure 6. Jackson’s solution to x2 = 16. 

Although he initially showed notation like Isaac’s solution (scribbled out in Figure 6), Jackson noted 

that the square root of x2 was equal to the absolute value of x; this justification was unique to Jackson 

among the 12 M-PSTs’ solutions. He demonstrated knowledge of Profound Understanding of 

Fundamental Content and Structure and Connections, going beyond the square root symbols used by 

other participants to represent the solution using absolute value notation. 

In summary, the M-PSTs drew on their CCK (in MKT) or CPCK (in SMTPCK) to solve the equation and 

use procedures for simplifying the square root. Several M-PSTs accessed their KCS as they discussed 

taking the square root as a means of “undoing” the exponent in a process similar to subtracting to 

“undo” addition, to make a connection for student learning about exponents; they were demonstrating 

their knowledge of Structure and Connections (in CKiPC). In determining that there were two solutions, 

the M-PSTs also included differing notation, with one M-PST introducing absolute value. Because Task 

1 did not specify which method to use, the M-PSTs had flexibility to choose their approaches, which 

gave them the opportunity to discuss why they might use a particular method instead of another when 

solving the equation, thereby utilising their SCK and Methods of Solution (CKiPC). 
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Task 2 

a) Sometimes we use the quadratic formula to solve quadratic equations. What do you remember 

about the quadratic formula? 

b) How would you explain to someone why the quadratic formula works? 

c) A lot of textbooks suggest using the discriminant to help make inferences about how many 

real roots a quadratic equation has. Your textbook includes the following table: 

One of your students, Marcus, is trying to memorize the table, but keeps getting them mixed up. 

What could you tell Marcus to help him understand why the discriminant provides information about 

the real roots of a quadratic equation? 

As M-PSTs were asked to explain why the quadratic formula works and to make connections between 

the number of real roots of a quadratic equation and the value of the discriminant, the task required M-

PSTs to draw upon their SCK and KCS. In the SMTPCK framework, we identified the categories of 

Explanations within CPCK and Structure and Connections within CKiPC for explaining why the quadratic 

formula works and building the connection with the discriminant, and Student Thinking within CPCK for 

explaining the table to a struggling student. 

In response to Task 2, all 12 M-PSTs recalled using the quadratic formula. Eleven M-PSTs correctly 

stated the formula and four mentioned using a song to remember it. For example, Candice said, “I like 

to sing it to Pop Goes the Weasel, and that helps me remember it.” Two M-PSTs discussed the 

discriminant and its effect on the quantity and nature of the roots, exhibiting their SCK not directly asked 

about in Task 2a. For instance, Kassidy said: 

And this is called, under here is called, the discriminant [pointed to b2-4ac] and it tells us about what our 

answers are going to look like. And so, if this answer is a positive number, we will end up with x equaling 

two real answers. If it is zero, we will have x having a double root or just one real answer, and if it is negative, 

then we end up with two complex answers. 

Similarly, Candice explained how she would draw on her knowledge in the classroom: 

You could talk about this inner term here [pointed to b2-4ac] or the discriminant and talk about how 

whatever that value is will tell you what kinds of solutions you’re gonna have … and talk about how they can 

sort of spot that before, by looking at the discriminant. 

In response to Task 2b, four M-PSTs described the relationship between the quadratic formula and 

the general form of a quadratic equation, exhibiting their knowledge of Structure and Connections, as 

well as Methods of Solution. For example, Belinda stated: 

This is just a generalisation of solutions when you have a x-squared plus b x plus c equals zero, where you’re 

solving for x. And then it’s kind of like an application of completing the square, where you break up your 

terms and you make it fit … based on your general coefficients here, so instead of like numbers, the 

generalised completing the square will give you the quadratic formula.  

Whereas most M-PSTs indicated that the quadratic formula was something to be memorised, three 

M-PSTs, like Belinda, mentioned that the formula can be derived by completing the square, utilising 

Number of Solutions to a Quadratic Equation 

 

Value of the 

discriminant 

Number of real 

solutions 

Number of x-

intercepts 

𝑏2 − 4𝑎𝑐 > 0 2 2 

𝑏2 − 4𝑎𝑐 = 0 1 1 

𝑏2 − 4𝑎𝑐 < 0 0 0 
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their SCK to recognise that the quadratic formula is an extension of completing the square. Gabe was 

uncertain, at first, how to explain the derivation of the formula: 

I don’t think in my entire school career I’ve ever derived why that works. We’ve always been like, oh, this is 

what you do when you have quadratic equations that don’t factor nicely. You put them in this, and you 

figure it out from there. 

However, Gabe eventually derived the formula for himself during the interview: 

And then you complete the square on this side so you can get an even factoring. So, that you can make it a 

nice square root number. So, I would take, divide this by two, so x-squared plus and then square it, and 

there’s the quadratic formula. 

Three M-PSTs also discussed the relationship between the quadratic formula and the expression for 

the x-coordinate of the vertex. For example, Isaac said: 

I was thinking, we know this is a quadratic … And therefore, it's going to be in the form of some polynomial 

… or of a parabola. And the vertex of a parabola could be found by b divided by 2a … but that doesn't tell 

us anything about why it works. Um, I don't know. 

Belinda mentioned the vertex in a different way, by describing the graph of the parabola and the 

solutions that the quadratic formula represented. She stated: 

All I know is negative b over 2a is the vertex of a parabola … but I don’t know how that would solve. Like if 

you have a graph, that gives you this point, [drew parabola and darkened vertex], but we’re trying to find 

these points. So, I actually don’t know why it works. I never learned that or asked. I just believed them. 

Like Isaac, Belinda described the vertex of the parabola, but stopped short of recognising its 

relationship to the quadratic formula. Further, both M-PSTs acknowledged the difference between 

knowing and understanding this relationship. 

In response to Task 2c, nine M-PSTs mentioned that the discriminant is part of the quadratic 

formula. Emma stated, “So, yes this doesn’t have a square root but in the quadratic formula it does.” 

Ten M-PSTs indicated that the discriminant has three cases, because it is under a square root. For 

instance, Hollie explained: 

Just think of it as a square root. I mean, can you have a square root of a negative number? Well, technically, 

not right now … So that's why it's 0 ... And then what is the square root of 0? Well, that's 0. So that's only 

one solution. And think of a square root of some positive number … that's greater than 0, it can go to at 

most two, plus or minus.  

Three M-PSTs related the discriminant to the graph of the equation, further demonstrating their 

knowledge of Structure and Connections in CKiPC and Representations of Concepts in CPCK. Leslie 

stated (see Figure 7), “Like drawing pictures helps a lot of students because they can’t just memorize 

the formula. But having a graph of what it’s supposed to look like helps represent like, just somehow 

makes that connection.” 

 

Figure 7. Leslie’s explanation of Task 2c. 



Mathematics Teacher Education and Development 

98                                                                                           MERGA 

Leslie drew upon her SCK, suggesting that a visual representation can help students make 

connections to enhance their understanding, aside from the simple memorisation of a formula. 

In Task 2, the M-PSTs discussed the quadratic formula and identified ways to help students 

remember the formula and how and why it works. Before responding to Task 2c, several M-PSTs had 

already discussed connections to the graph of the quadratic equation, indicating the relationship 

between the number of x-intercepts and the discriminant. Although much of the teacher knowledge 

utilised in Task 2 would be considered SCK in MKT, SMTPCK’s categories delineate specific types of 

CPCK and CKiPC. For instance, Leslie’s identification of three outcomes of the discriminant and their 

corresponding graphs revealed her knowledge of CPCK, as she demonstrated Representations of 

Concepts and Knowledge of Examples. Throughout the course of the interview, Gabe seemed to 

enhance his CKiPC as he explained how to derive the quadratic formula. He drew on his knowledge of 

Structure and Connections to develop profound understanding of the relationship between completing 

the square and the quadratic formula. Similarly, Kassidy and Candice used their CKiPC and CPCK in 

descriptions of the discriminant to determine the solution types, demonstrating their Procedural 

Knowledge, knowledge of Structure and Connections, and knowledge of Representations of Concepts.  

Task 3 

a. One of the sections in your mathematics textbook focuses on completing the square. Complete 
the square to solve the following equation: 3𝑥2 + 18𝑥 − 16 = 5 

b. One of your students, Ava, can usually make sense of mathematics if she can visualize why the 
method works. She’s really struggling to understand the method of completing the square. How 
would you draw a visual representation to help Ava? 

 

In terms of MKT, Task 3a may appear to only be eliciting M-PSTs’ CCK; however, because they were 

asked to use a particular method (arguably one that is not the most efficient and likely not often used 

in other professions) suggests the need for SCK. In fact, a case could be made for KCT as well, given that 

this domain includes the expectation for teachers to understand multiple approaches to problems and 

their instructional affordances. Task 3b elicits KCT and KCS as the M-PST needs knowledge of a range 

of possible representations (i.e., KCT) to select an appropriate one that will be most helpful to students 

(i.e., KCS). Given the content-pedagogy continuum structure of SMTPCK, the knowledge elicited in Task 

3 is situated in CKiPC and CPCK. In particular, the M-PSTs are asked to draw on Methods of Solutions in 

CKiPC (Task 3a) and Representations of Concepts in CPCK (Task 3b). 

When asked to complete the square in Task 3a, 10 M-PSTs first simplified the equation by dividing 

by three. For example, Dakota said, “So the first thing you always want to do is have    the number in 

front of x be 1. So, to do that, we can divide both sides by 3.” Dakota provided an example of 

Explanations (CPCK) as she went beyond saying what she was doing to share her goal for a particular 

procedure; this statement also demonstrates Dakota’s SCK. Others, like Adam, expressed uncertainty. 

After subtracting five from both sides, Adam stated, 

I mean, these are all divisible by three; that seems like a clue. If I were to divide everything by three, would 

that give me something? Let’s try it. I’m gonna divide everything by three. Am I allowed to do that? I don’t 

even know if I’m allowed to do that.  

Seven M-PSTs correctly completed the square to solve the equation. For instance, Dakota said: 

So, this gives us x plus 3 equals 4 for the plus 4, and x plus 3 equals negative 4 for the minus. And so, then 

this is just an equation that we probably recognize how to solve. By subtracting 3 from both sides, we get x 

equals 1 and x equals negative 7. 

Other M-PSTs remembered something about the procedures involved but expressed uncertainty. 

For example, Hollie stated, “It has something to do with taking half of b and either adding it or 

subtracting it.” Several M-PSTs who correctly solved the equation also shared doubts, like Belinda, “So, 

x equals 3 plus or minus 4. So, x equals 7 or -1. I’m not even sure if that’s right.” 
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Although not explicitly asked in the question, two M-PSTs drew on their KCT (in MKT) or 

Representations of Concepts (in CKiPC) as they described the solutions of the equation as being x-

intercepts of the graph. Adam stated, “See where the x-axis, where the line crosses the x-axis. That’s 

probably how I would have solved it on that test.” Two M-PSTs also described why completing the 

square may be useful. For example, Dakota said, “And then it's just an alternate way of the quadratic 

equation to solve it when we can't factor easily.” 

In response to Task 3b, three M-PSTs drew on their KCT and Representations of Concepts, as they 

recollected using a diagram of a square to demonstrate completing the square visually. However, it was 

difficult for them to remember the corresponding explanation. Candice stated (see Figure 8), 

I recently saw, sort of a visual representation of this, let’s see if I can reproduce it. If you really think of 

completing the square, you have your first value here [drew a large square and darkened left side]. … And 

then you have some section and another section [drew smaller rectangles near the bottom of the square 

and darkened in the top side of the larger square], where you have your first terms, like this. And then when 

you multiply them together, that’s great, but then you want to fill out this space, where this is missing. And 

you have to add that on, in order to complete the whole square or the whole picture that you have here. 

And you’d have an actual representation where this is something like three x-squared here [wrote 3x2 along 

the left side], and then your other piece like the thing in the parentheses. Such that when you’re multiplying 

them together, you get this. 

 

Figure 8. Candice’s work for Task 3b. 

Isaac mentioned learning this strategy in a university course that included a teaching seminar that 

supported instruction in a college algebra course, but he could not remember the explanation (see 

Figure 9), “What we're doing, we can think of it as a box here. And it was, how did we do that? I 

specifically learned this, and I can't remember the reasoning.” 

  

Figure 9. Isaac’s work for Task 3b. 

Although several M-PSTs, like Candice and Isaac, attempted to create an area model to represent 

the process, they exhibited difficulty and uncertainty in explaining how their model could be interpreted 

to foster mathematical connections between the symbolic and the visual representations. Whether we 
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contend that SCK is a type of teacher knowledge that involves creating and interpreting multiple 

representations of mathematical phenomena, or if we assert that this representational fluency is CPCK 

in SMTPCK, the M-PSTs in this study struggled to create a meaningful representation to model the 

process of completing the square. The majority of the M-PSTs were able to draw on their CCK in 3a to 

complete the square. This would be considered Procedural Knowledge, CKiPC in SMTPCK. The M-PSTs 

did not completely create and explain a visual representation in 3b, either because they had never had 

the opportunity to learn about such a representation or because they could not recall how to reproduce 

it. 

In Task 3, M-PSTs were asked to both solve a quadratic equation by completing the square and to 

create a visual representation to represent this process. Most of the M-PSTs were able to correctly solve 

the equation; however, although several M-PSTs recalled seeing a visual representation related to 

completing the square, none of them provided a complete representation or were able to explain it 

correctly. Several M-PSTs expressed doubt about their solutions for both 3a and 3b, calling into question 

their ability to draw on the KCT and CPCK required to complete this task. 

Discussion 

In this study, we investigated what 12 M-PSTs seemed to know and be able to do related to solving 

quadratic equations on three tasks. In addition to the descriptive summaries provided, we considered 

their responses through the lenses of the knowledge domains described in MKT and SMTPCK, two 

frameworks designed to illustrate knowledge for teaching mathematics. Viewing the data through the 

lenses of both frameworks afforded us the opportunity to better understand the data and consider each 

framework’s affordances and limitations. Here, we summarise our findings, discuss the use of the two 

frameworks, and suggest implications for research and teacher education.  

Summary of Findings 

Across the three tasks, we asked M-PSTs to investigate problems that involved solving quadratic 

equations using various methods that required knowledge of the discriminant and completing the 

square. This set of tasks elicited and provided opportunities for M-PSTs to demonstrate their CCK, SCK, 

KCS, and KCT (in MKT). In addition, knowledge from both CPCK (e.g., Cognitive Demand of Task, 

Representations of Concepts) and CKiPC (e.g., Structure and Connections, Methods of Solutions) in the 

SMTPCK framework, was elicited and demonstrated. We noted that many of the M-PSTs were able to 

draw on their CCK (in MKT) and CKiPC (in SMTPCK) for solving quadratic equations, stating the quadratic 

formula, discussing how the discriminant was related to the number of real roots of the equation, and 

completing the square. However, the M-PSTs more often struggled and expressed uncertainty when 

asked to draw on their SCK (in MKT) and CPCK (in SMTPCK).  

Investigations of MKT and SMTPCK 

Exploration of M-PSTs’ task responses through the lenses of MKT and SMTPCK provided insights into 

the frameworks. As described earlier, these two frameworks have much in common, including their 

foundations in Shulman’s (1986) notion of PCK, their multi-dimensional structure, and their goal of 

describing the knowledge needed to teach mathematics. There are also differences between the 

frameworks, most notably the way that the domains are organised, and the number of categories 

detailed within the domains. As demonstrated in our findings, both frameworks were productive 

structures for exploring M-PST’s knowledge, allowing us to highlight what M-PSTs knew and were able 

to do as well as knowledge and skills that they had less experience with and, therefore, found more 

challenging. 

Through the lens of MKT, we found that M-PSTs demonstrated their CCK, SCK, KCS, and KCT; 

however, our findings raised questions about using the MKT framework at the secondary level. Like 

Speer et al. (2015), at times we struggled to differentiate between CCK, SCK, and KCS in the secondary 

mathematics context explored in this study. This was true both in the tasks as presented to the M-PSTs 
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as well as their responses to the tasks. For example, in Task 2, several M-PSTs connected the solutions 

of a quadratic equation to the graphical representation without being prompted by the written tasks or 

the interviewer. It seems that a case could be made that this knowledge is CCK (i.e., many professionals 

who are not teachers would know this), SCK (i.e., this is specialised knowledge within the mathematical 

domain that is unique to teaching), or KCS (i.e., this knowledge is useful when helping students make 

sense of complex mathematical concepts). Ball et al. (2008) described a similar dilemma involving 

teaching fractions; however, as Speer et al. (2015) suggested, these boundaries are even more blurry in 

the secondary context.  

We were also left with questions about how the evolution of curriculum standards might impact 

how we think about CCK and SCK. As standards are now often written to require a deeper understanding 

of mathematical concepts than previous standards (e.g., students are often asked to justify their 

answers), will this change what is considered CCK or SCK? That is, if secondary students are expected to 

graduate from high school with knowledge, for example, about how multiple representations are related 

to one another, does this SCK then become CCK? Related to this, can procedural fluency ever be 

considered SCK, and can conceptual understanding ever be considered CCK? It could be argued that 

these distinctions are not important and perhaps the fuzziness of these domains is to be expected. 

However, to make the constructs useful for research, more work is likely needed to establish boundaries 

between or perhaps sub-domains within them. Lai and Clark (2018) have taken up this work, proposing 

a model for three constructs within SCK: Justification, Explanation, and Representation. This creation of 

categories in the domains (beyond the descriptors provided in the original framework) moves the MKT 

framework toward the level of detail provided in the most recent version of the SMTPCK framework (i.e., 

Chick & Beswick, 2018, pp. 479–482; also see Appendix B).  

The SCK constructs included in Lai and Clark’s (2018) framework (justification, explanation, and 

representation; see p. 81 of their article) were highlighted in our findings. For example, the quadratic 

equation in Task 1 was solved correctly by 11 of the 12 M-PSTs (i.e., justification). Adam and Isaac both 

provided explanations for their result (see Figures 1 and 2 and accompanying text); however, Adam’s 

explanation was procedural (i.e., how to execute the algorithm) whereas Isaac’s explanations were 

conceptual (i.e., addressed the underlying mathematical reasoning). In Task 2c in which M-PSTs were 

asked about the discriminant, several non-visual representations were provided as the students 

described how the discriminant was related to the graph; however, Leslie drew a visual representation 

(see Figure 7) to illustrate this relationship. Lai and Clark’s SCK constructs are all addressed within CPCK 

of the SMTPCK framework.  

M-PSTs demonstrated knowledge of 10 categories within two domains of the SMTPCK framework: 

in particular, seven categories within CPCK and three categories within CKiPC. Given the mathematical 

nature of the tasks used in our interviews, evidence of PKiCC was absent. Interestingly, the most 

common SMTPCK categories demonstrated were Procedural Knowledge, Explanations, Methods of 

Solution, and Representations of Concepts, which were closely related to Lai and Clark’s (2018) proposed 

SCK constructs. As when using the MKT framework, it was not always clear how to categorise a M-PST’s 

response. However, the “Evident when a teacher…” and “Example” sections of Chick & Beswick’s most 

recent version of the framework were helpful for making these decisions. Still, there is much overlap 

between categories; this non-discrete aspect of categories of teacher knowledge is present in both 

frameworks, recognised by the developers, and likely unavoidable. We found the idea of a continuum 

between CKiPC (in which mathematics is foregrounded) and PKiCC (in which pedagogy is 

foregrounded), and with CPCK (in which the mathematics and pedagogy are “inextricably linked”) in the 

centre of the continuum, helpful for our investigation of M-PSTs’ knowledge. This representation of 

SMTPCK as a continuum accommodates the blurring of boundaries between domains and categories, 

which is not facilitated by the area model with discrete boundaries used to represent MKT.  

Implications for Research and Teacher Education 

Our study was possibly the first to simultaneously explore the use of the two frameworks, MKT and 

SMTPCK, to investigate teacher knowledge utilising the same data set; there is much more to be learned 
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about these frameworks and their connections and possibilities associated with those connections 

through further research. As mentioned earlier, Lai and Clark (2018) have begun to develop constructs 

within SCK, one of the MKT domains, moving it in the direction of the categories outlined in SMTPCK. 

Our initial analysis revealed that MKT’s CCK, SCK, KCS, and KCT domains often intersect with categories 

within the CPCK and CKiPC domains in SMTPCK. Additional analyses are needed to continue to 

understand these intersections and how best to categorise this knowledge in ways that are useful to 

researchers and mathematics teacher educators. As previous research has suggested, further 

consideration of secondary mathematics content in both frameworks is needed given the frameworks’ 

origins and use in elementary mathematics contexts. 

Given the current requirement for nearly all students to take at least one algebra course in secondary 

school and algebra’s persistent role as a gatekeeper to postsecondary career and college opportunities, 

the knowledge and preparation of M-PSTs to teach algebraic topics, in this case solving quadratic 

equations, is worthy of investigation. Our findings suggest that using tasks that are embedded in 

student thinking has the potential to promote discussions with M-PSTs about developing procedural 

fluency, conceptual understanding, and mathematical reasoning in algebra classrooms. For example, 

Marcus’ (the fictitious student in Task 2c) need for further explanation provided an opportunity for M-

PSTs to consider strategies to develop conceptual understanding of the discriminant. Such discussions 

offer opportunities for M-PSTs to both use and likely enhance various domains of knowledge needed 

for teaching mathematics. The uncertainty reported, at times, by the M-PSTs seem to support calls for 

“connecting” courses that provide opportunities for mathematics teachers to engage with and reflect 

on secondary mathematics to understand it more deeply and, thus, to be better prepared to teach it to 

their future students (e.g., CBMS, 2012; Murray et al., 2018). 

Given the rich discussions that our research team engaged in while using the MKT and SMTPCK 

frameworks to investigate teacher knowledge, it is worth asking if such questions and investigations 

would be interesting to and educative for M-PSTs. Perhaps, regardless of the framework under 

consideration, the professional discussions about the knowledge domains are as important as the 

knowledge in the domains themselves. In fact, it is likely that explicit discussions of the domains within 

the context of mathematical tasks would serve to develop knowledge in the domains. Perhaps instead 

of seeking ways to measure teacher knowledge, time would be better spent engaging M-PSTs and 

practicing teachers in reflection on their own knowledge (including domains in which they feel 

comfortable and domains in which they wish they knew more) through the MKT or SMTPCK framework 

and designing activities and tasks to further develop aspects of teacher knowledge that they identify in 

their investigation. 

Conclusion 

Considering the movement for “algebra-for-all” continues and algebraic reasoning is required for 

mathematical success in secondary and postsecondary education (e.g., Stein et al., 2011), M-PSTs need 

opportunities to develop their knowledge for teaching algebra. It is imperative that teachers have the 

knowledge and skills related to solving quadratic equations and other algebraic topics to serve their 

future students. Our study found that M-PSTs were often able to draw on their CCK (in MKT) and their 

Procedural Knowledge (in SMTPCK) to solve equations and recall formulas but struggled with being 

able to draw on more conceptual knowledge to explain why procedures worked and to express their 

understanding of the equations. In fact, the M-PSTs expressed frustration that they had not had 

opportunities to develop this knowledge. Although Mathematics for Teachers courses have become 

commonplace in elementary teacher education programs, they have yet to become standard in 

secondary programs (Newton et al., 2014). Perhaps some assume that M-PSTs can develop such 

knowledge on their own as they take standard mathematics courses (e.g., Linear Algebra, Discrete 

Mathematics) along with mathematics methods courses. However, the M-PSTs in this study often 

expressed doubt about their algebraic knowledge and skills when asked questions that went beyond 

standard algorithms for solving quadratic equations.  
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It seems difficult to imagine that new teachers who have not had rich learning experiences in 

secondary-level mathematics content will be able to provide rich experiences for their own students 

without interventions during their teacher education program. Some textbook writers have attempted 

to provide curricula for courses to offer rich learning experiences for M-PSTs related to secondary 

curriculum (e.g., Cuoco & Rotman, 2013; Sultan & Artzt, 2010); however, the specific content for the 

courses described in CBMS (2012) remains uncertain. What specific types of teacher knowledge and 

competencies might become a focus for such courses? What types of activities could instructors utilise 

to support the development of such knowledge and competencies? For example, in the context of 

algebra, the samples of solving the equation 𝑥2 = 16 provided in Figures 1 through 6 could be used in 

a course for teachers to consider the diverse thinking about the Square Root Property; M-PSTs could 

analyse the mathematical notation, conceptions evidenced, and potential reasoning. Our findings 

suggest that secondary mathematics teacher education programs need to provide such courses, 

including the challenging task of creating space in programs before progress can be made toward the 

goals of M-PSTs developing a deeper understanding of secondary mathematics topics and how their 

students approach these topics. The development of such courses should take seriously the work of the 

developers of the MKT and SMTPCK frameworks. How, in the set of courses in our secondary 

mathematics teacher education programs, are we addressing the various domains of teacher 

knowledge? How can we use these frameworks in course and program design, both in terms of attention 

to each category and domain, but also how can we provide opportunities for M-PSTs to reflect on their 

own knowledge in these domains? The findings here suggest such attention is critically important as we 

seek to prepare M-PSTs to teach algebra in more conceptual, engaging, and meaningful ways. 
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Appendix A 

Mathematical Knowledge for Teaching (MKT) Framework 
 

  

Ball et al. (2008, p. 403) 

 

This MKT Framework summary was produced using quotes from Ball et al., 2008. The authors did not 

provide acronyms for Horizon Content Knowledge or Knowledge of Content and Curriculum; however, 

for convenience we refer to these as HCK and KCC. 

 

Subject Matter Knowledge 
 

Common Content Knowledge (CCK) 

“the mathematical knowledge and skill used in settings other than teaching” (Ball et al., 2008, p. 

399). 

 

Specialized Content Knowledge (SCK) 

“the mathematical knowledge and skill unique to teaching. This is the domain in which we have 

become particularly interested. Close examination reveals that SCK is mathematical knowledge not 

typically needed for purposes other than teaching…teachers have to do a kind of mathematical work 

that others do not. This work involves an uncanny kind of unpacking of mathematics that is not 

needed––or even desirable––in settings other than teaching. Many of the everyday tasks of teaching 

are distinctive to this special work” (Ball et al., 2008, p. 400). 

 

Horizon Content Knowledge (HCK) - “provisional” domain in Ball et al. (2008) 

“an awareness of how mathematical topics are related over the span of mathematics included in the 

curriculum” (Ball et al., 2008, p. 403). 
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Pedagogical Content Knowledge 
 

Knowledge of Content and Students (KCS)  

“knowledge that combines knowing about students and knowing about mathematics. Teachers 

must anticipate what students are likely to think and what they will find confusing. When choosing 

an example, teachers need to predict what students will find interesting and motivating. When 

assigning a task, teachers need to anticipate what students are likely to do with it and whether they 

will find it easy or hard. Teachers must also be able to hear and interpret students’ emerging and 

incomplete thinking as expressed in the ways that pupils use language. Each of these tasks requires 

an interaction between specific mathematical understanding and familiarity with students and their 

mathematical thinking” (Ball et al., 2008, p. 401). 

 

Knowledge of Content and Teaching (KCT)  

“combines knowing about teaching and knowing about mathematics. Many of the mathematical 

tasks of teaching require a mathematical knowledge of the design of instruction. Teachers sequence 

particular content for instruction. They choose which examples to start with and which examples to 

use to take students deeper into the content. Teachers evaluate the instructional advantages and 

disadvantages of representations used to teach a specific idea and identify what different methods 

and procedures afford instructionally. Each of these tasks requires an interaction between specific 

mathematical understanding and an understanding of pedagogical issues that affect student 

learning” (Ball et al., 2008, p. 401). 

 

Knowledge of Content and Curriculum (KCC) - “provisional” domain in Ball et al. (2008) 

Ball et al. (2008) referred directly to Shulman (1986) when describing this domain: “curricular 

knowledge is represented by the full range of programs designed for the teaching of particular 

subjects and topics at a given level, the variety of instructional materials available in relation to those 

programs, and the set of characteristics that serve as both the indications and contraindications for 

the use of particular curriculum or program materials in particular circumstances” (Shulman, 1986, 

p. 10). In addition, Shulman pointed to two other dimensions of curricular knowledge that are 

important for teaching, aspects that he labeled lateral curriculum knowledge and vertical curriculum 

knowledge. Lateral knowledge relates knowledge of the curriculum being taught to the curriculum 

that students are learning in other classes (in other subject areas). Vertical knowledge includes 

“familiarity with the topics and issues that have been and will be taught in the same subject area 

during the preceding and later years in school, and the materials that embody them (Shulman,1986, 

p. 10)” (Ball et al., 2008, p. 391). 
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Appendix B 

 

School Mathematics Teaching Pedagogical Content Knowledge (SMTPCK) 

(Chick & Beswick, 2018, pp. 479-482) 

 

PCK Category Evident when the teacher… Example 

Clearly PCK (CPCK) 

Teaching strategies Discusses or uses general or 

specific strategies or approaches 

for teaching a mathematical 

concept or skill 

Uses concrete materials to 

demonstrate a concept 

Student thinking Discusses or addresses student 

ways of thinking about a concept, 

or recognizes typical levels of 

understanding 

Identifies that a student doesn’t 

recognise the equivalence of 

equivalent fractions 

Student thinking—

misconceptions 

Discusses or addresses student 

misconceptions about a concept 

Recognises that students often 

think ‘‘multiplying makes bigger” 

Student affect (in relation 

to content) 

Discusses or addresses students’ 

affective responses to particular 

mathematics topics 

Recognises that adolescent 

students may have negative 

emotional reactions to the 

prospect of learning algebra 

Cognitive demand of 

task 

Identifies aspects of the (SMT) task 

that affect its complexity 

Recognises 627–359 is more 

difficult to model than 687–321 

Representations of 

concepts 

Describes or demonstrates ways to 

model or illustrate a concept (can 

include materials or diagrams) 

Uses MAB to model subtraction 

Explanations Explains a topic, concept or 

procedure 

Explains why we can write a 0 on 

the end of a whole number when 

multiplying by 10 

Knowledge of examples Uses an example that highlights a 

concept or procedure 

Uses the 5-12-13 Pythagorean 

triangle to model how to solve a 

right-angled triangle problem 

Knowledge of resources Discusses/uses resources available 

to support teaching 

Identifies and uses a mathematics 

website that is useful for students 

Curriculum knowledge Discusses how topics fit into the 

curriculum 

Recognises that multiplication 

should be understood by Year 4 

Purpose of content 

knowledge 

Discusses reasons for content 

being included in the curriculum or 

how it might be used 

Knows that knowledge of 

rounding is needed for money 

transactions 

Content Knowledge in a Pedagogical Context (CKiPC) 

(Beliefs about) The 

nature of content 

Expresses an appreciation of the 

nature of mathematics that goes 

beyond the school curriculum and 

aligns with mathematicians’ view of 

the discipline 

Compares the aesthetic qualities 

of two solution methods 

Profound understanding 

of fundamental content 

Exhibits deep and thorough 

conceptual understanding of 

identified aspects of mathematics 

(i.e., Profound Understanding of 

Understands why we ‘‘invert and 

multiply’’ when dividing fractions 
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PCK Category Evident when the teacher… Example 

Fundamental Mathematics [Ma, 

1999]) 

Deconstructing Content 

to Key Components 

Identifies critical mathematical 

components within a concept that 

are fundamental for understanding 

and applying that concept 

Refers to the importance of the 

distributive law in the long 

multiplication algorithm 

Structure and 

connections 

Makes connections between 

mathematical concepts and topics, 

including interdependence of 

concepts 

Links percentages with decimals 

and the base 10 system 

Procedural knowledge Displays skills for solving 

mathematical problems 

(conceptual understanding need 

not be evident) 

Can apply the long division 

algorithm 

Methods of solution Demonstrates a method for 

solving a mathematical problem 

Demonstrates a method for 

solving a mathematical problem 

Pedagogical Knowledge in a Content Context (PKiCC) 

Assessment approaches Discusses or designs tasks, 

activities or interactions that assess 

learning outcomes 

Designs a multiple-choice quiz 

with appropriate distractors 

Goals for learning Describes a goal for students’ 

learning 

Justifies an activity as developing 

understanding of long-term 

probability 

Getting and maintaining 

student focus 

Discusses or uses strategies for 

engaging students 

Designs a puzzle that is solved by 

answering some routine exercises 

Classroom techniques Discusses or uses generic 

classroom practices 

Talks about grouping students 

according to ability levels 

Student affect (general) Describes how student affect 

influences pedagogical approach 

Knows a particular student will 

respond to negatively to being 

asked for an answer in a large 

group session 

 


