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Abstract 

The need to develop consistent theoretical frameworks for the teaching and learning of discrete mathematics, 
specifically of graph theory, has attracted the attention of the researchers in mathematics education. Responding 
to this demand, the scope of the Van Hiele model has been extended to the field of graphs through a proposal of 
four levels of reasoning whose descriptors need to be validated according to the structure of this model. In this 
paper, the validity of these descriptors has been approached with a theoretical analysis that is organized by 
means of the so-called processes of reasoning, which are different mathematics abilities that students activate 
when solving graph theory problems: recognition, use and formulation of definitions, classification, and proof. The 
analysis gives support to the internal validity of the levels of reasoning in graph theory as the properties of the 
Van Hiele levels have been verified: fixed sequence, adjacency, distinction, and separation. Moreover, the 
external validity of the levels has been supported by providing evidence of their coherence with the levels of 
geometrical reasoning from which they originally emerge. The results thus point to the suitability of applying the 
Van Hiele model in the teaching and learning of graph theory. 
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Discrete mathematics is the part of mathematics devoted to the study of discrete structures such as sets, 

permutations, relations, graphs, trees, and finite-state machines (Rosen, 2019). Among the benefits of 

teaching and learning this branch of mathematics, Ouvrier-Buffet (2020) highlights 1) accessibility of 

problems and concepts, which can be explored by students without an extensive background; 2) richness 

of discrete concepts, which can usually be defined in multiple ways, so they bring an opportunity to deal 

with the construction of axiomatic theory; 3) versatility in questioning, proving, and modelling; and 4) 

involvement of students in mathematical experiences. These benefits have attracted the community of 

researchers in mathematics education, as shows the recent creation of a specific research group in the 

teaching and learning of discrete mathematics at the 13th International Congress on Mathematical 

Education (Hart & Sandefur, 2018), which gives special importance to graph theory. Indeed, there is a 

wealth of literature on research in graph theory from mathematics education showing several sources of 
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interest: students’ learning (Fielder & Dasher, 1968; Hazzan & Hadar, 2005, Medová et al., 2019), design 

of task sequences (Ferrarello & Mammana, 2018; Lodder, 2014), design of teaching resources 

(Carbonneaux et al., 1996; Milková, 2014; Geschke et al., 2005), teaching and learning of algorithms 

(Costa et al., 2014; Khalil et al., 2017; Moala, 2021; Sánchez-Torrubia et al., 2008), and inclusion of 

graph theory at different educational stages (Blanco & García-Moya, 2021; Ouvrier-Buffet, 2020). 

 Ouvrier-Buffet et al. (2018) point out the need for the use and development of appropriate 

theoretical frameworks for research in discrete mathematics education. To approach this issue, one can 

either create new theories or adopt an already established theoretical framework to extend its scope, 

being the latter highly recommended by the Educational Studies in Mathematics editors (2002) since it is 

a way to consolidate theories. In this sense, González et al. (2021) propose to extend the scope of the 

Van Hiele model to the field of graph theory. This model, mainly applied in geometry, has already been 

extended to other areas, as suggested by Van Hiele (1986). Indeed, Isoda (1996) applies Van Hiele 

levels to characterize the development of language about functions, and Nisawa (2018) uses the Van 

Hiele model to make an experimental study of the comprehension difficulties of high school students 

about functions. Other extensions, also proposed in the field of mathematical analysis, concern local 

approximation (Llorens-Fuster & Pérez-Carreras, 1997) and convergence of sequences (Navarro & 

Pérez-Carreras, 2006). 

The idea of extending the scope of the Van Hiele model to graph theory (González et al., 2021) 

comes naturally since graphs are often represented as points connected by lines, reminding us of the 

vertices and sides of the geometric figures. Indeed, there is a visual resemblance between the pictorial 

representations of graphs and 2-dimensional geometric figures. Moreover, each simple polyhedron (i.e., 

without holes) can be viewed as a planar connected graph just by considering polyhedron vertices as 

graph vertices and polyhedron edges as graph edges, thus producing a correspondence between 

polyhedron faces and planar graph faces. Another important relationship between these two 

mathematical objects is that geometric figures are invariant under rigid movements, while graphs are 

invariant, furthermore, under any deformation that maintains the original connections between vertices 

(topological transformations). Therefore, it is expected that some descriptors of the Van Hiele model for 

geometric figures have their analogs in their extension for graphs and that the properties of graphs that 

cannot be extrapolated from geometric figures produce different descriptors.  

The extension of the Van Hiele model to the field of graphs thus yields a new perspective in 

mathematics education, and so it should be evaluated from different points of view (Santos-Trigo & 

Barrera-Mora, 2007). Concretely, exploring the validity of such extension necessarily requires studying 

how well defined its elements and relationships within the model are, that is, its rigor and specificity 

(Schoenfeld, 2000). In other words, the objects and relationships in the new extension should be defined 

unambiguously and fit together in such a way that any researcher in the field could use them without 

contradicting the original model, bearing in mind that, as we have explained before, geometrical figures 

are somehow related to graphs. In the context of the present study, this implies that the descriptors of 

the Van Hiele levels for graphs should not contradict either the characteristics imposed by the theory 

itself whose scope is extended (internal validity) or the results already obtained in the research (external 

validity). Indeed, González et al. (2021) first justify the internal validity of their levels by arguing that they 

have the nature of Van Hiele levels (visual, analytical, informal, and formal), although they leave as 

pendant work to check that they satisfy the properties of Van Hiele levels (Usiskin, 1982), which 

differentiate them from levels in other frameworks (Godino et al., 2014; Arnon et al., 2014). Also, these 

authors give support to the external validity of their results by reviewing the literature on the teaching and 
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learning of graph theory and mention that some descriptors of the Van Hiele model for geometric figures 

have their analogs in their extension for graphs and that the properties of graphs that cannot be 

extrapolated from geometric figures produce different descriptors.  

The Van Hiele Levels in Geometry 

The Van Hiele (1986) model provides a characterization of the reasoning in the field of geometry through 

five levels, but the last one is omitted here because it refers to the reasoning of professional 

mathematicians, which is beyond the scope of the present study. The first four levels are described as 

follows: 

 Level 1 (visualization). Students recognize geometric figures by their shape and as a whole. They 

can describe them in terms of physical characteristics or by comparison with everyday objects, 

using non-mathematical language. 

 Level 2 (analysis). The ability to identify parts and properties of figures allows students at this level 

to make descriptions of geometric notions in mathematical terms. 

 Level 3 (informal deduction). Students can recognize relationships between properties of figures 

and justify them informally. They have certain handling of propositional logic that allows them to 

make logical classifications. 

 Level 4 (formal deduction). At this level, students can develop formal mathematical proofs. Also, 

they accept that there might be equivalent definitions for the same geometric concept. 

 
The following properties, which give consistency and coherence to the Van Hiele model, are 

essential features of its levels (Usiskin, 1982): 

 Fixed sequence. A student cannot be at level n without having passed through level n-1. 

 Adjacency. Objects that are intrinsic at level n-1 become extrinsic at level n. 

 Distinction. Each level has its linguistic symbols and its network of relationships that connect those 

symbols.  

 Separation. Two people who reason at different levels will not be able to understand each other. 

 
As the present work only deals with learning, the description of the other property of the Van Hiele 

model, attainment, is omitted here because it is related to the phases, which are a set of guidelines to be 

followed by teachers to help students progress through the levels. 

Basic Notions of Graph Theory 

We first present some background on graph theory (Biggs, 2003) that will be needed to describe the 

reasoning in this field of mathematics. A graph G is defined as a pair (V, E) where V is any given set 

(called vertex set) and E (called edge set) is a set of unordered pairs of elements of V. A subgraph of a 

graph G = (V, E) is another graph, say G’ = (V’, E’) such that V’ ⊆ V and E’ ⊆ E whenever V’ contains all 

vertices of the edges of E’. For example, the graph G1 = {{a, b, c, d, e}, {ab, bc, cd, de, ad, be}} contains 

G2 = {{a, b, c, d}, {ab, bc, cd, ad}} as a subgraph. Graphs are usually represented by drawing its vertices 

as points in the plane and edges by (not necessarily straight) segments joining its corresponding vertices 

(pictorial representation), and clearly such a representation is not unique for each graph, as Figure 1 

shows. Also, there exist other representation systems based on numerical matrices, sequences of 

integers, planar representations of geometrical shapes, etc. 
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Figure 1. Two pictorial representations of graph G1 

Graph properties can be divided into global (i.e., associated with the whole graph) and local 

properties (i.e., associated with parts of the graph). Thus, an example of a local property is the degree of 

a vertex, which is the number of edges that contain it. Examples of global properties include connectivity, 

Eulerianity, and planarity. Indeed, a graph is said to be 1) connected if any pair of vertices can be joined 

by a sequence of adjacent vertices of the graph; 2) Eulerian if there exists a sequence of edges that visits 

every edge exactly once and that starts and ends at the same vertex; and 3) planar if it has a pictorial 

representation without edge crossings. These basic graph properties allow defining classic families: 

cycles, which are connected graphs having every vertex of degree 2; paths, which are connected graphs 

with two vertices of degree 1 and the rest of the vertices with degree 2; and trees, which are connected 

graphs that do not contain any cycle as a subgraph. 

The Van Hiele Levels in Graph Theory 

González et al. (2021) provide a detailed characterization of four levels of reasoning in graph theory 

through the lens of the Van Hiele model. The authors conceived and characterized these levels by means 

of prior research on students’ mathematical thinking, their mathematical understanding of the concept of 

graph as researchers in mathematics and didactics of mathematics, and their experience as graph theory 

teachers. The levels are described in general terms as follows: 

 Level 1 (GT) (visualization). Students at this level are highly conditioned by a visual type of 

recognition that restricts them to deal only with known representations of graphs, which are 

perceived as wholes and described using a non-mathematical language. Also, they can partially 

handle some global properties and graph notions that do not require specific mathematical 

knowledge. 

 Level 2 (GT) (analysis). These students can handle both global and local properties that enable 

them to identify graphs independently of their representations. Also, they are able to deal with 

basic graph notions stated in mathematical terms. 

 Level 3 (GT) (informal deduction). Students at this level have logical abilities that allow them to 

understand and recognize relationships between graph properties. This makes deductive 

reasoning possible, and so they can make logical classifications of graph families. 

 Level 4 (GT) (formal deduction). Students at level 4 regard graphs as abstract mathematical 

objects, so they can deal with equivalent definitions for the same concept. Also, these students 

can construct formal proofs of mathematical statements by performing techniques commonly used 

in graph theory. 
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We want to remark that the notation (GT), added to each level of reasoning in graph theory, has 

been introduced in this paper to facilitate the reading since it allows to better distinguish them from the 

levels of reasoning in geometry. This work studies the validity of the extension of the Van Hiele model to 

the field of graph theory with the aim of answering the following research questions: 

 Do the levels of reasoning for graphs proposed by González et al. (2021) satisfy the properties of 

the Van Hiele levels? 

 Are those levels coherent with the descriptors of the Van Hiele levels of geometrical reasoning? 

METHODS  

In general, the research cycle (Jaime & Gutiérrez, 1990) that is intended to be completed in the long term, 

and which includes the theoretical analysis of the model, consists of the following: the researchers 

observe a phenomenon in the educational context (in our case the learning of students of Graph Theory); 

they search for regularities in the behaviour of these students  and then they propose an initial model that 

will serve to describe this learning (in our case the Van Hiele model for graph theory); afterwards, a study 

of its formal structure is conducted (the objective of this work) and then the model is verified using 

empirical data (aim of future research), in order, if necessary, to modify or refine some aspects of the 

initial model. Once the model is validated, it can be used by teachers to improve their teaching and obtain 

better results. We next perform a theoretical analysis on the validity of the Van Hiele levels of reasoning 

in graph theory proposed by González et al. (2021), in the same way as other studies that also reflect on 

the validity of their proposals. Indeed, there are papers that are concerned with the validity regarding the 

Van Hiele model, such as the work of Llorens-Fuster and Pérez-Carreras (1997), and other frameworks 

such as the APOS theory, for instance, the theoretical work of Roa-Fuentes and Oktaç (2010). The 

analysis of this work follows two steps: 

1. Internal validity. This step verifies that the descriptors of the levels of reasoning proposed for 

graphs fit the properties of the Van Hiele model concerning levels: fixed sequence, adjacency, 

distinction, and separation. 

2. External validity. This step consists of verifying that the indicators of levels of reasoning in graph 

theory do not contradict those for geometry, thus comparing and contrasting the descriptors for the 

levels of both fields. Specifically, it is necessary to explore the analogies between graphs and 

geometric figures and check that the corresponding indicators for both fields agree, and to point 

out the particular characteristics of graphs not translatable from geometry, which generate extra 

indicators without an analogue to those of geometric figures. 

 

Carrying out both steps require arranging the abilities involved when learning both fields of mathematics 

so that they can be compared, as developed below. 

A Tool to Organize the Descriptors of Van Hiele Levels: The Processes of 
Reasoning 

Gutiérrez and Jaime (1998) provide a useful characterization for the Van Hiele levels of geometric 

reasoning given in terms of the evolution of the processes of reasoning, which refer to students’ abilities 

involved when solving geometrical tasks: 

 Recognition consists of the identification of types and families of geometric figures, as well as their 

parts and properties. This process is based on the physical and global attributes of figures at level 
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1, while students at level 2 or higher can recognize mathematical properties. Thus, this process 

does not distinguish between level 2, 3, or 4 students. 

 Use of definitions means the handling of geometrical concepts that can be introduced by a book, 

a teacher, or another student. Level 1 students are unable to use a mathematical notion, whereas 

level 2 students use definitions with simple logical structure and based on properties they know. 

Level 3 students can establish logical relationships between properties, which allow them to use 

any definition. Level 4 students understand the logical structure of mathematics quite deeply, so 

they accept that the same concept can have several equivalent definitions. 

 Formulation of definitions is the ability to describe or characterize geometrical concepts. This 

process starts at level 1 with students that describe geometric objects through lists of physical 

properties, with non-mathematical language. In contrast, level 2 students formulate definitions as 

lists of mathematical properties, but they may contain deficiencies or redundancies. Level 3 

students overcome this difficulty, thus formulating definitions as necessary and sufficient sets of 

properties. This ability is finally improved at level 4 when students can also prove the equivalence 

of definitions. 

 Classification is the assignment of geometric figures or concepts to families or classes. Level 1 

students only understand and perform partitional classifications based on physical attributes, so 

they are not able to place the same object in two different classes. Similarly, those of level 2 only 

make partitional classifications but based on mathematical attributes. From level 3, students can 

provide partitional and hierarchical classifications, so this process cannot distinguish between level 

3 and 4 students. 

 Proof means explaining in some convincing way why a mathematical statement is true or false. 

Level 1 is not considered for this process since students do not understand the concept of 

mathematical proof. Level 2 students, when asked to write a proof, check that it is true in one or 

more examples. Level 3 students can perform informal logic proofs and may use examples to help 

themselves with reasoning. Finally, level 4 students can understand and write formal proofs. 

 

This characterization of the Van Hiele levels of geometrical reasoning is adapted by González et 

al. (2021) to the field of graph theory. They provide descriptors for the evolution of the analogous 

processes along the levels (GT) that they propose, even though there are peculiarities of graphs that 

cannot be translated from geometric figures: 

 Recognition entails the identification of specific graphs and families, subgraphs, properties, and 

relations between properties and representation systems. Level 1 (GT) students recognize graphs 

according to their visual appearance, which limits them to identify a specific graph, even in different 

representation systems, only when they are familiar with the shape of the given representation. 

Also, they can partially recognize global properties, that is, they associate them with particular 

representations instead of the graph itself. At level 2 (GT), students can recognize local and global 

properties of graphs, regardless of how they are represented, even in different representation 

systems. Level 3 (GT) students can recognize relationships between properties, which makes this 

process more efficient. Also, they improve their understanding of the relationships between 

different representation systems. Finally, graphs are perceived by level 4 (GT) students with the 

maximum degree of formality, that is, as formal mathematical objects. 

 Use of definitions involves the employment of graph theory concepts to solve a task and includes 
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the understanding of properties or the application of algorithms, among other graph notions. 

Students at level 1 (GT) can use definitions that do not require any knowledge of graph theory. At 

level 2 (GT), they can use definitions with simple logical structure, based on known properties 

related by conjunctions, disjunctions, or negations. Level 3 (GT) students handle any type of 

definition and finally they accept at level 4 (GT) that many concepts have equivalent definitions. 

 Formulation of definitions means to describe or characterize graph theory concepts, their 

properties, families of graphs, etc. Level 1 (GT) students make visual descriptions through 

comparisons with everyday objects and using non-mathematical language. At level 2 (GT), they 

can develop definitions consisting of lists of mathematical properties that may contain 

redundancies or deficiencies. At level 3 (GT), they can write definitions as sets of necessary and 

sufficient conditions and, at level 4 (GT), they can formulate equivalent definitions for the same 

concept. 

 Classification is the organization of graphs into families according to properties. Level 1 (GT) 

students can make partitional classifications throughout visual recognition, and those of level 2 

(GT) can also perform partitional classifications but justifying them with mathematical properties. 

At level 3 (GT), there is an improvement in logic skills that enables students to provide both 

partitional and hierarchical classifications. Students at this level (GT) have attained the maximum 

degree of ability in classification, so this process does not distinguish between level 3 (GT) and 

level 4 (GT). 

 Proof of mathematical statements in this field comprises providing justifications to support the 

validity of classical theorems, equivalence of definitions, validity of algorithms, etc. Level 1 (GT) 

students usually give visual arguments to convince someone of the veracity of an affirmation on 

graphs. Also, they can check it in particular graph representations that may be unappropriated for 

that affirmation. In contrast, level 2 (GT) students use adequate examples of graphs, as they are 

aware of the variety of their representations, to verify such an affirmation. Level 3 (GT) students 

know that visual arguments and specific verifications are insufficient to prove a statement. They 

can write informal proofs that require a few logical steps and, at most, understand the steps of a 

formal proof, which can only be elaborated by level 4 (GT) students. 

 

To illustrate the evolution of the process of formulation of definitions, we can focus on the notion 

of cycle. A level 1 (GT) student could say that “it looks like a necklace”, in contrast with a level 2 (GT) 

answer, which contains mathematical language, such as “it is a graph with all vertices of degree 2”. 

However, this definition lacks the connectivity property, which might be considered by level 3 (GT) 

students. Finally, a level 4 (GT) student could provide several equivalent definitions such as “any graph 

such that the removal of any edge produces a path”. For more examples of the remaining processes, we 

refer the reader to the work of González et al. (2021). 

RESULTS AND DISCUSSION 

The descriptions of the processes of reasoning in graph theory (González et al., 2021), seen as a whole, 

form a characterization of the levels of reasoning in this field. The next four subsections are devoted to 

verifying that such a characterization fulfills the general properties of the Van Hiele model that concern 

its levels: fixed sequence, adjacency, distinction, and separation. The fifth subsection studies the 

coherence with the geometrical case by comparing the processes of both fields of mathematics. 
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Fixed Sequence 

This property indicates that the reasoning skills of a given level require prior acquisition of the skills of the 

previous level. Indeed, at level 2 (GT), the ability to recognize subgraphs and local properties supports 

the rest of the skills acquired at this level, not only those of recognition, which concern the independence 

of the given representation and the ability to make translations between representation systems, but also 

those involved in the rest of the processes: use of definitions with simple logical structure, formulat ion of 

definitions through lists of properties, partitional classifications using properties, and empirical proofs 

using examples. Thus, the key skill of level 2 (GT) is the recognition of subgraphs and local properties, 

and this implies having previously visualized the graph as a whole, which occurs at level 1 (GT). 

At level 3 (GT), the ability to relate properties, both of graphs and of representation systems, is 

necessary to achieve most of the skills that arise at this level. On the one hand, the recognition of the 

relationships among graph properties allows deducing some properties through others. Moreover, this 

yields a more efficient recognition of such properties and the use and formulation of any definition, the 

hierarchical classification of graph families, and the elaboration of informal proofs. One cannot think of 

having acquired this ability to relate properties without having previously gone through level 2 (GT), at 

which these properties are identified and analyzed separately. On the other hand, level 3 (GT) students 

have a sufficiently broad vision of the concept of graph that allows them to handle the relationships 

between different representation systems, which requires previously knowing how to perform translations 

between them, which is a skill of level 2 (GT). 

Level 4 (GT) students see graphs as formal mathematical objects, which supports the handling of 

the equivalence of definitions. This vision of graphs necessarily includes the understanding of the 

relationships between the different representation systems that occurs at level 3 (GT). Likewise, at level 

4 (GT), students can formally prove propositions about graphs, which implies the ability to relate their 

properties, as happens at level 3 (GT), since writing a proof consists precisely of correctly linking 

properties through relationships between them. 

Adjacency 

We check this property by exhibiting the difficulties that students may face during learning. These 

difficulties are related to objects that implicitly appear at a given level (i.e., they can be perceived by 

students but not handled) and become explicit at the next level (Jaime & Gutiérrez, 1990). Indeed, 

González et al. (2021) include in their description of the evolution of each process along the levels (GT) 

the difficulties that students can find at each level (GT), as specified below. 

At level 1 (GT), all reasoning processes are affected by several difficulties since students do not 

have the ability to recognize subgraphs and local properties of graphs, which are explicit objects at the 

following level (GT). For instance, the recognition process is limited to the visual aspect of the graph 

representations known by students because assimilating the independence of the representation requires 

a recognition of the parts and properties of graphs that distinguish them from others. Likewise, this lack 

makes students unable to formulate definitions with mathematical language or classify graphs 

considering their properties. In the process of proof, students cannot even provide justifications in proper 

examples of graphs, but in particular known representations. 

At level 2 (GT), students can analyze some graph properties and make translations between 

representation systems. However, difficulties related to the need to recognize the relationships among 

graph properties or representation systems can arise. For instance, they can find difficulties when trying 

to identify graph properties that cannot be checked directly but through sufficient conditions. Moreover, 
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these students may have trouble when trying to understand the limitations of a particular representation 

system, managing complex definitions, classifying hierarchically, or proving statements beyond checking 

in concrete examples.  

At level 3 (GT), students’ difficulties stem, on the one hand, from a lack of formality in their view of 

graphs, which is necessary, for example, to admit the equivalence of definitions. On the other hand, these 

students lack the ability to elaborate chains of interrelated properties, which is necessary to construct 

formal multistep proofs, an inherent characteristic of level 4 (GT). 

Distinction 

We verify this property employing the terminology of Jaime and Gutiérrez (1990). These authors 

represent mental structures as networks of relationships whose nodes are the different concepts and 

their representations, and whose connections between nodes are given by the established relationships 

(through memory, observation, or logic) between them. Thus, the progression from a level to a higher 

level is modeled as the appearance of new concepts and relationships that form a new and more complex 

network. 

The level 1 (GT) network is formed by independent subnetworks corresponding to the different 

families of graphs, so that each subnetwork is given by the name of the family and the mental images of 

the representations known by the student, connected by memory and observation. In the subnetworks, 

there also appear some global properties that students can recognize at this level (GT). These properties 

are not directly connected to the family name, but to the concrete representations in which students know 

how to recognize that property (also through memory and observation), since the recognition of global 

properties at this level (GT) is only partial (Figure 2). 
 

 
Figure 2. Example of a level 1 (GT) subnetwork related to the family of cycles 

During the process of acquisition of level 2 (GT), the structure of level 1 (GT) is enriched by the 

appearance of local properties in each of the subnetworks, which together with the global properties, 

allow students to describe families of graphs independently of their representations. This unifies mental 

images of concrete representations into a single image that encompasses the entire family for each 

known representation system, giving the possibility to move between these unified images. Thus, in each 

subnetwork, a direct connection is generated between the family name and its properties, although these 

connections do not serve to join between different subnetworks (Figure 3). Furthermore, due to the lack 

of logical skills at this level (GT), the connections between nodes of the subnetworks are still established 
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by memory and observation, as occurs at level 1 (GT). 
 

 
Figure 3. Example of a level 2 (GT) subnetwork related to the family of cycles 

At level 3 (GT), new nodes appear that correspond to more complex concepts than those that 

students can handle at level 2 (GT). In addition to the connections established through memory and 

observation, logical connections appear for the first time. The relationships between properties enable 

students to consider minimal sets of necessary and sufficient properties to define graph families. Thus, 

subnetworks are no longer independent since they are now connected through the properties that 

characterize them, which generates logical relationships between the corresponding families. 

At level 4 (GT), the corresponding network experiences few changes in terms of the number of 

nodes that appear. However, the abilities acquired at this level (GT) allow students to create new 

connections between nodes, such as, for example, those between sets of properties that equivalently 

define the same concept. Another change in the network concerns the nature of the level 4 (GT) 

connections, which are now formal and abstract, in contrast to those of level 3 (GT), mainly informal and 

based on manipulation. 

Separation 

This property refers to the fact that students at a certain level cannot frequently understand students at 

higher levels in relation to a common object of reasoning. Indeed, level 1 (GT) students do not understand 

level 2 (GT) students when the latter provide reasons based on local properties. Likewise, level 2 (GT) 

students cannot understand level 3 (GT) students who relate properties to justify that one family of graphs 

is included within another. Similarly, a level 3 (GT) student cannot follow a proof that a level 4 (GT) student 

could give to demonstrate the equivalence between two definitions, as level 3 (GT) students usually do 

not accept multiple definitions for the same concept. The following statements about graphs clearly show 

these differences between the forms of reasoning at each level (GT): 

1. “This graph is a path because it reminds me of a rope with knots”. 

2. “A tree is a connected graph without cycles”. 

3. “Since paths are connected and they have no cycles, then they are also trees”. 

4. “We will use the induction method to prove that trees can also be defined as connected graphs 

that have one edge less than vertices”. 

 

These statements are also clear indicators of the close relationship between language and levels 

(Jaime & Gutiérrez, 1990). Indeed, the language of level 1 (GT) uses a non-mathematical vocabulary, 
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based on visual attributes, and employs comparisons of graphs with objects familiar to students, in 

contrast to the language of level 2 (GT), whose words belong to the mathematical vocabulary (local 

properties, types of subgraphs, etc.). Level 3 (GT) features a language that links the words of level 2 (GT) 

by means of terms that come from propositional logic: “implies”, “then”, “if and only if”, “necessarily”, etc. 

Finally, level 4 (GT) students use the vocabulary of formal mathematics to organize the relationships 

learned at the previous level (GT), thus handling terms such as “induction”, “proof by contradiction”, etc. 

A Comparison between the Van Hiele Levels of Reasoning in Graph Theory 
and in Geometry 

The recognition process in graph theory is quite different from the recognition process in geometry, since 

the former has indicators generated by some characteristics of graphs that cannot be inferred from 

characteristics of geometric figures. Indeed, although at level 1 both objects are perceived as a whole, 

numerous global properties of graphs can be identified, even if only partially due to the limitations of this 

level in graph theory. This generates an additional indicator for this process at level 1 for graphs that does 

not occur in geometric figures. Likewise, although a level 2 indicator for both cases is the recognition of 

their components and mathematical properties, it is remarkable that students at this level for graphs must, 

in addition to performing translations between different representation systems, recognize them 

independently of the chosen representation. This is a crucial moment in the learning of graph theory 

because, unlike the geometric case, there is a great variety of transformations that leave graphs invariant 

in addition to rigid movements.  

The acquisition of levels 3 and 4 (GT) requires an improvement in recognition skills that again 

implies another notable difference with respect to geometric recognition, whose maximum degree of 

acquisition is at level 2. Indeed, the complexity of certain reasonings on graphs requires a more efficient 

level 3 (GT) recognition than that of the preceding level, through which students can recognize the 

relationships that exist between properties. Likewise, it is necessary at level 3 (GT) to understand the 

relationships that exist between different systems of representation, a skill necessary to perceive graphs 

with the depth that level 4 (GT) students do, that is, as formal mathematical objects. 

In contrast to the recognition process, the formulation of definitions for graphs unfolds in the same 

way as in the geometric model: visual descriptions that highlight the physical characteristics of the objects 

using a language that is not necessarily mathematical (level 1), lists of mathematical properties (level 2), 

sets of necessary and sufficient conditions (level 3), and equivalence of definitions (level 4). Note that 

Gutiérrez and Jaime (1998) mention that, in this process, level 4 students can prove the equivalence of 

definitions, which rather concerns the proof process. Thus, it can be inferred that this descriptor 

necessarily involves the formulation of equivalent definitions for the same geometrical concept, which 

agrees with its analogue for graphs proposed by González et al. (2021). 

The same is true for the classification process, which begins with partitional classifications at levels 

1 and 2, based, respectively, on visual recognition and mathematical properties, and ends at level 3 when 

students admit partitional and hierarchical classifications. 

An intermediate case is the use of definitions, which is similar for graphs and for geometric figures 

but only from level 2 since this process does not make sense at level 1 for the geometric case. In the 

case of graph theory, there are notions that can be handled at level 1 (GT) without the need for knowledge 

of graphs beyond the mere distinction between vertices and edges. In the remaining levels, for both 

mathematical objects, students handle definitions with a simple logical structure at level 2, any definition 

at level 3, and equivalent definitions at level 4. The other intermediate case is the process of proof, which 
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is analogous for both mathematical objects from level 2 since it is also meaningless at level 1 for geometry 

because there is not yet a recognition of properties. Instead, level 1 (GT) students recognize some global 

properties that they can try to justify by visual arguments or by checking them on specific representations 

of graphs. At level 2 (GT), students use real examples of graphs to try to prove properties, just as 

geometry students do with particular examples of figures. Similarly, at the following levels, the process of 

proof is analogous for both mathematical objects: informal proofs at level 3 and formal proofs at level 4. 

CONCLUSION 

According to the scheme of creation and use of an educational model (Jaime & Gutiérrez, 1990), this 

work provides a theoretical analysis of the formal structure of an initial model for the learning of graph 

theory. Concretely, the present study deepens the validity of the extension of the Van Hiele model to the 

field of graphs introduced by González et al. (2021), who provide descriptors of four levels of reasoning 

in this area. To do this, the analysis carried out has been structured through the processes of reasoning 

proposed by Gutiérrez and Jaime (1998): recognition, use and formulation of definitions, classification, 

and proof.  

The internal validity of the levels of reasoning in graph theory, which provides an affirmative answer 

to the first research question of this work, has been supported by verifying the properties of the Van Hiele 

levels (Usiskin, 1982). Indeed, they have shown hierarchical structure (fixed sequence) and both intrinsic 

and extrinsic objects of reasoning (adjacency). Also, these levels (GT) are characterized by the use of a 

series of symbols and relationships among them (distinction) that may impede communication between 

students at different levels (GT) (separation). Thus, a future line of research could focus on the fifth 

property of the Van Hiele model, attainment, which concerns prescriptive aspects. Specifically, the model 

proposes the design of task sequences according to the levels and the different learning phases that 

allow students to progress in the acquisition of the Van Hiele levels. It is necessary to explore these 

features of the model, since they could be used by teachers to help their students advance in the learning 

of graph theory. 

The external validity, which gives an affirmative answer to the second research question, has been 

supported by the analysis of the coherence of the Van Hiele levels for graph theory with the levels of 

geometrical reasoning. Indeed, the comparison between the indicators of both types of reasoning has 

allowed verifying that they are coherent despite the existence of indicators for the reasoning in graph 

theory without an analogue in the geometrical context. This fact is due to the nature of graphs, which are 

mathematical objects that sometimes require more abstraction than geometric figures. Thus, the 

descriptors of the levels of geometrical reasoning can be regarded in some way contained in those for 

the reasoning in graph theory. This allows detaching the Van Hiele model from the geometrical context, 

which makes interesting the study of connections among the existing particularizations of this model to 

other mathematical objects. Such an approach would go towards a new formulation of the Van Hiele 

model independently of the underlying mathematical object, which follows the spirit of the community of 

researchers in mathematics education that encourage to go from middle-range theories to a grand theory 

(Silver & Herbst, 2007). 

Therefore, the results obtained in this paper support a priori validation of the levels of reasoning in 

graph theory under the lens of the Van Hiele model, which suggests the possibility to apply this model 

also in the teaching of graph theory, similarly as it has been done in the field of geometry by means of 

the instructional component of the Van Hiele model. However, a limitation of this work is precisely that a 
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posteriori validation should be explored. Indeed, it is necessary to collect empirical data for future works 

aiming to either confirm the adequacy of the initial model or introduce modifications that allow us to better 

describe the phenomena under study, that is, the understanding of graph theory concepts. This would 

lead to the refinement of the initial proposal of González et al. (2021) with more precise descriptors and 

thus to the completion of a research cycle (Jaime & Gutiérrez, 1990). 
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