

International Journal of Psychology and Educational Studies

ISSN: 2148-9378

The Effectiveness of Student-Centered Teaching Applications Used In Determining Motivation Toward Science Learning: A Meta-Analysis Study

Yunus Emre BAYSAL¹, Fatma MUTLU², Oğuzhan NACAROĞLU³

¹ Institute of Education Sciences, İnönü University, Malatya, Türkiye D 0000-0001-6125-3165
 ² Faculty of Education, İnönü University, Malatya, Türkiye D 0000-0002-8643-1236
 ³ Faculty of Education, Sivas Cumhuriyet University, Sivas, Türkiye D 0000-0001-8516-9152

ARTICLE INFO

ABSTRACT

The aim of this study was to determine the effect of student-centered teaching applications on Article History Received 29.03.2021 students' motivation toward science learning with a meta-analysis study. For this purpose, national Received in revised form and international databases were scanned and master's theses, doctoral dissertations, and articles 20.06.2021 prepared between 2010 and 2020 were investigated. Accordingly, 271 studies conducted in Turkey Accepted 19.02.2022 were accessed, 59 studies were determined to meet the inclusion criteria, and the effect size of 61 was Article Type: Research calculated. Using the Comprehensive Meta-Analysis v2.0 (CMA) Statistical Package program, the Article effect sizes and combined effect sizes of the studies were calculated. As a result of the analysis, the general effect size of different teaching applications on students' motivation toward science learning was determined as 0.620 (95% Cl, SE=0.088). This value was "medium level" according to the effect size classification of Cohen et al. (2007). As a result of the heterogeneity test, it was concluded that there was a high level of heterogeneity in the study (Q=408.198; @=79.082; I2=85.301). A moderator analysis was conducted to explain this heterogeneity between the effect sizes of the students' motivations toward science learning. For this purpose, categorical moderators (publication type, learning area, study location, grade level, scale type, and duration of applications) were determined to cause a statistically significant difference in effect sizes. According to the results of meta-regression analysis conducted for the moderators of publication year and sample size investigated as continuous variables in the study, publication year (z= -2.664, p<0.05) was found to cause a statistically significant difference in the effect size. Some recommendations were made in line with the study results. Keywords:

Student-centered teaching applications, motivation for science learning, effect size, meta-analysis

1. Introduction

A constructivist learning strategy is based on the building of knowledge by students in a subjective way. In the learning environments suitable for this strategy, students are expected to construct knowledge by establishing a link between their old and new learning (Kalpana, 2014). In fact, the learning environments in which learning is made by the mental activities of students, scientific questioning is shaped by employing active learning strategies, and problems are solved by using high-level mental skills are defined as constructivist learning environments (Marlowe & Page, 2005). In these learning environments, learning models that allow the students to take responsibility for learning and to participate actively in the process are used. With the use of constructivist learning strategies and the learner-oriented learning models suitable for these strategies, the motivation concept affecting learning has gained importance (Glynn, Aultman, & Owens, 2005; Martin, 2001).

¹Corresponding author's address: İnönü University, Faculty of Education Department of Mathematics and Science Education Malatya/Türkiye

e-mail: <u>fatma.mutlu@inonu.edu.tr</u>

Citation: Baysal, Y. E., Mutlu, F. & Nacaroğlu, O. (2023). The effectiveness of student-centered teaching applications used in determining motivation toward science learning: A meta-analysis study. *International Journal of Psychology and Educational Studies*, 10(1), 1-21. https://dx.doi.org/10.52380/ijpes.2023.10.1.512

1.1. Motivation

Motivation is an important affective factor that drives people toward a goal and allows them to achieve it decisively (Elliot & Covington, 2001; Glynn, Taasoobshirazi, & Brickman, 2009; Watters & Ginns, 2000). Brophy (1998) stated in this context that motivation is a theoretical concept that explains the direction and stability of behavior, and Watters and Ginns (2000) stated that it has a complex psychological structure that explains the effort in the actions. Therefore, the prominent feature of motivation is that it directs the person to certain goals and activates him/her in line with these goals (Demir & Budak, 2016).

Modern motivation theories aiming to determine how motivation affects learning put forward that motivation is multidimensional (Atkinson, 1957; Weiner, 1972). In this context, Paris and Turner (1994) point out four dimensions of motivation by stating that it changes according to the expectations and needs of the individual; individual evaluations are important; it depends on certain conditions; and it does not have a fixed structure. Besides, Ryan and Deci (2000) investigated motivation under three dimensions: intrinsic/extrinsic motivation and amotivation (Ryan and Deci, 2000). Intrinsic motivation focuses on the voluntary action of a person, while extrinsic motivation focuses on the result a person will get when he/she acts with the effects coming from the environment. Amotivation is the unwillingness of a person to do an action (Ryan & Deci, 2000) and is shown to be among the reasons why students fail in their classes (Okumuş, 2020). Therefore, it is important to increase students' learning motivation regarding courses (Wolters, 1999). One of these courses is the science societies attach the most importance to (Müezzin & Özata, 2019), and conducting high-level activities for students in this course and increasing the students' motivation to improve their conceptual science understanding is one of the most important educational topics (Cavas, 2011; Özarslan & Saraç, 2019).

1.2. Motivation and Student-Centered Teaching Applications for Science Learning

Science learning motivation can be defined as students' fulfillment of duties and responsibilities related to science (Lee and Brophy, 1996). It is stated that motivation is involved in many processes in science learning, from students' science achievements to conceptual change, scientific process skills, and the development of critical thinking skills (Chang, Hsu, & Jong, 2020; Tuan, Chin, & Shieh, 2005). In fact, it is also known that motivation toward science learning is effective on students' academic successes (Demir, Öztürk, & Dökme, 2012; Pintrich, 2003; Karakaya, Avgın, & Yılmaz, 2018). Besides, motivation toward science learning is affected by many factors such as the students' individual characteristics, learning styles, and learning environment (Meece, Glienke, & Burg 2006; Ng, Soon, & Fong, 2010; Pintrich & Schunk 1996; Yılmaz & Çavaş, 2007). Furthermore, the curriculum of the course and learning-teaching strategies and techniques used in the course also affect the students' motivation toward science learning (Lee & Brophy, 1996). In fact, active learning environments in which students are encouraged to use skills and processes related to questioning and can explore their own ideas positively affect their motivations toward science (Velayutham, Aldridge, & Fraser, 2012).

In order to increase the students' motivation toward learning science, it is necessary to consider individual differences and to arrange learning environments suitable for the students' expectations and needs. Teachers are people who guide students, form appropriate learning environments, and provide a positive learning environment for students in this process. Teachers using student-centered learning methods and techniques in their class can provide learning environments that will increase cooperation and solidarity and give the students the opportunity to increase their learning motivation, depending on the student's readiness level. The use of these methods and techniques is continuously increasing within the scope of constructivist learning strategies. On the other hand, when the studies investigating the effect of student-centered teaching applications in Turkey on the motivation toward science learning were examined, it was observed that different results were found. When the literature was reviewed, it was determined that cooperative learning models integrated with educational games (Yıldız, Şimşek, & Ağdaş, 2017), science experiments (Akıllı, Keskin, & Ay, 2017), cooperative learning (Doğru & Ünlü, 2012), educational games (Yenice, Tunç, and Yavaşoğlu, 2019), concept cartoons (Ayhan, 2017), project-based learning (Işık & Gücüm, 2013), problem-based learning supported with concept cartoons (İnel 2012), life-based learning (Demir, 2019), problem-based learning (Tekin, 2020), STEM (Yıldırım & Selvi, 2017), blended learning (Pesen & Oral, 2016; Meriçelli & Uluyol 2016), science notebook (Bıyık, 2016) and information graphs (Boyacı, 2019) positively affected students' motivation toward science learning. On the other hand, there are also studies in the literature stating that learning strategies and methods such as problem-based learning (Tekin & Yıldırım, 2020), blended learning (Gürdoğan and Bağ, 2019), technologically supported learning (Develi, 2017), material and experiment activities (Aytekin, 2018), REACT Strategy (Karaş & Gül, 2019), concept cartoons (Şahin, 2019), scientific stories supported by concept cartoons (Yılmaz, 2013), slow-transition animation technique (Çamloğlu, 2014; Pak, 2020) and STEM (Büyükpastırmacı, 2019; Parlakay and Koç, 2020) were found to have no effect on the students' motivations toward science learning.

1.3. Purpose of the Study

Although there are many studies in the literature stating different results on the effect of student-centered teaching applications on the students' motivations toward science learning, no meta-analysis study has been found on this subject. In this respect, it is necessary to analyze the studies again and make new decisions (Sağlam & Yüksel, 2007). This meta-analysis study will provide information about how effective different teaching applications are on the students' motivations toward science learning compared to traditional teaching methods and will reveal the general effect of different teaching applications on a national scale. On the other hand, the present meta-analysis study will also serve to clarify the inconsistencies in studies on the motivation of different teaching applications toward science learning. Based on these points, the answers to the following questions were sought within the scope of the study.

1) What is the general effect level of different student-centered teaching applications on motivation toward science learning compared to traditional methods?

2) Do the magnitudes of the effects of different student-centered teaching applications on motivation toward science learning differ significantly according to the study moderators?

2. Methodology

2.1.Research Model

This study was carried out using the meta-analysis method, one of the quantitative research synthesis methods. According to Lipsy and Wilson (2001), meta-analysis is one of the methods used to combine, interpret, and summarize data from scientific studies in any field.

2.2. Data Collection

Within the scope of the study, databases of "Eric, Science Direct, Web of Science, Dergipark, Google Scholar, Proquest, and YÖK (the Council of Higher Education) National Thesis Center" were used in the literature review to access the individual studies. While performing the literature review, the "motivation toward science, motivation toward science learning and scale/questionnaire for motivation toward science learning" keywords were used. Figure 1 illustrates the flow diagram showing how 59 studies were reached.

Figure 1. Flow Chart for Selection of Studies

As seen in Figure 1, as a result of the literature review and examinations, 279 national studies were accessed. Among these studies, it was found that there were 59 studies containing appropriate data and meeting the inclusion criteria [N=3997 (Experimental group=1995, Control group=2002)].

2.3. Criteria for Inclusion and Exclusion

While selecting the studies included in the meta-analysis, the following criteria were taken into account:

- Studies included in the meta-analysis were conducted between 2010 and 2020 in Turkey, and the sample group in these studies included primary school students.
- They were published or unpublished master's and doctoral theses, articles in electronic academic journals, and papers presented in congresses and symposiums.
- In the studies to be included in the meta-analysis, the effect of student-centered teaching applications in the experimental group and traditional teaching applications in the control group on the motivation toward science learning was investigated.
- The motivation scale used in studies included in the meta-analysis was used to determine "motivation toward science learning."
- In the studies to be included in the analysis, arithmetic mean, sample size, standard deviation, f, t, or p values were given to calculate the effect sizes.
- Studies to be included in the analysis were published in either Turkish or English.

In this meta-analysis study, studies in which the effect of student-centered teaching applications in the experimental group and traditional teaching applications in the control group on science learning was not investigated, international studies, single-group studies, qualitative studies, and descriptive review studies were determined as the exclusion criteria.

2.4. Data Coding

In the meta-analysis studies, explaining the literature review in full detail, recording the studies obtained as a result of the review process, using the coding form, and obtaining similar results by other researchers using the same steps affects the reliability (Card, 2012). In this study, a coding form consisting of three sections, including "study identity," "study content," and "data of the study," was developed in order to record the studies reached as a result of the literature review. The content included in these sections is present in Table 1.

Study Identity	Study Content	Data of the Study
Study number	Education level	Arithmetic mean
Study title	Grade level	Standard deviation
Study author (s)	Scale used	Sample size
Publication year of the study	Teaching application	t value
Publication status	Sample size	p value
City where the study was conducted	Duration of applications	F value

Table 1. Content of Coding Form

In this study, the literature review was performed within the framework of the specified inclusion and exclusion criteria, and the studies reached as a result of the review were recorded in the coding form to ensure reliability. In addition, it is also recommended to ensure the reliability of the coding form in meta-analysis studies (Card, 2012; Petitti, 2000). In this study, agreement rate and Cohen's Kappa statistics were used to determine the intercoder reliability. The intercoder agreement rate was calculated as 85.2%. It is stated that when the variables are categorical, the agreement rate can be affected by the chance factor and a rate higher than the expected one can be obtained (Hartmann, 1977). For this reason, it is recommended to use Cohen's Kappa statistics, giving more reliable results against the chance factor (Card, 2012). The intercoder Kappa reliability value was calculated as 82.973. This value shows that there is a very good level of intercoder agreement according to the interpretation classification recommended by Landis and Koch (1977).

2.5. Analysis and Interpretation of Data

Effect sizes constitute the basis of meta-analysis. Effect size shows the sensitivity of an experimental procedure and the size of the experimental effect (Thalheimer and Cook, 2002). The combination of the effect sizes obtained from the individual studies to be included in meta-analysis is done by using statistical models. In the

literature, two models, the "fixed effects model" and the "random effects model," are preferred. The fixed effects model assumes that there is only one effect size in all studies and the deviations in the effect sizes are caused by the sample changes (Card, 2012). The random effects model does not include the assumption that there is only one average effect size in the studies included in the analysis. Conversely, it assumes that the effect sizes in the studies vary and that this variation is caused by central tendency and study deviations (Card, 2012). Which one of these two models is used needs to be decided by the researchers before the analysis (Başol, 2016). In this study, the random effects model was preferred by considering factors like this study containing studies for different teaching applications and the applications being conducted in different cities.

While interpreting the effect sizes obtained as a result of the analysis conducted by using statistical models in meta-analysis studies, some classifications are used to interpret the level of the obtained results. There is more than one classification in the literature. According to Cohen et al. (2007), the effect size classification is as follows (2007):

- $0 \leq$ The effect size value ≤ 0.20 : the effect level is poor (poor),
- $0.21 \leq$ The effect size value ≤ 0.50 : the effect level is modest (modest),
- $0.51 \leq$ The effect size value ≤ 1.00 : the effect level is moderate (moderate),
- 1.01 ≤ The effect size value indicates that the effect level is strong.

One of the points that should be considered in meta-analysis studies is the publication bias. Publication bias is a situation caused by the tendency of studies that achieve statistically significant and positive results to not be published compared to negative and statistically insignificant studies. Depending on this situation, the average effect size value is likely to be high (Borenstein et al., 2009). In this study, the "Funnel Plot", "Orwin's Fail-Safe N", and "Egger regression intercept" methods were used to assess publication bias.

In the study, Q (Cochran's Q) and I² statistics were used to evaluate heterogeneity. Cochran's Q can be used as a measure of heterogeneity and is calculated as the sum of differences of the weighted squares between the effects of the individual studies and the effects of combined studies with the weights used in the combination method (Borenstein et al., 2009; Cochran 1950). I² statistic is a statistic that includes heterogeneity against the chance factor and shows the percentage of the variance in the studies included in the analysis (Higgins & Thompson 2002).

In the current meta-analysis study, the Comprehensive Meta-Analysis Version 2 (CMA Ver. 2.0) (Borenstein, Hedges, Higgins, & Rothstein, 2005) statistical package program was used for effect sizes, heterogeneity tests, moderator, meta-regression, and publication bias analysis. For the calculations for inter-coder agreement rate and Cohen's kappa statistics, the SPSS 22.0 package program was used. The value of 0.05 was accepted as a reference for the statistical significance value.

3.5. Ethical

In this study, all rules stated to be followed within the scope of "Higher Education Institutions Scientific Research and Publication Ethics Directive" were followed.

Ethical Review Board Name: Research Ethics Committee of Bingöl University

Date of Ethics Evaluation Decision: 15.11.2022 Ethics Assessment Document Issue Number: 81594

3. Findings

3.1. Descriptive Statistics of the Meta-Analysis Studies

The distribution of subjects according to science fields of 59 studies included in the analysis and the learning areas of these subjects are presented in Table 2.

Frequency (f)	Learning Area	
Frequency (I)	Learning Area	
8		
2		
2		
3	Creatures and Life	
1		
2		
1		
4		
1		
7		
2	Physical Events	
1		
2		
1	Earth Universe	
4	Earth Universe	
10		
2	Matter and Change	
1		
1		
1		
1	More than one	
1		
1		
	Frequency (f)	

Table 2. Subject Distributions of the Studies According To Science Fields and Learning Areas

*The subject investigated was not specified in two studies.

When Table 2 was examined, it was seen that biology subjects in 19 studies, physic subjects in 22 studies, chemistry subjects in 13 studies, and more than one science subject in 5 studies were studied. The systems in our bodies among the biology subjects; electricity in our lives among physics subjects; and the structure, properties, and nature of matter among the chemistry subjects were determined to be the most studied subjects.

Table 3 shows the teaching applications whose effect on students' motivation toward science learning in the experimental group was examined in the individual studies included in the meta-analysis.

When Table 3 was examined, it was observed that the effects of more than one different teaching application on students' motivation toward science learning were examined. Three studies were conducted from blended learning, cooperative learning, concept cartoons, the travel-observation method, STEM, context-based learning, problem-based learning, and project-based learning teaching applications; two studies were conducted from augmented reality, smart board, and educational games applications; and one study was conducted from other teaching applications.

Table 3. Different Teaching Applications Used in Individual Studies

Teaching Applications	Frequency
4MAT learning model	1
Allosteric learning model	1
Argumentation based	1
The ARSCS motivation method	1
Augmented reality	2
Blended learning	3
Brain-based learning approach	1
Cartoons in the teaching	1
Case-oriented station technique	1
Concept cartoons	3
The conceptual change method	1
Context-based learning	3
Cooperative learning	3
Creative drama activities	1
Cross-curriculum discipline	1
Drama	1
Educational games supported by computers	1
Educational games	2
Educational games integrated with a cooperative learning model	1
Game-based activities	1
Infographics	1
Inquiry-based learning	1
Instructional intervention focusing on scientific process skills	1
Material and experimental activities	1
Mobile-assisted	1
An online learning environment based on caricature animation	1
Problem-based learning	3
Project-based learning	3
Science book	1
Science, history and philosophy	1
Science stories supported with concept cartoons	1
Self-regulated learning strategies	1
Serious games	1
Slowmation application	1
Smart board	2
Social media-supported learning	1
STEM	3
STEM+Mastery learning	1
Technological pedagogical-based learning	1
Technology-enhanced flipped science classroom	1
Travel-observation	3
Web-based online virtual laboratory	1

Table 4 shows statistics of the publication year, publication types, study locations, grade level, scale type, and duration of application variables of the studies analyzed in this study.

When Table 4 was examined, the year 2019 according to the publication years, "article" according to the publication types, "Marmara" by regions, "7th grade" by grade level, "ready scale" by scale type, and "4-6 weeks" by the duration of applications were observed to be the subgroups in which the most studies were conducted.

Table 4. Descriptive	Results of Studies	Included in the Meta-Analysis
	2	5

Study Characteristics	Frequency (f)
Publication Years	
2010	-
2011	2
2012	4
2013	6
2014	2
2015	6
2016	3
2017	14
2018	4
2019	15
2020	5
Publication Types	
Article	31
Doctoral Dissertation	3
Master Thesis	26
Proceeding*	1
Study Locations	
Mediterranean Region	7
Eastern Anatolia Region	6
Aegean Region	8
The Southeastern Anatolia Region	1
Central Anatolia Region	11
Black Sea Region	6
Marmara Region	16
Unspecified*	6
Grade Levels	
4th grade	5
5th grade	6
6th grade	14
7th grade	27
8th grade	7
6th +7th+8th. grades*	1
Unspecified*	1
Scale Types	
Adapted Scale	24
Ready Scale	37
Duration of Applications	
0-3 weeks	5
4-6 weeks	32
7-9 weeks	11
10+ weeks	5
Unspecified*	8

* These studies were not included in the moderator analysis.

3.2. Results About Publication Bias

In the current study, the "Funnel plot", "Orwin's fail-safe N", and "Egger regression intercept" methods were used to evaluate the publication bias. Figure 2 shows the "Funnel Plot" showing the publication bias results of 59 studies included in the analysis.

Figure 2. Funnel Plot Publication Bias Results

When Figure 2 was examined, it was observed that the studies showed an almost symmetrical distribution around the average effect size. This situation was interpreted as meaning that there was no publication bias (Borenstein et al., 2009). On the other hand, it is stated that the use of only the funnel plot in the evaluation of publication bias is not sufficient and it should be supported with other publication bias tests (Card, 2012). Therefore, the results for "Orwin's fail-safe N" and "Egger regression intercept" methods were also examined in the present study.

According to "Orwin's fail-safe N" result, a further 3309 studies should be conducted in order to reduce the average effect size of 0.620 to an insignificant level. Considering that 59 studies included in the analysis were conducted in Turkey, reaching 3309 studies is unlikely. According to the result of the "Egger regression intercept" method, p-value (2-tailed) was 0.098 and this value was not statistically significant.

When all results of publication bias are evaluated together, it can be asserted that there was no publication bias in this study.

3.3. Results Related to Effect Size

Table 5 shows the findings containing the effect size values, standard errors, lower and upper limit values of effect sizes, Z and p values of the teaching applications applied in the studies included in this meta-analysis with the general effect size of these teaching applications.

Author(s) and Pub Voor	Teaching Applications	EC	CE	Lower	Upp	Z-	p-
Author(s) and Pub. Tear	reaching Applications	E2	SE	Limit	Limi	valu	valu
Akgündüz and Akınoğlu 2017-1	Blended learning	0.670	0 294	0.095	1 246	2 282	0.022
Akgindüz and Akınoğlu, 2017 2	Social modia supported learning	0.403	0.291	0.163	0.968	1 395	0.163
		0.405	0.207	-0.105	0.500	1.070	0.105
Aktaş and Bilgin, 2015	4MA1 learning model Brain based learning approach	1 288	0.131	0.015	0.529	2.072	0.038
Arguier and Alacali, 2015	Science book	0.156	0.301	0.000	2.090	0.570	0.000
Ank, 2019	Conceptive learning	1.057	0.270	-0.373	1 501	0.579	0.000
Avdaždu 2017	A roumontation based	0.425	0.220	0.013	0.050	1.009	0.000
Aydogdu, 2017	Argumentation based	0.425	0.221	-0.007	0.858	1.928	0.054
Aynan, 2017	Concept cartoons	0.622	0.254	0.124	1.120	2.449	0.014
Aytekin, 2018	Material and experimental activities	-0.396	0.289	-0.961	0.170	-	0.170
Basarmak, 2013	An online learning environment based on caricature	0.534	0.300	-0.054	1.122	1.779	0.075
	animation						
Berkant and Gökçedağ, 2019	Allosteric learning model	0.515	0.310	-0.093	1.122	1.659	0.097
Bodur, 2015	Travel-observation method	0.465	0.239	-0.003	0.933	1.948	0.051
Boyacı, 2019	Infographics	-0.047	0.258	-0.553	0.460	-	0.856
Büyükbastırmacı, 2019	STEM	-1.374	0.246	-1.855	-	-	0.000
Cengiz, 2019	Self-regulated learning strategies	0.390	0.323	-0.244	1.024	1.207	0.228
Demir, 2019	Context-based learning	1.309	0.314	0.695	1.924	4.176	0.000
Demirağ, 2014	Creative drama activities	0.932	0.351	0.244	1.620	2.655	0.008
Develi, 2017	Technological pedagogical based learning	0.063	0.202	-0.333	0.459	0.311	0.756
Doğru and Ünlü, 2012	Cooperative learning	0.001	0.250	-0.490	0.491	0.002	0.998
Ermiş, 2012	Smart board	1.039	0.365	0.323	1.755	2.843	0.004
Gürdoğan and Bağ, 2019	Blended learning	0.003	0.303	-0.590	0.597	0.011	0.992
Işık and Gücüm, 2013	Project-based learning	2.639	0.316	2.019	3.258	8.351	0.000
Keskin, 2019	Project-based learning	1.642	0.247	1.159	2.125	6.660	0.000
Kırıkkaya and Başgül. 2019	Augmented reality	0.301	0.260	-0.208	0.810	1.159	0.247
Pak. 2020	Slowmation application	0.113	0.263	-0.403	0.628	0.428	0.668
Parlakay and Koc, 2020	STEM	-0.089	0.250	-0.580	0.401	-	0.722
Yenice et al., 2019	Educational games	0.422	0.312	-0.190	1.035	1.351	0.177
Yıldırım and Selvi, 2017-1	STEM	0.431	0.284	-0.126	0.987	1.518	0.129
Yıldırım and Selvi, 2017-2	STEM+mastery learning	1.023	0.308	0.419	1.626	3.321	0.001
Yıldırım, 2020	Travel-observation method	1.274	0.293	0.700	1.849	4.348	0.000
Yıldız et al., 2016	Educational games	0.828	0.322	0.197	1.459	2.573	0.010
Yıldız et al., 2017	Educational games integrated	1.371	0.302	0.778	1.964	4.534	0.000
	Cooperative learning model						
İnel, 2012	Problem-based learning	0.305	0.260	-0.205	0.814	1.173	0.241
	Instructional intervention emphasizing science						
Durmaz and Mutlu, 2015	process skills	0.645	0.314	0.031	1.260	2.057	0.040
Balaman and Türküz, 2011	Rlandad learning	0.967	0.264	0.449	1 / 95	2 660	0.000
Baran 2012	Science history and philosophy	0.907	0.204	0.449	1.465	0.051	0.000
Daran, 2015	Mahila assisted learning	0.262	0.290	-0.299	0.005	0.951	0.041
Çallı, 2019 Eson and Onbasılı, 2018	Concert carteons	2 104	0.197	1 214	2 008	4.575	0.003
Karas and Cül 2019	Context based learning	2.100	0.455	1.214	2.990	4.020	0.000
Karaş altı Gui, 2017	The ABCC metion time the d	-0.210	0.126	-1.430	-	-	0.001
Karsh, 2015	The ARSCS motivation method	0.889	0.136	0.621	1.156	6.513	0.000
Keskin, 2011	Project-based learning	0.155	0.209	-0.255	0.564	0.740	0.459
Kılıç and Moralar, 2015	Problem-based learning	1.478	0.378	0.737	2.219	3.910	0.000
Meral, 2018	An online virtual laboratory	0.149	0.183	-0.209	0.507	0.815	0.415
Metin and Bozdoğan, 2020	Travel-observation method	1.635	0.408	0.835	2.436	4.005	0.000
Ormancı and Özcan, 2014	Drama	1.066	0.356	0.367	1.764	2.991	0.003
Özdemir and Dindar, 2013	Conceptual change method	1.008	0.300	0.419	1.596	3.357	0.001
Özgür and Yılmaz, 2017	Inquiry-based learning	1.997	0.387	1.238	2.756	5.159	0.000
Saracaloğlu et al., 2016	Cross-curriculum discipline	0.267	0.271	-0.264	0.798	0.985	0.325
Sezer, 2017	Technology-enhanced flipped science classroom	0.831	0.253	0.336	1.327	3.288	0.001
Sırakaya and Sırakaya, 2018	Augmented reality	0.279	0.215	-0.144	0.701	1.293	0.196
Tekin. 2019	Problem-based learning	0.395	0.298	-0.188	0.979	1.327	0.184
Tercan, 2012	Smart board	0.071	0.248	-0.415	0.558	0.288	0.773
Türe et al. 2020	Case-oriented station technique	0.403	0.240	-0.067	0.872	1 679	0.093
Ural et al., 2017	Cooperative learning	0.012	0.286	-0.548	0.572	0.042	0.966
Yazıcıoğlu, 2017	Game-based activities	0.482	0.282	-0.070	1.034	1.712	0.087
Yurttadur, 2019	Cartoons in the teaching	2.139	0.366	1.422	2.856	5.847	0.000
Yılmaz, 2013	Science stories supported by concept cartoons	0.142	0.273	-0.393	0,676	0.519	0.604
Özer, 2017	Serious games	1.875	0.183	1.517	2.234	10.25	0.000
Şahin, 2019	Concept cartoons	-0.490	0.287	-1.053	0.072	-	0.088
Sensoy and Gökce, 2017	Context-based learning	0.595	0.289	0.028	1.162	2.056	0.040
Kahvaoğlu and Elcicek, 2016	Educational games supported by computers	1.552	0.326	0.913	2.190	4,760	0.000
Conoral Effort Size (Dan dam Effort	to)	0.620	0.000	0.447	0.702	7.045	0.000
General Effect Size (Kanuom Effect	13)	0.020	0.000	0.44/	0.792	7.040	0.000

Table 5. Effec	t Sizes and	General Effect	Size Results (of the Teachin	io Annlications
Table 5. Lijee	<i>1 31203 unu</i>	Оснени Цуссь	JILE RESULTS		12 / 10/01/01/01/01/01/01/01/01/01/01/01/01/0

When Table 5 was examined, the general effect size value of the studies of different student-centered teaching applications combined under the random effects model was seen to be 0.620 with 0.088 standard error (lower limit of 0.447, upper limit of 0.792). This result showed that student-centered different teaching applications were effective at a "moderate level" on motivation toward science learning compared to the traditional teaching applications according to the classification of Cohen et al. (2007).

When Table 5 was examined, it was seen that the highest effect size value was 2.639 (Işık and Gücüm, 2013) and the lowest effect size value was 0.001 (Doğru and Ünlü, 2012) in the individual studies. It was determined that the effect size value was negative in 6 studies (in favor of the control group) and was positive (in favor of the experimental group) in 55 studies.

In the meta-analysis study, the heterogeneity test was performed to determine whether or not the effect sizes of individual studies had a homogeneous or heterogeneous distribution. Table 6 shows results related to this test.

Table 6. Heterogeneity Test Results

i unite di Hererogeneng	1001 1001110			
Q- value	Df(Q)	р	I² Value	
408.198	60	0.000	85.301	

When Table 6 was examined, it was seen that the Q value (408.198) of the studies included in the meta-analysis was higher than the 60 degree of freedom chi-square value (79.082) and that this value was statistically significant (p<0.05). This result indicated that there was a high level of heterogeneity between the studies included in the meta-analysis (I²=85.301).

3.4. Results of Moderator Analysis

In meta-analysis studies, ANOVA similarity analysis for categorical moderators and meta-regression analysis for the moderators selected as the continuous variables are performed (Lipsey and Wilson, 2001). It is stated that the number of studies in each sub-group should be at least 2 in the ANOVA similarity analysis (Pincus et al., 2011). Therefore, the study groups with 1 subgroup in categorical moderators were excluded from the analysis. Besides, sub-groups of some studies could not be determined, and these were also excluded from the moderator analysis. In addition, in the current study, the effect of student-centered multiple teaching applications on motivation toward science learning was tried to be investigated. Since the frequency value of the teaching applications (see Table 3) was 1 in many teaching applications, moderator analysis could not be determined which teaching application was more effective on motivation toward science learning or whether or not the effect sizes differed significantly among the teaching applications.

On the other hand, meta-analysis was conducted by considering the publication type, learning area, study location, grade level, scale type, and duration of applications as categorical moderators and by accepting analog ANOVA similarity analyses, publication year, and experiment sample size as continuous variables. Table 7 shows the ANOVA similarity results for the categorical moderators.

	T /				95% Confi	dence	
	Intergroup		1	Effect	Interval		Standard
Moderators	Homogeneity	р	K	Size	Lower	Upper	Error
	(QB)				Limit	Limit	
Publication Type	1.986	0.159					
Article			31	0.722	0.489	0.954	0.118
Thesis			29	0.473	0.217	0.729	0.131
Learning Area	4.427	0.351					
Creatures and Life			19	0.611	0.320	0.902	0.148
Earth and Universe			5	0.533	0.163	0.904	0.189
Physical Events			17	0.311	-0.037	0.659	0.178
Matter and Change			13	0.778	0.417	1.139	0.184
More than one			5	0.751	0.401	1.101	0.179
Study Location	4.567	0.471					
Mediterranean			7	0.411	-0.030	0.912	0.240
Eastern Anatolia			6	0.810	0.542	1.078	0.137
Aegean			8	0.508	0.097	0.919	0.210
Central Anatolia			11	0.933	0.177	1.688	0.385
Black Sea			6	0.403	-0.207	1.012	0.311
Marmara			16	0.529	0.316	0.741	0.108
Grade Level	7.182	0.127					
Grade 4			5	0.994	0.163	1.824	0.424
Grade 5			6	0.260	-0.114	0.634	0.191
Grade 6			14	0.823	0.539	1.107	0.145
Grade 7			27	0.483	0.207	0.760	0.141
Grade 8			7	0.669	0.231	1.107	0.224
Scale Type	0.956	0.328					
Adapted			24	0.731	0.434	1.028	0.152
Ready			37	0.549	0.337	0.761	0.108
Duration of applications	2.320	0.509					
0-3 weeks			5	0.934	0.323	1.545	0.312
4-6 weeks			32	0.507	0.246	0.769	0.133
7-9 weeks			11	0.672	0.405	0.940	0.136
10+ weeks			5	0.751	0.401	1.101	0.179

When Table 7 was examined, the effect sizes of the individual studies investigating the effect of studentcentered different teaching applications on motivation toward science learning were seen not to differentiate statistically significantly according to moderators of publication type (QB=1.986, p>0.05), learning area (QB=4.427, p>0.05), study location (QB=4.567, p>0.05), grade level (QB=7.182, p>0.05), scale type (QB=0.956, p>0.05), and duration of applications (QB=2.320, p>0.05).

In the current meta-analysis study, publication year and experiment sample size moderators were considered as continuous variables, and meta-regression analysis was performed for these moderators. Figure 3 shows the effect of the publication year moderator on the effect size.

Figure 3. Regression of Publication Years on Effect Sizes

When Figure 3 was examined, it was seen that the slope of the regression line between the publication year and effect size decreased with the advancement of publication years toward 2020. Table 8 shows the results showing whether or not this decrease was statistically significant.

	Effect Size	Standard error	Lower Limit	Upper Limit	Z-value	p- value
Slope	-0.035	0.013	-0.061	-0.009	-2.664	0.007*
Intercept	71.431	26.566	19.302	123.561	2.685	

*p<0.05

When Table 8 was examined, it was seen that one unit increase in the publication year caused a decrease of 0.035 in the effect size, and this decrease was statistically significant (p<0.05). This result can be interpreted as the students' motivation toward science learning being higher in studies conducted in previous years.

The effect of the number of participants in the experimental group has on the size of the effect sizes in the individual studies investigating the effect of different teaching applications on the students' motivation toward science learning was examined by meta-regression analysis. Figure 4 shows the effect of experiment sample size on the effect size.

Regression of Experiment Sample size on Std diff in means

Figure 4. Regression of Experiment Sample Size on Effect Size

When Figure 4 was examined, it was seen that the slope of the regression line between the experiment sample sizes and the effect sizes increased with the increasing sample size. Table 9 shows the results showing if this increase was statistically significant or not.

	Effect Size	Standard error	Lower Limit	Upper Limit	Z-value	p- value	
Slope	0.001	0.001	-0.0001	0.004	1.493	0.135	_
Intercept	0.476	0.060	0.356	0.595	7.826		

Table 9. Findings About the Effect of Experiment Sample Size on Effect Sizes

When Table 9 was examined, it was determined that one unit increase in the sample size of the experimental group caused an increase of 0.001 value in the effect size, but this increase is not statistically significant (p>0.05). In other words, the increase in the sample size of the experimental group did not cause a statistically significant increase in the effect size.

4. Conclusion and Discussion

Within the scope of the study, 59 studies investigating the effects of different teaching applications on students' motivation toward science learning were included in the meta-analysis. In the categorical descriptive characteristics of these studies, "article" according to publication types, "Creatures and Life" according to learning area, "Marmara region" according to study location, "7th grade" according to grade level, "ready scale" according to the scale used, "2019" according to the publication year, and "4-6 weeks" according to the duration of applications were the categories having the highest number of studies. In the current study, in which "Funnel plot", "Orwin's fail-safe N", and "Egger regression intercept" methods were used to evaluate the publication bias within the scope of the study, it was determined that there was no publication bias.

As a result of combining made under the random effects model, the average effect size value was determined as 0.620. According to the classification of Cohen et al., (2007), this result showed that different teaching applications had a "moderate level" effect on the motivation toward science learning compared to the traditional teaching applications. The highest effect size value of 2.639 was obtained with project-based learning applications in individual studies (Işık and Gücüm, 2013). The lowest effect size value was 0.001, which belonged to the cooperative learning practice (Doğru and Ünlü, 2012). It was determined that the effect size value was positive (in favor of the experimental group) in 55 studies. This result is parallel with the result of Kimonen and Nevalainen (2005) stating that active participation of the students increases their motivation. No meta-analysis study was found in the literature investigating the students' motivation toward science learning. In the study by Gür and Bulut-Özek (2021) entitled "The Effect of Mobile Learning on Students' Academic Achievement, Motivation, and Attitudes: A Meta-Analysis Study", the result indicates that mobile learning has a moderate level effect on motivation (Hedge's g=0.541) supports the current study result. In the study of Lazowski and Hulleman (2016) titled "Motivation Interventions in Education: A Meta-Analytic Review", the result showed that the average effect size value was at a small level (d=0.49) differed from the result of this study. On the other hand, a moderate level of effect was found in meta-analysis studies investigating the effect of some teaching applications on affective factors. In this context, Sitzmann (2011) determined a moderate effect level in his meta-analysis study investigating the effect of computer-aided simulation games on self-efficacy beliefs. In the meta-analysis study of Gegenfurtner, Veermas and Vauras (2013) who investigated the effect size of the correlation between the computer-aided cooperative learning and self-efficacy and teaching transfer, the correlation between self-efficacy and transfer after teaching was determined to be at a moderate level.

As a result of the heterogeneity test, it was concluded that there was a high level of heterogeneity in the study (Q=408.198; χ^2 =79.082; I²=85.301). A moderator analysis was conducted to explain this heterogeneity between the effect sizes of students' motivation toward science learning. For this purpose, publication type, learning area, study location, grade level, scale type, and duration of applications were determined not to cause any statistically significant difference in the effect sizes of the categorical moderators. According to the meta-regression analysis results conducted for the publication year and experiment sample size moderators examined as a continuous variable, only the publication year (z= -2.664, p<0.05) moderator was found to cause a statistically significant difference in the effect size. In other words, it was determined that there was a statistically significant decrease in the slope of the line showing the correlation between the publication year and the effect size from 2010 to 2020. This result can be interpreted as the fact that students' motivation toward science learning was higher in previous studies. The reason for this situation could be the non-homogeneous distribution of the studies included in the meta-analysis in terms of publication year.

5. Recommendations

Since this meta-analysis study covers the studies conducted between 2010 and 2020, the study can be repeated by extending this time period in a new meta-analysis study.

When the frequency and percentage values of the studies included in the meta-analysis study according to publication type were examined, 52.54% of 59 studies were seen to consist of articles. The fact that there were only 3 doctoral theses on the effect of different teaching applications on motivation toward science learning reveals the necessity of increasing the number of such studies.

When the studies included in the meta-analysis were examined in terms of publication year, it was seen that the level of motivation toward science learning decreased from the past to the present. It can be recommended for researchers to investigate the reasons for this.

In the current study, studies in pretest–posttest design with a control group investigating the effect on the students' motivation toward science learning were included in the meta-analysis. It can be recommended to conduct a meta-analysis study including studies with a control group in a single group pretest-posttest design.

In this meta-analysis study, the effect of different teaching practices on students' motivation toward science learning was investigated, and the other effects were excluded from the scope of the study. Researchers may be advised to conduct studies examining the effects of different teaching applications on different affective characteristics such as permanence, motivation, self-efficacy, and scientific process skills.

The fact that all the research evaluated in the current study has been conducted in Turkey makes the effect size value valid for Turkey. In this context, the scope of the research can be expanded by conducting international studies. In addition, comparative meta-analysis studies can be conducted on the basis of countries.

It was seen in the study that especially concept cartoons, cartoons in teaching and project-based learning applications had a strong effect on the students' motivation toward science learning. These applications can be concentrated on in MEB programs.

6. References

(* References with an asterisk were included in the analysis)

- *Akgündüz, D. &, Akınoğlu, A. (2017). The impact of blended learning and social media-supported learning on the academic success and motivation of the students in science education. *Education and Science*, 42(191), 69-90.
- Akıllı, M., Keskin, H. K., & Şule, A. Y. (2017). Farklılaştırılmış fen deneylerini değerlendirme sürecinin öğrencilerin fene karşı tutum ve motivasyonları üzerindeki etkisi. *E-Kafkas Eğitim Araştırmaları* Dergisi, 4(1), 51-56.
- Akpınar, B., & Gezer, B. (2010). Learner-centered new educational paradigms and their reflections on the period of learning and teaching. *Dicle University Journal of Ziya Gökalp Faculty of Education*, 14, 1-12.
- *Aktas, İ. & Bilgin, İ. (2015) The effect of the 4MAT learning model on the achievement and motivation of 7th grade students on the subject of particulate nature of matter and an examination of student opinions on the model, *Research in Science & Technological Education*, 33(1), 1-21. DOI: 10.1080/02635143.2014.968536
- *Akyürek, A. & Afacan, A. (2013). Effects of brain-based learning approach on students' motivation and attitudes levels in science class. *Mevlana International Journal of Education (MIJE)*, 3(1), 104-119.
- *Arık, N. (2019). İlkokul dördüncü sınıf fen bilimleri dersinde bilim defteri kullanılmasının etkilerinin çeşitli değişkenler açısından incelenmesi [Yayınlanmamış yüksek lisans tezi]. Marmara Üniversitesi, İstanbul.
- Atkinson, J. W. (1957). Motivational determinants of risk-taking behavior. Psychological Review, 64, 359-372.
- *Avcı, F. (2015). Maddenin yapısı ve özellikleri ünitesine yönelik işbirlikli öğrenmeye dayalı öğretim programının bilişsel ve duyuşsal alan değişkenlerine etkisi [Doktora tezi]. İstanbul Üniversitesi, İstanbul.

- *Aydoğdu, Z. (2017). Argümantasyon tabanlı öğretimin öğrencilerin fene yönelik akademik başarı, motivasyon, ilgi ve tutumlarına etkisinin incelenmesi [Yayınlanmamış yüksek lisans tezi]. Sakarya Üniversitesi, Sakarya.
- *Ayhan, H. (2017). Ortaokul 6. sınıf kuvvet ve hareket ünitesinde kullanılan kavram karikatürlerinin öğrencilerin akademik başarılarına ve fen öğrenmeye yönelik motivasyonlarına [Yayınlanmamış yüksek lisans tezi]. Gazi Üniversitesi, Ankara.
- *Aytekin, A. (2018). Ortaokul 5. sınıf fen bilimleri dersi "ışığın ve sesin yayılması" ünitesine yönelik geliştirilen materyal ve deney etkinliklerinin öğrenci akademik başarısı ve motivasyonuna etkisinin incelenmesi [Yayınlanmamış yüksek lisans tezi]. Kocaeli Üniversitesi, Kocaeli.
- *Balaman, F. & Tüysüz, C. (2011). Harmanlanmış öğrenme modelinin 7. sınıf öğrencilerinin fen ve teknoloji dersindeki başarılarına, tutumlarına ve motivasyonlarına etkisinin incelenmesi. *Batı Anadolu Eğitim Bilimleri Dergisi (BAED)*, 2(4), 75-90.
- *Baran, B. (2013). Bilim tarihi ve felsefesi öğretim metodunun fen bilimlerine yönelik tutum ve motivasyon üzerine etkisi [Yayınlanmamış yüksek lisans tezi]. Gaziosmanpaşa Üniversitesi, Tokat.
- *Başarmak, U. (2013). Karikatür animasyonuna dayalı çevrimiçi öğrenme ortamının öğrencilerin başarısına, fen öğrenmeye yönelik motivasyonuna ve mizaha yönelik tutumuna etkisi [Doktora tezi]. Gazi Üniversitesi, Ankara.
- Başol, G. (2016). Response letter to editor: In response to the letter to editor by Dincer (2016): Concerning "A content analysis and methodological evaluation of meta-analyses on Turkish samples". *International Journal of Human Sciences*, 13(1), 1395-1401.
- *Berkant, H. G. & Gökçedağ, O. (2019). Allosterik öğrenme modelinin öğrencilerin fen dersine yönelik tutumlarına, güdülerine ve akademik başarılarına etkisi. *Kastamonu Eğitim Dergisi*, 27(5), 2141-2159.
- Bıyık, B.Y. (2016). Fen ve teknoloji dersinde bilim defteri uygulaması: İlkokul 4. sınıflar üzerine bir araştırma [Yayınlanmamış Yüksek Lisans Tezi]. Anadolu Üniversitesi Eğitim Bilimleri Enstitüsü, Eskişehir.
- *Bodur, Z. (2015). Sınıf dışı etkinliklerin güneş sistemi ve ötesi ünitesinde ortaokul yedinci sınıf öğrencilerinin akademik başarıları, bilimsel süreç becerileri ve motivasyonları üzerine etkisi [Yayınlanmamış yüksek lisans tezi]. Marmara Üniversitesi, İstanbul.
- Borenstein, M., Cooper, H., Hedges, L., & Valentine, J. (2009). Effect sizes for continuous data. *The handbook of research synthesis and meta-analysis*, *2*, 221-235.
- Borenstein, M., Hedges, L., Higgins, J., & Rothstein, H. (2005). Comprehensive meta-analysis version 2. Englewood, NJ: Biostat. Available from: http://www.meta- analysis.com/downloads/Meta-Analysis-Manual.pdf
- *Boyacı, R. (2019). Fen bilimleri dersinde bilgi-grafikleri kullanımının öğrencilerin kavramsal anlama düzeylerine ve fen öğrenmeye yönelik motivasyonlarına etkisi [Yayınlanmamış yüksek lisans tezi]. Uşak Üniversitesi, Uşak.
- Brophy, J. (1998). Motivating students to learn. Madison, WI: McGraw Hill.
- *Büyükbastırmacı, Z. (2019). 7.sınıf kuvvet ve enerji ünitesinde kullanılan STEM uygulamalarının başarı, tutum ve motivasyon üzerindeki etkisi [Yayınlanmamış yüksek lisans tezi]. Necmettin Erbakan Üniversitesi, Konya.
- Card, N. A. (2012). Applied meta-analysis for social science research. The Guilford Press.
- Cavas, P. (2011). Factors affecting the motivation of Turkish primary students for science learning. *Science Education International*, 22(1), 31-42.
- *Cengiz, B. (2019). İlkokul dördüncü sınıf fen bilimleri dersinde özdüzenlemeli öğrenme stratejileri kullanmanın öğrencilerin problem çözme becerileri, akademik kaygı, akademik özyeterlik, fen motivasyonu ve ders başarılarına etkisi [Yayınlanmamış yüksek lisans tezi]. Marmara Üniversitesi, İstanbul.
- Chang, S. C., Hsu, T. C., & Jong, M. S. Y. (2020). Integration of the peer assessment approach with a virtual reality design system for learning earth science. *Computers & Education*, *146*, 1-15.
- Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education. Routledge.

- Cochran, W. G. (1950). The comparison of percentages in marched samples. Biometrica, 37, 256-266.
- *Çallı, Ş. 2019). Mobil uygulama destekli öğretimin 5. sınıf öğrencilerinin akademik başarı, tutum, motivasyon ve katılımlarına etkisi: Elektrik konusu [Yayınlanmamış yüksek lisans tezi]. Marmara Üniversitesi, İstanbul.
- Çamloğlu, N. (2014). Yavaş geçişli animasyon tekniğinin öğrencilerin akademik başarılarına, motivasyonlarına ve akademik öz yeterliliklerine etkisi [Yayınlanmamış yüksek lisans tezi]. Akdeniz Üniversitesi, Antalya.
- *Demir, İ. (2019). Yaşam temelli öğretimin ortaokul 7.sınıf öğrencilerinin ağız ve diş hijyeni konusunda kavram öğrenmelerine, fen bilimlerine karşı tutumlarına ve motivasyonlarına etkisi [Yayınlanmamış yüksek lisans tezi]. Marmara Üniversitesi, İstanbul.
- Demir, M. K., & Budak, H. (2016). İlkokul dördüncü sinif öğrencilerinin öz düzenleme, motivasyon, biliş üstü becerileri ile matematik dersi başarılarının arasındaki ilişki. *Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi*, 41, 30-41.
- Demir, R., Öztürk, N., & Dökme, İ. (2012). Investigation of 7th grade primary school students" motivation towards science and technology course in terms of some variables. *Mehmet Akif Ersoy University Journal of Education Faculty*, 23, 1-21.
- *Demirağ, S. (2014). İlköğretim fen ve teknoloji dersi kapsamında yaratıcı drama etkinliklerinin geliştirilmesi ve etkilerinin incelenmesi [Yayınlanmamış yüksek lisans tezi]. İstanbul Üniversitesi, İstanbul.
- *Develi, G. (2017). Teknolojik pedagojik destekli öğrenme ortamının öğrencilerin fen başarısına ve motivasyonuna etkisinin incelenmesi [Yayınlanmamış yüksek lisans tezi]. Çanakkale Onsekiz Mart Üniversitesi, Çanakkale.
- *Doğru, M. & Ünlü, S. (2012). The effects of employing the jigsaw 1v technique in science and technology education upon students' motivation, science anxiety and their academic achievement. *Mediterranean Journal of Humanities*, *II*/2, 57-66.
- *Durmaz, H. & Mutlu, S. (2015). Bilimsel süreç becerilerini vurgulayan öğretimsel uygulamaların 7. sınıf öğrencilerinin bilimsel tutum ve fen öğrenmeye yönelik motivasyonları üzerine etkisi. *Trakya Üniversitesi Sosyal Bilimler Dergisi*, 17(1), 143-162.
- Elliot, A. J., & Covington, M. V. (2001). Approach and avoidance motivation. *Educational Psychology Review*, 13(2), 73-92.
- *Ermiş, U. F. (2012). Fen ve teknoloji dersinde etkileşimli tahta kullanımının akademik başarı ve öğrenci motivasyonuna etkisi [Yayınlanmamış yüksek lisans tezi]. Gazi Üniversitesi, Ankara.
- *Esen, M., & İzgi Onbaşılı, Ü. (2018). Fen bilgisi dersinde kavram karikatürü kullanımının fen bilgisi dersine yönelik motivasyona etkisi. 1.Uluslararası Çağdaş Eğitim Ve Sosyal Bilimler Sempozyumu, 22 - 25 Kasım, Antalya.
- Gegenfurtner, A., Veermans, K. ve Vauras, M. (2013). Effects of computer support, collaboration, and time lag on performance self-efficacy and transfer of training: A longitudinal meta-analysis. *Educational Research Review*, *8*, 75-89.
- Glynn, S. M., Aultman, L. P., & Owens, A. M. (2005). Motivation to learn in general education programs. *The Journal of General Education*, 54(2), 150-170.
- Glynn, S.M., Taasoobshirazi, G., & Brickman, P. (2009). Science motivation questionnaire: Construct validation with nonscience majors. *Journal of Research in Science Teaching*, 46(2), 127-146.
- Gür, D. ve Bulut-Özek, M. (2021). Mobil öğrenmenin öğrencilerin akademik başarısı, motivasyonu ve tutumları üzerine etkisi: bir meta analiz çalışması, *Trakya Eğitim Dergisi*, *11*(1), 1-15.
- *Gürdoğan, M. & Bağ, H. (2019). Harmanlanmış uygulamaların akademik başarı, motivasyon ve öğrenci görüşlerine etkisi. *Akdeniz Üniversitesi Eğitim Fakültesi Dergisi*, 2(1), 36-61.
- Hartmann, D. P. (1977). Considerations in the choice of interobserver reliability estimates. *Journal of Applied Behavior Analysis*, 10(1), 103-116.

- Higgins, J. P., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. *Statistics in Medicine*, 21(11), 1539-1558.
- *Işık, Ö. & Gücüm, B. (2013). Proje tabanlı öğrenme yaklaşımının ilköğretim öğrencilerinin fen ve teknoloji dersine yönelik motivasyonlarına etkisi. *Hacettepe Üniversitesi Eğitim Fakültesi Dergisi*, 28(3), 206-218.
- *İnel, D. (2012). Kavram karikatürleri destekli probleme dayalı öğrenme yönteminin öğrencilerin problem çözme becerileri algılarına, fen öğrenmeye yönelik motivasyonlarına ve kavramsal anlama düzeylerine etkileri [Doktora Tezi]. Dokuz Eylül Üniversitesi, İzmir.
- *Kahyaoğlu, M. & Elçiçek, M. (2016). Eğitsel bilgisayar oyunlar ile desteklenen fen bilimleri öğretiminin öğrencilerin motivasyon ve yansıtıcı düşünme becerileri üzerine etkisi. *International Periodical for the Languages, Literature and History of Turkish or Turkic, 11*(14), 349-360.
- Kalpana, T. (2014). A Constructivist perspective on teaching and learning: A conceptual framework. *International Research Journal of Social Sciences*, 3(1), 27-29.
- Karadağ, E., Deniz, S., Korkmaz, T., & Deniz, G. (2008). Yapılandırmacı öğrenme yaklaşımı: Sınıf öğretmenleri görüşleri kapsamında bir araştırma. *Uludağ Üniversitesi Eğitim Fakültesi Dergisi*, 21(2), 383-402.
- Karakaya, F., Avgın, S. S., & Yılmaz, M. (2018). Investigation of middle school students' motivation toward science learning. *Kahramanmaraş Sütçü İmam Üniversitesi Sosyal Bilimler Dergisi*, 15(2), 359-374.
- *Karaş, Ö. E. & Gül, Ş. (2019). 'Hücre ve Bölünmeler' ünitesinin REACT stratejisiyle öğretiminin 7. sınıf öğrencilerinin tutum ve motivasyonuna etkisi. *Uluslararası Türk Eğitim Bilimleri Dergisi*, 7 (13), 30-50.
- *Karslı, G. (2015). ARCS motivasyon yönteminin 8. sınıf hücre bölünmesi ve kalıtım ünitesinde öğrencilerin motivasyonu başarısı ve tutumlarına etkisi [Yayınlanmamış yüksek lisans tezi]. Ağrı İbrahim Çeçen Üniversitesi, Ağrı.
- *Keskin, D. (2019). Bilim fuarlarının ortaokul öğrencilerinin bilimsel süreç becerileri, fen dersine karşı motivasyonları ve kaygı düzeyleri üzerinde etkisi [Yayınlanmamış yüksek lisans tezi]. Pamukkale Üniversitesi, Denizli.
- *Keskin, E. (2011). Proje tabanlı öğrenme yönteminin ilköğretim ikinci kademe öğrencilerinin başarı ve fen motivasyonlarına etkisinin incelenmesi [Yayınlanmamış yüksek lisans tezi]. Uludağ Üniversitesi, Bursa.
- *Kılıç, İ. & Moralar, A. (2015). Fen eğitiminde probleme dayalı öğrenme yaklaşımının akademik başarı ve motivasyona etkisi. *Pegem Eğitim ve Öğretim Dergisi*, 5(5), 625-636.
- *Kirikkaya, E.B., & Başgül, M.Ş. (2019). The effect of the use of augmented reality applications on the academic success and motivation of 7th grade students. *Journal of Baltic Science Education*, 18(3), 362-378.
- Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. *Biometrics*. 33(1), 159-174.
- Lazowski, R. A., & Hulleman, C. S. (2016). Motivation interventions in education: A meta-analytic review. *Review of Educational research*, 86(2), 602-640.
- Lee, O., & Brophy, J. (1996). Motivational patterns observed in sixth-grade science classrooms. *Journal of Research in Science Teaching*, 33(3), 585-610.
- Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. SAGE.
- Marlowe, B. A., & Page, M. L. (2005). Creating and sustaining the constructivist classroom. Corwin Press.
- Martin, A. J. (2001). The student motivation scale: A tool for measuring and enhancing motivation. *Australian Journal of Guidance and Counselling*, *11*, 11-20.
- Meece, J. L., Glienke, B. B., & Burg, S. (2006). Gender and motivation. *Journal of school psychology*, 44(5), 351-373.
- *Meral, A. (2018). Web tabanlı sanal fen ve teknoloji laboratuvar etkinliklerinin öğrencilerin başarısına ve motivasyonuna etkisi [Yayınlanmamış yüksek lisans tezi]. Kastamonu Üniversitesi, Kastamonu.

- Meriçelli, M., & Uluyol, Ç. (2016). WEB ve mobil destekli harmanlanmış öğrenme ortamlarının öğrencilerin motivasyon ve akademik başarılarına etkisi. *Electronic Turkish Studies*, *11*(9), 879-904.
- *Metin, M., & Bozdoğan, A. E. (2020). Fen bilimleri dersi kapsamında planetaryuma düzenlenen bir gezinin 7. sınıf öğrencilerinin akademik başarı, ilgi ve motivasyonuna etkisi. *Gazi Eğitim Bilimleri Dergisi (GEBD)*, 6(2), 240-260.
- Müezzin, E. E., & Özata, B. Ç. (2019). Ortaöğretim öğrencilerinde fen öğrenmeye yönelik kaygı ve motivasyon ilişkisi. *Kıbrıs Türk Psikiyatri ve Psikoloji Dergisi*, 1(1), 14-21.
- Ng, K.T., Soon, S.T., & Fong, S.F. (2010). Development of a questionnaire to evaluate students' perceived motivation towards science learning incorporating ICT tool. *Malaysian Journal of Educational Technology*, 10(1), 39-55.
- Okumuş S. (2020). Fen öğrenmeye yönelik motivasyon ve bilişüstü öğrenme becerileri arasındaki ilişkinin incelenmesi. *Turkish Studies*, 15(7), 3025-3042.
- *Ormancı, Ü., & Özcan, S. (2014). İlköğretim fen ve teknoloji dersinde drama yöntemi kullanımının öğrenci tutum ve motivasyonu üzerine etkisi. *Pegem Eğitim ve Öğretim Dergisi*, 4(4), 23-40.
- Özarslan, M., & Saraç, H. (2019). The examination of the relationship between perception of secondary school students about science course classroom activities and their motivation towards science learning. *International Journal of Field Education*, *5*(1), 21-41.
- *Özdemir, A. M., & Dindar, H. (2013). İlköğretim fen ve teknoloji dersinde kavramsal değişim yaklaşımının, öğrencilerin duyuşsal özellikleri üzerine etkisi. GEFAD / GUJGEF, 33(1), 95-107.
- *Özer, F. (2017). Ciddi oyunların ilkokul 4. Sınıf öğrencilerinin fen bilimleri dersi akademik başarılarına, derse yönelik motivasyonlarına ve problem çözme becerilerine etkisi [Yayınlanmamış yüksek lisans tezi]. Anadolu Üniversitesi, Eskişehir.
- *Özgür, S.D., & Yılmaz, A. (2017). The effect of inquiry-based learning on gifted and talented students' understanding of acids bases concepts and motivation. *Journal of Baltic Science Education*, 16(6), 994-1008.
- *Pak, H. (2020). Slowmation (yavaş geçişli animasyon) uygulamasının fen bilimleri eğitiminde öğrencilerin ilgi ve motivasyonuna etkisi [Yayınlanmamış yüksek lisans tezi]. Pamukkale Üniversitesi, Denizli.
- Paris, S.G. & Turner, J.C. (1994). Situated motivation. In P. Pintrich, D. Brown, & C.E. Weinstein, (Eds.), *Student motivation, cognition, and learning: Essays in honor of Wilbert J. McKeachie.* Lawrence Erlbaum, 213-237.
- *Parlakay, E. S. & Koç, Y. (2020). An investigation the effect of stem practices on fifth grade students' academic achievement and motivations at the unit "exploring and knowing the world of living creatures". *International Journal of Progressive Education*, 16(1), 125-137.
- Pesen, A., & Oral, B. (2016). Harmanlanmış öğrenme yaklaşımının öğretmen adaylarının akademik başarısına ve güdülenme düzeyine etkisi. *Elektronik Sosyal Bilimler Dergisi*, 15(58), 799-821.
- Petitti, D. B. (2000). *Meta-analysis, decision analysis, and cost-effectiveness analysis* (2nd edition). Oxford University Press.
- Pincus, T., Miles, C., Froud, R., Underwood, M., Carnes, D., & JC Taylor, S. (2011). Methodological criteria for the assessment of moderators in systematic reviews of randomised controlled trials: a consensus study. *BMC Medical Research Methodology*, 11(14), 1-14.
- Pintrich, P. R. (2003). Motivation and classroom learning. Handbook of psychology, 103-122.
- Pintrich, P. R., & Schunk, D. H. (1996). Motivation in education: Theory, research, and applications. Prentice Hall
- Ryan, R.M., & Decı, E.L. (2000). Intrinsic and extrinsic motivations: Classicd efinitions and new directions. *Contemporary Educational Psychology*, 25, 54-67.
- Sağlam, M., & Yüksel, İ. (2007). Program değerlendirmede meta-analiz ve meta değerlendirme yöntemleri. *Dumlupınar Üniversitesi Sosyal Bilimler Dergisi*, (18), 175-189.

- *Saracaloğlu, A. S., Duman, B., & Yakar, A. (2016). Fen öğretiminde ara disiplin kullanımı, başarı, motivasyon ve fen bilimleri öğretmeni yetiştirme sürecinde ara disiplin öğretimine ilişkin öneriler. Uluslararası Eğitim Bilimleri Dergisi, 3(7), 200-212.
- *Sezer, B. (2017). The effectiveness of a technology-enhanced flipped science classroom. *Journal of Educational Computing Research*, 55(4) 471-494.
- *Sırakaya, M., & Sırakaya, D. A. (2018). Artırılmış gerçekliğin fen eğitiminde kullanımının tutum ve motivasyona etkisi. *Kastamonu Education Journal*, 26(3), 887-896.
- Sitzmann, T. (2011). A meta-analytic examination of the instructional effectiveness of computer-based simulation games. *Personnel Psychology*, *64*, 489-528.
- *Şahin, E. (2019). Kavram karikatürleriyle desteklenen fen öğretiminin ortaokul öğrencilerinin kavramsal başarı, motivasyon ve fen bilimlerine yönelik tutumlarına etkisi [Yayınlanmamış yüksek lisans tezi]. Necmettin Erbakan Üniversitesi, Konya.
- *Şensoy, Ö., & Gökçe, B. (2017). The effect of the context-based learning approach on the achievement and motivations of students. *International Journal of Social Science*, 56, 37-52. Doi number:http://dx.doi.org/10.9761/JASSS6997
- *Tekin, A. D. (2019). Probleme dayalı öğrenme yaklaşımının 7. sınıf öğrencilerinin akademik başarıları, bilimsel süreç becerileri ve motivasyonları üzerine etkisi [Yayınlanmamış yüksek lisans tezi]. Marmara Üniversitesi, İstanbul.
- Tekin, A. D., & Yıldırım, M. (2020). Probleme dayalı öğrenme yaklaşımının ortaokul öğrencilerinin bilimsel süreç becerilerine ve fen öğrenmeye yönelik motivasyonlarına etkisinin incelenmesi. Araştırma ve Deneyim Dergisi, 5(2), 58-71.
- *Tercan, İ. (2012). Akıllı tahta kullanımının öğrencilerin fen ve teknoloji dersi başarı, tutum ve motivasyonuna etkisi [Yayınlanmamış yüksek lisans tezi]. Necmettin Erbakan Üniversitesi, Konya.
- Thalheimer, W., & Cook, S. (2002). How to calculate effect sizes from published research: A simplified methodology. *Work-Learning Research*, *1*, 1-9.
- Tuan, H. L., Chin, C. C., & Shieh, S. H. (2005). The development of a questionnaire to measure students' motivation towards science learning. *International journal of science education*, 27(6), 639-654.
- *Türe, Z. G., Yalçın, P., & Altun Yalçın, S. (2020). Investigating the use of case-oriented station technique in teaching socio-scientific issues: A mixed method study. *Pegem Eğitim ve Öğretim Dergisi*, 10(3), 2020, 929-960.
- *Ural, E., Ercan, O., & Gençoğlan, (2017). The effect of jigsaw technique on 6th graders' learning of force and motion unit and their science attitudes and motivation. *Asia-Pacific Forum on Science Learning and Teaching*, 18(1), 1-21.
- Velayutham, S., Aldridge, J. M., & Fraser, B. (2012). Gender differences in student motivation and selfregulation in science learning: A multi-group structural equation modeling analysis. *International journal* of science and mathematics education, 10(6), 1347-1368.
- Watters, J. J., ve Ginns, I. S. (2000). Developing motivation to teach elementary science: effect of collaborative and authentic learning practices in preservice education. *Journal of Science Teacher Education*, 11(4), 277-313.
- Weiner, B. (1972). Theories of motivation: From mechanism to cognition. Rand McNally College.
- Wolters, C.A. (1999). The relation between high school students' motivational regulation and their use of learning strategies, effort, and classroom performance. *Learning and Individual Differences*,11(3), 281-300.
- *Yazıcıoğlu, S. (2017). Oyun temelli etkinliklerin ortaokul 6. Sınıf öğrencilerinin akademik başarılarına, fen öğrenmeye yönelik motivasyonlarına ve tutumlarına etkisi: Işık ve ses ünitesi örneği [Yayınlanmamış yüksek lisans tezi]. Giresun Üniversitesi, Giresun.

- *Yenice, N., Tunç, G. A., & Yavaşoğlu, G. (2019). Eğitsel oyun uygulamasının 5. sınıf öğrencilerinin fen öğrenmeye yönelik motivasyonları üzerindeki etkisinin incelenmesi. E-Uluslararası Eğitim Araştırmaları Dergisi, 10(1), 87-100.
- *Yıldırım, B., & Selvi, M. (2017). An experimental research on effects of stem applications and mastery learning. *Journal of Theory and Practice in Education*, 13(2), 183-210.
- *Yıldırım, H. İ. (2020). The effect of using out-of-school learning environments in science teaching on motivation for learning science. *Participatory Educational Research (PER)*, 7(1), 143-161,
- *Yıldız, E., Şimşek, Ü., & Ağdaş, H. (2017). Eğitsel oyun entegre edilmiş işbirlikli öğrenme modelinin öğrencilerin fen öğrenimi motivasyonları ve sosyal becerileri üzerine etkisi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi (KEFAD), 18(2), 37-54.
- *Yıldız, E., Şimşek, Ü., & Araz, H. (2016). Dolaşım sistemi konusunda eğitsel oyun yönteminin kullanılmasının öğrencilerin akademik başarı ve fen öğrenimi motivasyonu üzerine etkisi. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 13(36), 20-32.
- *Yılmaz, H. & Çavaş, P. H. (2007). Reliability and validity study of the students' motivation toward science learning questionnaire (in Turkish). *Elementary Education Online*, 6(3), 430-440.
- Yılmaz, T. (2013). Kavram karikatürleriyle desteklenmiş bilimsel hikâyelerin öğrencilerin akademik başarıları, tutumları ve motivasyonları üzerine etkisi[Yayınlanmamış Yüksek Lisans Tezi].Celal Bayar Üniversitesi, Manisa.
- *Yurttadur, Ş. (2019). Fen bilimleri dersinde karikatür kullanımının öğrencilerin erişileri, sorgulayıcı öğrenme beceri algıları ve motivasyonlarına etkisi [Yayınlanmamış yüksek lisans tezi]. Necmettin Erbakan Üniversitesi, Konya.