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 This paper presents the results of an exploratory case study that examined a veteran secondary 

teacher’s knowledge for teaching non-routine mathematical problem-solving with digital 

technologies. Data was collected through the observation of a veteran mathematics teacher, in 

real time, solving a mathematical problem with the digital tools of his choice. The descriptive 

model Mathematical Problem-Solving with Technology (MPST) was used to analyse the teacher’s 

utterances and actions while solving a mathematical problem, with GeoGebra and a 

spreadsheet, and expressing his reasoning also with technology. Our findings reveal the 

complexity of expert problem-solving with technology, through regulation processes and several 

micro-cycles that mainly involve the processes integrate and explore. Mathematical problem 

solving with technology entails relevant mathematical knowledge as well as knowledge about 

the mathematical affordances of the digital tools available, and the ability to combine them to 

develop a conceptual model of the solution to the problem. Thus, the teacher’s techno-

mathematical fluency seems crucial to successfully solve the problem and express the reasoning 

with technology. Based on the findings, we discuss the teachers’ knowledge for teaching 

mathematical problem-solving with technology as including a particular kind of proficiency, 

techno–mathematical fluency for solving-and-expressing problems with technology. The 

limitations of the study, further research topics and implications for professional development 

and teacher education programmes are discussed. 

Keywords: mathematical problem-solving knowledge for teaching, mathematical problem-

solving, mathematics teachers, techno-mathematical fluency, technology 

INTRODUCTION 

Digital technologies have been offering new opportunities for mathematical teaching and learning, namely 

in representing and visualizing, exploring, manipulating, modelling, identifying variants or invariants, 

triggering conjectures, or even supporting justifications and generalizations (Santos-Trigo & Reyes-Martínez, 

2019; Yao & Manouchehri, 2019). Despite these opportunities and even though technological resources have 

been gradually making their way into the classroom, many technology interventions in mathematics 

education research still replicate “traditional approaches, with some functional or conceptual improvement” 

lagging “behind its perceived potential to enhance the learning experience” (Bray & Tangney, 2017, p. 265). 

Concomitantly, mathematical problem-solving has been a fertile research field in mathematics education 

(Liljedahl & Cai, 2021). Still, the role of digital tools in solving non-routine mathematical problems and their 
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impact in expressing mathematical thinking remains an under researched topic. A few research teams have 

been adding evidence on the problem-solving strategies and ways of reasoning developed by students and 

teachers by means of technological tools (e.g., Jacinto & Carreira, 2017a, 2021; Koyuncu et al., 2014; Santos-

Trigo, 2019; Santos-Trigo & Reyes-Martínez, 2019). General studies on mathematical problem-solving 

expertise have proposed idealised prescriptive models and, more recently, descriptive models anchored in 

empirical data (e.g., Rott et al., 2021). Actual mathematical problem-solving seldom occurs in a linear, 

straightforward way; instead, as shown with young or adult problem solvers, the process takes place in a cyclic 

way (Carlson & Bloom, 2005). This is also the case when problem solvers make use of digital tools in carrying 

out the process (Carreira & Jacinto, 2019; Jacinto & Carreira, 2021; Rott et al., 2021). However, the role of 

technology in triggering this cyclic activity and pushing the solver to move forward is still insufficiently 

understood. 

As with other kinds of mathematical enriched tasks, the integration of technology in problem-solving 

brings new challenges to the teacher, either novice or experienced, especially arising from the “access to new 

habits of mind and to the new environments resulting from a serious presence of digital technologies” 

(Hegedus & Moreno-Armella, 2009, p. 397). As pointed out by Hervey (2015), even veteran teachers must 

make considerable changes to their technological and professional knowledge when integrating digital tools 

into their teaching practices. Those teachers, unlike beginners, have many years of experience and expertise 

in their subject matter and a solid didactic knowledge, are committed to their professional development and 

accomplishment, and can reflect on the complexity of their practices (Carrillo & Flores, 2018; Hervey, 2015; 

Monteiro et al., 2020). Nevertheless, the veteran mathematics teacher’s activity of problem-solving with 

technology remains understudied, while the impact of technological tools in problem-solving with pre-service 

teachers has had some expression in the literature (e.g., Hernández et al., 2020; Silva et al., 2021). 

Thus, this study aims to explore the uses that a veteran mathematics teacher makes of digital tools when 

solving a non-routine mathematical problem and expressing its solution. This descriptive and exploratory 

study was guided by the following research question: what is the role of technology on the mathematical 

problem-solving process of a veteran mathematics teacher and how does it support his mathematical 

thinking? The following section presents the key ideas on mathematical problem-solving with technology and 

empirical research on teacher’s use of technology in solving problems, which will subsidize the study’s 

theoretical framework. 

LITERATURE REVIEW 

Cognition in digital environments has been conceptualized as stemming from the interactions between 

individuals, technology, and the surrounding media, hence, humans-with-media entails the transformational 

and reorganizational power of the digital tools with which one thinks and acts (Borba & Villarreal, 2005). 

Sinclair (2020) agrees in that it is not possible to establish a clear boundary between one’s actions and the 

thoughts prompted by digital tools in addressing those possibilities of interaction.  

Empirical research on mathematical activity with technology has advanced metaphors for the role of digital 

tools in classroom settings. For instance, Geiger (2005) elaborated on three metaphors: in the technology as 

master metaphor the student blindly consumes the outputs produced, limited by their mathematical 

knowledge, subservient to the tool; in the technology as servant metaphor, the individual gives instructions to 

the tool that carries them out obediently, the tool is used to replace pen-and-paper work as it is reliable and 

time-saving; in the technology as partner metaphor, the student develops a bond with the tools, almost as if it 

is a human partner whose messages prompt further action; in the technology as extension-of-self metaphor, 

the students “incorporate technological expertise as an integral part of their mathematical repertoire”, the 

boundary between the student and the tool becomes blurry in the sense that technology supports 

mathematical thinking “as naturally as intellectual resources” (Geiger, 2005, p. 371). More recently, Kuzle 

(2017) referred to digital tools as governors of human cognition, as cognitive and creative partners, or 

extensions of the cognitive self.  

Technology, thus, plays a significant role in the development of mathematical thinking also allowing 

innovative ways of accessing information. It affords new styles of thinking and knowing, producing a 

reorganization of cognitive activity (Borba & Villarreal, 2005), namely in problem-solving. 
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Key Ideas on Solving Mathematical Problems with Technology 

We have been focusing our research on non-routine mathematical problems that elicit the development of 

conceptual models of the solutions. By non-routine mathematical problem, we refer to a challenging situation 

for which the solver does not have a straightforward mathematical process to reach the solution (Saadati & 

Felmer, 2021). Solving a non-routine mathematical problem with technology entails a mathematisation 

activity where the solver-with-media must devise a productive way of thinking to address such challenging 

situation (Lesh & Zawojewski, 2007). Thus, the adoption of a mathematical point of view includes to call upon 

technological knowledge and skills, so that the solver-with-media develops mathematical thinking by means 

of digital tools.  

While solving a problem, the solver-with-media develops a conceptual model of the solution often entailing 

a progressive mathematisation activity, where a model of a particular situation evolves into a model for 

mathematically explaining or justifying that solution (Gravemeijer, 2005). According to Lesh and Doerr (2003), 

the conceptual model usually displays the solvers’ mathematical thinking developed throughout the 

approach. But, as mathematical thinking is being produced by a solver-with-media, the boundary between 

the solving phase and the reporting phase of the activity becomes blurred. In fact, they may be so intertwined 

that the concept of problem-solving-and-expressing highlights the synchronous process of mathematisation 

and expression of mathematical thinking (Carreira et al., 2016).  

Key Ideas on Teacher’s Use of Technology in Mathematical Problem-Solving 

Teachers’ digital competence has been under the spotlight in recent years and several frameworks have 

been proposed not only for its assessment, but also to promote its improvement either in pre-service or in-

service training programs. Teachers’ experiences with digital tools are crucial to the success of technology 

integration in mathematics teaching and learning (Clark-Wilson & Hoyles, 2019; Drijvers et al., 2013; Leung, 

2017). They must be aware of the affordances and limitations of specific technological tools that make them 

suitable, or not, to carry out a particular task (Koehler & Mishra, 2008). In what concerns teachers’ knowledge 

needed to successfully integrate digital technologies into their classrooms, Mishra and Koehler (2006) 

proposed the theoretical concept of Technological, Pedagogical And Content Knowledge (TPACK) which, in the 

field of mathematics education, brings together mathematical knowledge, technology, and pedagogy. 

A few recent studies have been examining prospective mathematics teachers dealing with problems by 

means of digital tools. Silva et al. (2021) discussed how the media that future teachers used in tackling a 

problem shaped the strategies and solutions devised. Their study reports on the ways of thinking-with-

technology developed by the collectives of teachers-with-media, concluding that the technologies brought to 

the fore–GeoGebra and the spreadsheet–influenced the exploration of the problem visually, numerically, and 

experimentally. Hernández et al. (2020) have also studied pre-service mathematics teachers engaged in 

problem-solving with GeoGebra, with a particular focus on the mathematical understanding they developed. 

The future teachers proved to be able to work with different representations, to conjecture on the solution 

and, throughout the activity, they resorted to various resources and skills, demonstrating their understanding 

of mathematics. 

In the same line, Santos-Trigo et al. (2021) analysed in-service mathematics teachers’ use of GeoGebra and 

other online tools in the development of problem-solving approaches. GeoGebra allowed participants to use 

a set of heuristics that were helpful in modelling dynamically the challenging situation (e.g., using GeoGebra 

to solve a simpler but related problem). Teachers made tactical and strategic decisions in the devising of a 

plan to reach the solution, which supports the importance of metacognitive control strategies in solving 

mathematical problems with technology. One of their study’s implications refers to the need to consider “the 

coordinated use of technology affordances to represent and work on mathematical tasks or problems” (p. 

17). 
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THEORETICAL FRAMEWORK 

Mathematics Teachers’ Proficiency in Problem-Solving with Technology 

Teachers have a critical role in their students’ performance. For instance, teachers’ dispositions towards 

and experiences with non-routine mathematical problems influence their overall enjoyment and engagement 

with mathematics learning (Liljedahl, 2014) as well as their students’ problem-solving performance (Saadati & 

Felmer, 2021). Furthermore, the teachers’ perspectives about the nature of technology in the classroom not 

only includes beliefs about availability or purposes of technology, but also about their own knowledge 

regarding the (pedagogical) use of technological tools (Leatham, 2010).  

Claiming that problem-solving should be an integral part of the mathematics knowledge necessary for 

teaching, Chapman (2015) developed a framework to analyse the knowledge that mathematics teachers need 

to teach mathematical problem-solving efficiently and to develop problem-solving skills in their students. The 

mathematical problem-solving knowledge for teaching (MPSKT) comprises six components: knowledge about 

problems; knowledge of problem-solving; knowledge of problem-posing; knowledge of students as problem-

solvers; knowledge of problem-solving instruction; and affective factors and beliefs. In this study we are 

particularly interested in analysing an under researched component of that framework: mathematics 

teachers’ proficiency in solving mathematical problems, particularly with technology. 

Successful problem-solving requires, amongst others, the use of suitable mathematical resources 

(Schoenfeld, 1985). However, to characterize the proficiency of a solver-with-media whilst solving and 

expressing a problem with technology requires to consider digital tools equally indispensable (Jacinto & 

Carreira, 2017a). Although the pervasive use of digital tools has an impact on the nature of mathematical skills 

and ways of knowing and understanding (Borba & Villarreal, 2005), it does not diminish the need for 

mathematical knowledge (Hoyles et al., 2010). So, it is timely to consider the proficiency of the solver-with-

media regarding both these sets of resources: mathematical and technological ones.  

Hoyles et al. (2010) labelled the ability to use both technological and mathematical knowledge to solve 

every day or work-related problems as ‘techno-mathematical literacies.’ As witnessed in the workplace 

settings they studied, the workers’ techno-mathematical literacies were not being properly developed on the 

job, which made the researchers aware of the need to develop those skills explicitly. Hence, the idea of techno-

mathematical literacies is relevant to address mathematics teachers’ proficiency with digital tools to solve 

mathematical problems. As a significant feature of such activity, the notion of fluency, as brought by Papert 

and Resnick (1995), seems more appropriate to describe the ability to articulate a complex idea by resorting 

to a digital tool, and to be able to do or construct relevant things with it. Thus, the concept of techno-

mathematical fluency aims to capture the ability to combine mathematical and technological knowledge for 

solving-and-expressing mathematical problems (Jacinto & Carreira, 2017a, 2017b). As with digital fluency 

(Barron et al., 2007), techno-mathematical fluency entails to be able to select useful resources from a pool of 

possibilities, either mathematical or technological, to recognize useful affordances or constraints in those 

resources, and to know how a particular tool can be used to create a techno-mathematical solution to a 

problem (Jacinto & Carreira, 2017b). Still, mathematical knowledge guides the use of the technological tool as 

it allows the recognition of affordances that may determine the problem-solving approach and the 

corresponding conceptual model (Yao & Manouchehri, 2019).  

A Descriptive Model of Mathematical Problem-Solving with Technology 

In an earlier study (Jacinto & Carreira, 2017a), we have synthesised a descriptive model of MPST. It 

illustrates the intertwining between mathematical and technological knowledge along the processes 

undertaken by the solvers when solving-and-expressing non-routine mathematical problems with the use of 

the digital tools of their choice. A keystone of the MPST model is the inseparability between the subject and 

the digital tool in solving the problems and expressing the solver’s techno-mathematical thinking. 

The lack of a theoretical tool to describe the processes of merging together mathematical and 

technological knowledge, and understand the role of technology in devising a path to the solution of a non-

routine problem (Santos-Trigo & Camacho-Machín, 2013) led to the combination of two frameworks: one that 

addresses the activity of an individual approaching a technological task or problem (Martin & Grudziecki, 
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2006), and another model that allows to describe the processes involved in mathematical problem-solving 

(Schoenfeld, 1985).  

The MPST model comprises ten processes (Table 1) obtained by the comparison between the two 

frameworks which allowed us to identify prominent actions, merge processes within the Martin and 

Grudziecki’s (2006) model and decompose some stages of Schoenfeld’s (1985) mathematical problem-solving 

model, with the support of a paradigmatic case (Jacinto & Carreira, 2017a). For instance, we realized 

resemblances between Schoenfeld’s (1985) stage of exploration and Martin and Grudziecki’s (2006) processes 

of organisation, integration, and analysis. We merged organisation and integration under the designation of 

integrate, which refers to the organised combination of technological and mathematical resources that will 

enable an exploratory approach. The next stage, to explore, is that of the use of these resources to analyse 

the outcome of the integration, to investigate conceptual models that will enable finding the solution of the 

problem. Another example is the fact that Martin and Grudziecki’s (2006) model did not consider a verification 

process, which is vital to the success of mathematical problem-solving, as proposed by Schoenfeld (1985). 

Hence, we included the process called verify that refers to the activity of explaining and justifying the solution 

using the available mathematical and technological resources. 

The literature discussed above informed the present study in two essential ways. Firstly, it provides a way 

of thinking about the phenomenon by discussing the key ideas and concepts that will support the data 

collection for the study and assist in the organization of the findings. Secondly, the theoretical foundation 

allows to explore the possibility of elaborating on Chapman’s (2015) framework of MPSKT, specifically by 

extending the component of teachers’ knowledge about solving problems with technology. We argue that, to 

efficiently integrate digital technologies in mathematical problem-solving, teachers need to develop a 

particular kind of proficiency that includes mathematical problem-solving knowledge entwined with 

technological knowledge, useful in developing a conceptual model of the solution and in expressing the 

techno-mathematical thinking associated, i.e., teachers’ techno-mathematical fluency. 

METHOD 

To find out the role of technology in the mathematical problem-solving activity developed by a veteran 

mathematics teacher and to investigate his perspectives regarding the use of digital tools in such activity, the 

producing of in-depth descriptions of the thinking and actions in mathematical problem-solving with 

technology is required. Hence, a case study methodology (Stake, 1995) is appropriate as it enables the 

production of the in-depth knowledge we seek. In particular, an exploratory case study allows to develop new 

assumptions or explanations about the teacher’s knowledge of mathematical problem-solving with 

technology that can be further studied and used to provide a more comprehensive view on the previous 

theoretical discussion. 

Table 1. Processes of mathematical problem-solving with technology (Jacinto & Carreira, 2017a) 

MPST process Description 

Grasp First encounter with the problem, by reading or stating it; appropriation of the situation and 

conditions, and early ideas on what it involves. 

C
o

m
m

u
n

ic
a

te
: 

C
o

m
p

ri
se

s 
in

te
ra

ct
io

n
s 

w
it

h
 

o
th

e
rs

 o
f 

re
le

v
a

n
ce

 d
e

a
lin

g
 w

it
h

 p
ro

b
le

m
. 

Notice Initial attempt to understand what is at stake, the mathematics that may be useful and the digital 

tools that may be necessary. 

Interpret Place affordances in the technological resources to ponder mathematical ways of approaching the 

solution. 

Integrate Combine technological and mathematical resources within an exploratory approach. 

Explore Use technological and mathematical resources to explore and analyse conceptual models that may 

enable the solution. 

Plan Outline an approach to achieve the solution based on the analysis of the conjectures previously 

explored. 

Create Carry out the outlined approach, recombining resources in new ways to enable the solution and 

synthesizing new knowledge objects that will contribute to solve-and-express the problem. 

Verify Engage in activities to explain and justify the solution based on the mathematical and technological 

resources available. 

Disseminate Present the solution or outputs to relevant others and ponder on the success of the problem-

solving process. 
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A qualitative approach was adopted in data collection, organization, and analysis. For this study, we 

intentionally selected a veteran mathematics teacher, Mr. Pereira (pseudonym). He is Portuguese, has over 

20 years of experience in teaching mathematics in middle and secondary school, regularly integrating digital 

tools in his mathematics lessons, and he often engages in offering professional development courses on the 

use of digital tools in mathematics teaching and learning.  

Data collection firstly included a semi-structured interview focusing on the teacher’s experiences with and 

perspectives about the use of digital tools in the teaching and learning of mathematics in a broader sense, 

and in problem-solving tasks. As data collection took place during the Covid-19 pandemic, the interview was 

carried out through a Zoom meeting which enabled its video recording. In a second stage of the research, we 

invited Mr. Pereira to solve a non-routine problem with the use of the digital tools of his choice. To assure 

that we were proposing truly non-routine mathematical problems, we selected and adapted four problems 

that could be addressed using techno-mathematical tools, such as a calculator, a spreadsheet or a dynamic 

geometry environment, but did not require advanced mathematical knowledge. The researcher explained 

that the research aim was on the use of the digital tools to solve a non-routine mathematical problem, hence 

asked the teacher to look at the problems displayed and choose the one he felt most challenged about, 

reassuring that the focus was on the process rather than on the product. Hence, his contribution to the 

research was not based on achieving a final solution to the problem, but on the process of devising a possible 

approach.  

The teacher was instructed to verbalize his thinking and actions while solving the problem, following a 

think-aloud protocol (Bookman, 1993), which has been used for studying mathematical problem-solving 

(Kuzle, 2017; Montague & Applegate, 1993). It aims to gain insights into thinking processes, so it allows to 

retrace processes otherwise hindered, such as failed attempts, hypothesis posed, the mathematical notions 

or the digital tools used along the process of solving and expressing the problems. Since the problem-solving 

session also took place through a Zoom meeting, the teacher was asked to share his computer screen with 

the researcher, which made possible to record his actions and utterances. The files produced by the 

participant were also collected. The interviews and the problem-solving session were transcribed and 

translated, and the actions and utterances were then coded using a qualitative data analysis software, as 

described in the following section. 

Data Analysis 

The coding and the analysis of the data were based on the descriptive model of MPST (Jacinto & Carreira, 

2017a). To investigate the processes of solving-and-expressing with technologies, we analysed the teacher’s 

utterances based on the transcription, and his actions based on the video recording, looking for and 

identifying critical events (Powell et al., 2003) that would allow to segment and organize the solving-and-

expressing activity. During transcript, with the support of NVivo, relevant non-verbal actions were also 

annotated, such as gestures, transitions between computer windows, formulas inputted, or dragging, 

deleting, or colouring objects. 

The first author analysed the data, in light of the theoretical framework, and coded the segments indepen-

dently. Afterwards, the codification was reviewed by both authors looking for inconsistencies in the 

interpretation and coding until full agreement was reached. Table 2 presents examples of actions expected 

to take place so that a data segment could be categorized in a particular MPST process. We note that, although 

the processes are clearly defined, appear in a sequential list, and have seemingly distinct boundaries, in fact 

as admitted by the original models, in the MPST model they are rather flexible. For instance, while in studies 

with middle grade students the process communicate would emerge throughout the activity (Jacinto & 

Carreira, 2021), it is expected that it will not be patent in the activity of the participant in this study, due to the 

nature of the research setting (online observation of individual activity). 

Finally, we carried out the writing of the case of Mr. Pereira solving-and-expressing on the screen, which 

also required the revisiting of the video file and the transcript to create snapshots of the computer screen 

containing relevant information for the descriptive analysis. This within-case analysis and report affords rich, 

detailed descriptions of the processes in which Mr. Pereira engaged in while resorting to GeoGebra, a 

spreadsheet and a text editor to develop his solution to the problem he selected. 
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FINDINGS 

In this section, we present the main findings from the exploratory case study of Mr. Pereira’s problem-

solving with digital technologies. The results are organized under four themes:  

1. his viewpoints on the use of technology and problem-solving in mathematics classes, 

2. a report on how he solved the problem he chose with technology, using the MSPT model as the 

analytical framework, 

3. the way in which he reflected on that activity, and  

4. our interpretation of the process of integrating mathematical and technological knowledge to obtain 

the solution. 

Perspectives on Technology Use and Problem-Solving in the Classroom 

The role of digital technologies in mathematics teaching and learning was, in Mr. Pereira’s own words, 

“simply functional” as it must utterly serve a mathematical purpose. In his view, mathematics teachers should 

not teach how to use a particular digital tool on its own, but rather when it is useful to achieve some 

mathematical learning goal.  

“It’s not that I could not solve some problems without technology. But, if by using technology, I can 

do it faster, or better, or in another way, or present the solution easily or in a more creative way, 

then I should use that tool” (interview). 

He also believed that technology plays several important roles in the learning of mathematics: to carry out 

computations, to produce a large amount of data, to explore options, or to support mathematical reasoning 

and communication. These roles for digital tools in mathematics classroom activity range from servants to 

cognitive and creative partners (Geiger, 2005; Kuzle, 2017). Technology has yet another role, that the teacher 

Table 2. Description of the coding scheme 

MPST process Examples of critical events 

Grasp Skims the statement; reads out loud; identifies the mathematical topic; realizes own familiarity with 

the problem; looks for similar situations previously solved. 
 

Notice Tries to clarify the understanding of the conditions, anticipates useful mathematical notions or 

procedures, identifies technological tools, at reach, that may be useful. 
 

Interpret Thoroughly analyses the conditions in the statement, assesses what he/she can do with the 

mathematical and technological resources available. 
 

Integrate Organizes resources to carry out concrete actions in a particular technological environment from a 

mathematical point of view (e.g., makes a geometrical construction with GeoGebra, creates a list 

with a spreadsheet). 
 

Explore Engages in an exploratory activity about a conceptual model that may lead to the solution; examines 

the outcomes of the use of the techno-mathematical resources to test and to generate conjectures 

and analyses the results of the experimentations; reformulates the approach until finding a solution 

or a feasible path to reach it. 
 

Plan Sets an approach to obtain the solution, based on the analysis of the explorations and conjectures; 

ponders the techno-mathematical resources useful to express the solution (e.g., adds a new object 

that reveals how the solution is being envisioned, tries to use an algebraic approach). 
 

Create Recombines the resources in new ways to obtain the solution that may originate new 

understandings of the situation; new strategies, representations, or conceptual models; includes a 

mathematisation that reveals abstraction and generalization. 
 

Verify Engages in explaining and justifying the solution, using techno-mathematical resources; reports the 

techno-mathematical thinking developed during the activity. 
 

Disseminate Reflects on the success of the mathematical problem-solving with technology activity, presents the 

solution to relevant others for inspection including the solution, outputs or digital files produced. 
 

Communicate Interacts with relevant others whilst the problem-solving-and-expressing activity with technology 

(e.g., a colleague, a teacher, the researcher, online search). 
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considered a by-product of classroom learning, which is that of the development of certain digital skills that 

may be useful latter in work related settings, such as the ones associated with the use of a spreadsheet. 

Mr. Pereira was quite enthusiastic about dynamic geometry software, such as GeoGebra, especially for 

middle grade classes where he usually resorted to its mobile app to work on the curriculum topics, except for 

statistics. In that case, Mr. Pereira preferred to use a conventional spreadsheet, although he assumed not to 

use it as often as he would like. The preference for GeoGebra’s mobile app is related to its accessibility, as 

most of his students have a smartphone. When referring to his secondary students, his choice was on the 

graphing calculator because they are required to use it on national exams. Hence, Mr. Pereira seemed to 

recognize that although these tools may have a similar set of affordances, to use them efficiently for 

mathematical purposes requires different knowledge that must be taught and learnt within those different 

technological contexts. This suggests that he was quite aware of and intentionally promoted the development 

of his students’ techno-mathematical fluency. 

“I feel sort of compelled to use the graphing calculator because there’s an exam context in which 

they [students] must be familiar with it… for instance, to define a visualization window in the mobile 

app you use the pinch movement… in the graphing calculator it must be an algebraic formatting, 

there is a minimum and a maximum, and so on” (interview).  

Regarding the implementation of mathematical problem-solving tasks, Mr. Pereira stated that he really 

enjoys solving challenges, but he admitted that non-routine problems end up not being part of his classes, 

although he considers them important. He identified several obstacles to the implementation of this kind of 

tasks: i) the students, who are not accustomed to problem-solving heuristics, or keep asking if that kind of 

problems will be on the test; and ii) the (former) curriculum, where it was stated that problem-solving is about 

applying a set of well-known rules or procedures previously learnt.  

“Occasionally, on particular situations, I think that a non-routine problem creates an excellent 

context where to use the mathematical contents. In that case, yes, but not as often as it should be 

or as I would like to” (interview).  

In his view, there may be more non-routine problem-solving in the earlier grades, but it fades away as the 

students proceed and the learning of mathematics becomes “more algebraic, more formal, more abstract, 

hence, the opportunity for a problem to create an excellent context … decreases”. This creates a snow-ball effect, 

as the lesser the students are exposed to non-routine problem-solving, “the lesser the habits, the routines, and 

the heuristics are established”, as declared. Interestingly, he acknowledged that providing opportunities for 

students to interact regularly with techno-mathematical tools contribute to this skill’s improvement which, in 

turn, facilitates the introduction and use of new tools for mathematical learning; even though they may not 

be allowed in examinations or explicitly endorsed by the curriculum at the time. Hence it seems that while 

Mr. Pereira believed students should develop non-routine problem-solving and technological skills, these 

skills were not equally valued and incorporated into his teaching practices. 

Mr. Pereira Solving-and-Expressing on the Screen 

In this section we describe and analyse Mr. Pereira’s problem-solving with technology by presenting 

segments of his activity and summarizing, in the form of tables, the processes that were carried out at each 

 

Figure 1. The problem chosen by Mr. Pereira 
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stage, based on the MPST model. From the four problems given, he chose to solve the one presented in Figure 

1. 

Selecting the problem and grasping the conditions 

Mr. Pereira started by grasping the statement of the problems available, reading them carefully, while 

offering some reasons for declining three of them: some had familiar situations that he recalled having dealt 

with earlier in his career, and one mentioned constructing a square with some cubes, which he disliked. He 

chose the problem he felt most challenged about. He noticed what the problem was about and guessed he 

would “manage with a spreadsheet”, such as Google Sheets. As he read the statement, slowly and out loud, he 

mentally eliminated the unnecessary parts of the story, trying to understand the situation, seeking 

clarification of the conditions in the statement and the goal of the problem. Then, he started to interpret the 

situation as he evaluated the affordances of the tabular organization, realizing the usefulness of using 

minutes rather than hours, and considering a mathematical approach based on the hypothesis that 

discounting the minutes evenly could lead to the solution (Table 3). 

Experimenting with functions in GeoGebra 

At this moment, Mr. Pereira decided to move to GeoGebra (Table 4) since he thought to be a better tool 

for constructing and analysing graphical representations of functions that could model the situation. His 

actions involved several cycles of integration of mathematical and technological knowledge (knowing 

Table 3. Mr. Pereira’s actions and utterances while selecting the problem 

What Mr. Pereira said or did MPST process 

Reads the problems, choses the battery problem “This is the one that challenges me the most.” Grasp 
 

“I think I will manage with a spreadsheet”, says, splitting his desktop screen reads the problem for 

clarification and mentally eliminates the unnecessary parts of the problem. 
 

Notice 

Starts to organize the information on a table (record: 120; play: 180). Hypothesis 1: discounting the 

minutes in a “more or less balanced way” will lead to the solution. 

Interpret 

 

Table 4. Mr. Pereira actions and utterances while experimenting with GeoGebra 

What Mr. Pereira said or did MPST process 

Moves to GeoGebra as it seems a “better” tool where he may “try to see the lines”. In the input bar of the 

algebra view he types 𝑓(𝑥) = −2𝑥 + 120. 
 

Integrate 

He is surprised by the line on the screen: “It can’t be… because I want it to take 2h only.” “I have to fix this, 

the slope must be steeper… 120, could it be?” 
 

Interpret 

“I’m trying not to compute, just experimenting” types in 𝑓(𝑥) = −120𝑥 + 120. 
 

Integrate 

Expects the line to intersect Ox at 2h, so he decides that the slope must be -60. 
 

Interpret 

Inputs the function 𝑓(𝑥) = −60𝑥 + 120. “This line models the battery time [available] to recording.” 
 

Integrate 

Analyses the line and realizes he has been misusing minutes and hours for the values inputted. 
 

Interpret 

Decides to go back to a previous hypothesized function 𝑓(𝑥) = −2𝑥 + 120 and graphs it. 
 

Integrate 

Analyses the graphical representation and concludes it is not possible to reach zero after 60’, because 

the battery lasts 2h when recording. 
 

Interpret 

After changing the function to 𝑓(𝑥) = −𝑥 + 120 

inputs another one that represents the battery 

power when playing back, 𝑔(𝑥) = −𝑥 + 180. 
 

 

Integrate 

Analyses the two parallel lines: “I want to use 

both, so somewhere here I have to start going up” 

concludes he will not reach a solution through 

this approach, moves back to the spreadsheet. 

 

 

 

 

 

 

 

Interpret 
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GeoGebra’s commands, tools and display allowed him to test several parameters in the functions), and of 

mathematical interpretation of the visual feedback offered by GeoGebra (when analysing the intersection of 

the line with Ox, its slope, or the two parallel lines obtained on the screen). 

Testing approaches with the spreadsheet 

Mr. Pereira then went back to the spreadsheet and continued by testing out his initial hypothesis as he 

considered the spending of 1 minute in recording (A3=A2-1) and in the playback mode (Table 5).  

His conceptual model developed as he conjectured that the spending rate of the battery level should be 

different in each case, leading Mr. Pereira to realize that the comparison between both rates may be achieved 

by considering the unit as the full capacity of the battery. His work revealed a progressive mathematisation 

characterized by a set of cycles entailing the processes integrate and explore. The combination of mathematical 

knowledge with several affordances of the spreadsheet (such as the use of formulas, locking rows or columns, 

using the handle fill), with the mathematical exploration and analysis of the outputs (expecting the results to 

be equal, concluding the sum of A and B cannot be always 120’, exploring a mathematical way to relate the 

2h and the 3h, or deciding on the use of a unit), led Mr. Pereira into developing a more robust conceptual 

model of the situation.  

Finding the solution with the spreadsheet 

Following the prior conjecture analysis, Mr. Pereira seemed confident in implementing a refined approach: 

he planned to use the full battery power as a unit. He inserted a new column on the left that he would use in 

the testing of several particular cases, again forming a cycle of integration and exploring. In between these 

processes, he went back to interpret the meaning of the conditions as he considered that the amount of time 

spent in playing and recording did not have to be the same, although he mentioned that he has “to spend a 

bit more in playing”, influenced by the idea that the battery lasts longer in the playback mode. 

After the testing of particular cases (such as 0.5, 0.1 and 0.9), he abandoned the mental experimentations 

and moved to the recombination of mathematical and technological affordances to create the solution by 

formalizing a dependency between the recording and the playback times for each percentage of the battery 

considered. His subsequent steps involved the use of formulas and the analysis of the spreadsheet outputs 

Table 5. Mr. Pereira’s actions and utterances while selecting the problem 

What Mr. Pereira said or did MPST process 

Considers the spending of 1’ in recording and in 

playback mode (𝐴3 = 𝐴2 − 1). Creates a list of positive 

integers in C. Changes the previous formulas so that 

the time spent depends on C (𝐴3 = 𝐴2 − 𝐶3). 

Represents the sum of the remaining minutes to 

record and playback on D. 
 

 

Integrate 

Highlights the last row with the mouse, analysing: “but they must be equal, right?... I have to find a way to 

make the recording and playback times the same.” 
 

Explore 

Deletes the information on column B for each minute 

spending while recording (𝐴3 = 𝐴2 − 1), 1’ is 

considered in the playing mode (𝐵2 = 0; 𝐵3 = 𝐵2 + 1). 

 

 

Integrate 

Analyses D (that still presents the sum 120): “hum,… I’m not saying it lasts 2h… I have 2h but, in playback, it 

lasts 3h, [curses]! So the complete battery lasts… Its 120 units… This is cool! This is good! [laughs].” 
 

“I have to compute 180 dividing by something… it must be 𝑥… I have to divide the 180’... 180 dividing by the 

playback [time]…” “It may be handy to convert the 2h to 3h, exactly, and this is some sort of decay, a spending 

of something per minute… this is hard… this is stressful…” 
 

Explore 

Identifies that this spending per minute must be different in each case concludes that the slopes of the 

lines built with GeoGebra must be different as well. 
 

Interpret 

“I will subtract a minute at a time… no, because they don’t run at the same time…” “I have to find a way to 

compare them,… let’s say, if I have a unit of battery, I will spend half of a unit per hour.” 

Explore 
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in another micro-cycle of integrate-explore until he listed all possibilities for the spending of the battery in 

decreasing increments of 10%. Once the sheet presented all results from full to empty battery, under those 

conditions, Mr. Pereira interpreted the values obtained looking for similar amounts of time and found the 

solution: 72 minutes. 

Next, he engaged in initial verification processes by confirming that the two cells containing the answer, 

72’, corresponded to complementary percentages of the battery spending. He tried to make sense of the 

solution by reviewing the reasoning, although the meaning of the values on column A was not completely 

clear, yet, as he referred to them as “battery left” and, later, as “battery spent” (Table 6). 

Expressing the solution  

Mr. Pereira created a new Google Docs file and started to describe his procedures (verify) (Table 7). He 

reported solely on the last approach that led him to the solution, not acknowledging a considerable amount 

of effort put in assessing other possibilities. He used the table created in the spreadsheet, where he 

highlighted the cells with the solution in green. He pasted the table in the text editor and continued to 

verbalize his writing and thinking. While explaining that the 72’ corresponded to 60% of battery usage in 

Table 6. Mr. Pereira’s actions and utterances while selecting the problem 

What Mr. Pereira said or did MPST process 

“Let me try this out!” Considers a unit to be the full battery power and the spending of half a unit per hour 

inserts a column on the left of the previous table, which now becomes A. 

Plan 

Inserts 1 in A2 (corresponding to the full charge of the battery, i.e., 120’ for recording or 180’ for playing 

back something recorded) and then 0.5 in A3. 
 

Integrate 

“So, if I spend half of a battery unit, following the rule 

of 3, a proportion, half unit will correspond to 60’… 

[types 60 directly in B3], and half unit will correspond 

to playback… 90’ [typing 90 directly in C3]. . . . Maybe 

I’ll manage this way.” Inserts 0.1 in A3 and, 

mentally computing the results, inserts 12 and 18 

in cells B4 and C4. 
 

 

Explore 

Says that he needs those results to be equal “No, I don’t have to spend the same amount of battery in 

playing and recording, I have to spend a bit more in playing…” 
 

Interpret 

“How am I doing this?”, focusing on the numbers he typed in row 3. Realizes that, when considering half 

of a unit, he has divided the previous row by 2. 
 

Explore 

Inserts 0.9 in A3, and decides on how to compute B3 (𝐵3 =  𝐵2 ∗ 9/10) and C3 (𝐶3 = 𝐶2 ∗ 9/10) 
 

Integrate 

Says confidently: “this might be true!” and abandons the mental experimentations with 0.5, 0.1, and the 

spreadsheet formula to test 0.9. Aims to create a dependency between the recording and the playback 

times for each percentage of the battery considered. 
 

Create 

Rewrites the formulas in B and C by locking the column A in those expressions (𝐵3 =  𝐵2 ∗ $𝐴3, 𝐶3 = 𝐶2 ∗

$𝐴3). Sets a decreasing increment in the battery level of 0.1 (𝐴4 = 𝐴3 − 0.1). 
 

Integrate 

Drags the fill handle and looks at the results (decimals): “no, this is not working well.” Realizes he should 

have locked the cells B2 and C2 that contain the amount of time that the battery holds for recording and 

playing when completely charged (120’ and 180’). 
 

Explore 

Corrects the formulas, locking row 2 (𝐵3 = 𝐵$2 ∗ $𝐴3 and 𝐶3 = 𝐶$2 ∗ $𝐴3). Redoes the auto fill. 
 

Integrate 

Analyses the row corresponding to 0.5 to see if the result matches the previous hypothesis tested (0.5 

corresponds to 60’ recording or to 90’ playing). “Now, this is cool!” Searches the data in the spreadsheet 

looking for identical values in the recording and in the playing mode’s lists and observes that 72 minutes 

appears in both lists. 
 

Interpret 

Confirms they refer to complementary 

percentages of the battery. “So, if I spend 72’ 

recording, I will spend 60% of the battery. No, I will 

spend 0.4, as I still have 60%. If I spend here [points 

to C8] … 40%. So, this is the answer. Its 72’. It 

corresponds to 40% of the battery, hum, 40% of the 

battery while recording… and 60% in playback mode. 

This makes sense because the playback mode uses 

more [battery power].” “No… It’s the other way 

around! It is 0.6 to record and 0.4 to reproduce.” 
 

 

Verify 
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recording mode, he stopped to think out loud: “it’s the opposite, 40% in recording mode and 60% of the power in 

playback mode. Maybe it is not true, it was correct. It only lasts 2 hours, so it spends more, it’s 60% recording and 

40% playing. It lasts longer, exactly.” This was when this fluctuation, which had been around throughout the 

several processes, was finally resolved. 

About to submit his answer, Mr. Pereira still went back to the statement of the problem, aiming to clarify 

his interpretation of what was being asked. He realized that the problem requires to determine the maximum 

amount of time for recording and playback, so he included the word maximum in his previous written answer 

and decided to clarify that the answer is 72’ because the “time must be equal”. Even though he considered this 

as his final solution, he stated it could still be improved depending on the next goals but decided to submit 

his answer sending the spreadsheet and the text file to the researcher by e-mail (disseminate). 

Finally, we note that while the communication process is considered in the original MPST model, it was not 

evidenced in the teacher’s actions as he was asked to engage in a think-aloud protocol. 

Looking Back to His Own Activity 

After submitting the solution, Mr. Pereira reflected on particular episodes of his activity. He clarified that 

he chose this problem because he felt intrigued by “this conflict of not spending [the battery] at the same pace” 

and confirmed that, at first, he noticed the mathematical and technological tools that would be helpful: “I was 

thinking about the lines, the slope, the intersection, so I was somehow modelling and looking for the tools that would 

be useful”.  

Mr. Pereira did not feel the need to use paper-and-pencil, since “the spreadsheet is a sort of paper-and-

pencil, in fact, what I wrote here in the side is paper-and-pencil [work]”. Still, he recognized several affordances 

in this tool such as dragging the fill handle, or the easy and timesaving computations which allowed him to 

analyse several results.  

“I was not sure whether if using 0.1 would take me to the solution or not, but I was prepared to 

move on to 0.95 or some similar value. I was able to expand my computation, as it felt necessary. 

With paper-and-pencil, it would be more difficult to believe I would reach the solution at first or 

Table 7. Mr. Pereira’s actions and utterances while selecting the problem 

What Mr. Pereira said or did MPST process 

Assumes he is pleased with his solution and decides to 

create a new file using Google Docs. Initially aims to 

explain that he started by testing the battery power but 

decides to mention only that he “calculate[ed] the time 

corresponding to the percentage of battery use in each 

mode.” Colours in green the cells that contain the 

solution “72”, in the spreadsheet, copies the table and 

inserts it in the text editor. Verbalizes what he is writing: 

“In the table it was possible to identify that 72 minutes 

occur in both modes of use with complementary 

percentages (the sum is 100%). Thus, we can conclude that 

the recording and playback time is 72 minutes, 

corresponding to 60% of usage in recording mode.” Stops 

writing and thinks out loud: “it’s the opposite, 40% in 

recording mode and 60% of the load in playback mode. 

Maybe it is not true, it was correct. It only lasts 2h, so it 

spends more, it’s 60% recording and 40% playing. It lasts 

longer, exactly.” 
 

 

Verify 

Says he no longer recalls exactly what was being asked initially and goes back to reading the problem 

statement. Completes his written answer by adding information: “Thus, we can conclude that the 

maximum recording and playback time is 72 minutes (since the time must be equal), corresponding to 60% of 

usage in recording mode and 40% of the load in playback mode.” 
 

Interpret 

“This can be improved… it depends on our goal… [but] this my most natural resolution!” 
 

Sends the files (Google Docs and Sheets) via e-mail to the researcher. 

Disseminate 
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second attempt… I believe that with paper-and-pencil I would have chosen my computations more 

wisely. Like this [in the spreadsheet] it is brute force” (interview). 

The fact that he had to explain his problem-solving process, drove him back to the statement several times 

throughout the activity, as he knew that sometimes one may lose track of what is being asked: “it could happen 

that I would focus on the 60-40 and not mention the 72, for instance”.  

Integrating Mathematical Knowledge and Technology Throughout the Activity 

The digital tools used by Mr. Pereira supported particular instances of his conceptual model. At first, 

GeoGebra afforded an analytical and graphical approach to convey the covariation between the variables at 

play: the used time (x), and the remaining time (y). The functions corresponding to recording and playback 

mode are both decreasing functions: y=-ax+b, (a>0). If b=120, in recording mode, and b=180, in playback mode, 

the consumption rate is a=1 in each case, thus the two parallel lines in the graph. GeoGebra provided graphs 

of the linear functions, afforded reading the graphs and obtaining the zeroes of the functions, and 

accentuated the relative position of the lines. This initial approach with GeoGebra led him to conclude that 

finding the expressions of the linear functions was not helpful. 

He carried on by using a spreadsheet to explore the covariation between the variables through a nume-

rical approach. A recursive method was used, where the two columns represent the remaining battery time 

decreasing by a constant rate of one minute (in both cases), starting with 120 and 180 (Table 5). Then, he 

replicated the previous reasoning, shifting to discrete variables and introducing the sum of the available time 

in both cases. The sum did not deliver the expected results, so he abandoned this approach and the idea of 

different decreasing rates for the two cases started to build up. The spreadsheet provided a “tabular 

calculator”, where attempts to define the rate of decrease in each case were performed. 

The integration process continues with the spreadsheet being used to outline a system of linear functions. 

A new independent variable was introduced–the battery spent (in percentage), whilst the two dependent 

variables were the used battery time, in each mode. The spreadsheet columns for the used battery time, r and 

p, can be defined by the equations r(u)=120u, where u is the battery spent in recording mode, with u=1-a, 

0≤α≤1; and p(v)=180v, where v is the battery spent in playback mode, with v=1-β, 0≤β≤1. The variables u and v 

were represented in one single column containing a linear sequence of numbers, starting in 1 and ending in 

0, which allowed him to “see” the two other columns as representing the used battery minutes depending on 

the battery spent (in percentage). A common value for both columns occurs when the time used in recording 

is equal to the time used in playing back, i.e., r(u)=p(v). Additionally, the whole battery must be spent, which is 

given by the condition u+v=1. Hence, the solution can be obtained by the values of u and v such that r(u)=p(v) 

Λ u+v=1  2u=3v Λ u+v=1  (u, v)=(0.6, 0.4). The spreadsheet provided a quick way of solving the system of 

simultaneous equations, thus resulting in an effective integration of technological and mathematical 

knowledge. 

DISCUSSION AND CONCLUSIONS  

This exploratory case study of a veteran mathematics teacher solving a non-routine mathematical 

problem and expressing its solution with the digital technologies of his choice portrays his proficiency in the 

use of techno-mathematical resources. In the following sections we, firstly, present and discuss our main 

results and, secondly, hypothesise about the nature of teachers’ knowledge regarding mathematical problem-

solving with technology based on this exploratory case. 

The Cyclic Nature of Mathematical Problem-Solving with Technology 

The MPST model has been developed to address a gap in the literature since there was no explanatory 

tool to support the analysis of the processes taking place in mathematical problem-solving mediated by digital 

tools. Although this model was designed based on the processes carried out by middle school students 

(Jacinto & Carreira, 2017a), this case suggests its effectiveness in modelling the processes of a veteran teacher 

and in analysing the role of digital and mathematical resources throughout his activity.  

In what concerns the role of the tools in the problem-solving activity, two inter-related findings stand out:  
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1. technological tools played major, but different, roles throughout the teacher’s problem-solving activity 

and  

2. the problem-solving with technology activity progressed through micro-cycles composed of several 

processes.  

Initially, GeoGebra was used to get a better clarification of the conditions of the problem, leading to a 

micro-cycle composed of the processes integrate-interpret. Later, a different cycle emerged, comprising the 

processes integrate-explore-interpret, as the teacher used the spreadsheet to consider a different approach, to 

test its feasibility and, after disregarding it, to decide on another approach that would lead to the solution.  

Additionally, this case provides evidence that the teacher’s conceptual model of the situation evolves as 

the cycles integrate-explore render more sophisticated relationships between the variables. The testing with 

particular cases (model of) led to a confirmation that the approach seemed to work, so the teacher decided 

to inscribe a more formal character to his solution (model for), within a progressive mathematisation 

approach (Gravemeijer, 2005). 

This case shows the nature of the activity of solving-and-expressing-with-technologies. The outputs 

produced in the spreadsheet were included in the final answer, so they were used both as solving and as 

expressing resources. Moreover, the justification of the solution only becomes completely disclosed as he 

expressed his reasoning within the verification process. Even though the exploratory activity in the 

spreadsheet has induced a particular plan, the solution only became clear to the teacher when he engaged in 

the explanation of his procedures. This reinforces the idea that the ‘solving’ is closely related to the 

‘expressing’; they are simultaneous activities of mathematisation that culminate in obtaining a techno-

mathematical solution of the problem. 

These results are in line with our previous findings obtained with middle grade students (Carreira & Jacinto, 

2019; Jacinto & Carreira, 2017a, 2021) and with other studies that report on the non-linearity of problem-

solving processes (Carlson & Bloom, 2005, Rott et al., 2021). In fact, these results not only contribute to 

contradict a view of mathematical problem-solving activity as a straightforward progression from the givens 

to the goals, as they support the claim that it develops around “iterative cycles of expressing, testing, and 

revising current ways of thinking” (Lesh & Zawojewski, 2007, p. 772), also when technology plays a significant 

role in the activity. This is particularly clear in the process of integrating technological and mathematical 

knowledge and procedures, which is at the heart of these micro-cycles. Effective integration is, thus, a central 

action that supports several other fundamental processes for the advancement of the solution, for instance, 

exploration and creation.  

Teachers’ Knowledge About Mathematical Problem-Solving with Technology 

This study portrays the case of a mathematics teacher that is familiar with a diversity of digital tools useful 

in mathematics teaching and learning, who creates opportunities for his students to use them in the 

classroom and is able to use them to solve-and-express a non-routine mathematical problem. Mathematics 

teachers’ knowledge about teaching problem-solving requires, according to Chapman (2015), to be proficient 

in solving problems and in understanding the nature of problem-solving both as a process and as a way of 

teaching. Our exploratory study contributes with the case of a veteran mathematics teacher who regularly 

uses technologies for mathematics teaching and learning, enjoys non-routine problem-solving, and exposes 

his proficiency in mathematical problem-solving with technology.  

Teacher’s techno-mathematical fluency 

The teachers’ proficiency is characterized by the recognition of particular affordances in several 

technological tools that can be useful in developing a solution to the non-routine problem. At start, GeoGebra 

afforded algebraic and graphical representations of the functions for the battery spending in each mode. He 

did not pursue this approach, yet it allowed him a deeper understanding of the situation. By resorting to a 

spreadsheet, he elaborated conjectures and explored them by placing specific affordances in this tool, 

namely, to organize sequences of related values and easily testing the effects of changing the relations. By 

incorporating the formatted table on the text editor, to present his reasoning, he created a techno-

mathematical answer to the problem, thus representing his conceptual model of the solution. The teacher’s 
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techno-mathematical fluency includes the recognition of affordances in the digital tools with several 

purposes: to interpret the situation from a techno-mathematical point of view, to explore a conceptual model, 

and to produce a techno-mathematical solution. 

Technological tools played a paramount role throughout the mathematical problem-solving-and-

expressing activity of the teacher. His proficiency lies in the intertwining of technological and mathematical 

resources, within micro-cycles comprising the processes of integration and exploration. These have preceded 

major advancements in the development of a conceptual model of the situation, thus having a clear effect on 

achieving a techno-mathematical solution. This suggests that being techno-mathematically fluent (Jacinto & 

Carreira, 2017b) is an essential skill in productively solving-and-expressing problems with digital technologies. 

Furthermore, this exploratory case seems to account for the complexity of the activity of successful 

mathematical problem-solving with technology as it reveals that metacognitive skills, namely control and 

regulation strategies, are of paramount importance to progress. It has been extensively documented in the 

literature that productive mathematical problem solvers take their time in understanding the problem and its 

goal structure, in identifying the mathematical resources that may be necessary, they constantly monitor their 

solution, and, since they are able to evaluate the efficiency of their strategies they also know when to abandon 

a certain approach (Bookman, 1993; Chiu et al., 2013; Hanin & Van Nieuwenhoven, 2020; Schoenfeld, 1985). 

The findings of this exploratory case study on mathematical problem-solving activity with technology are 

consistent with these features. However, the case shows that not only does this veteran teacher have the 

relevant mathematical knowledge, but also the technological knowledge, and he is able to efficiently combine 

and use them in developing his conceptual model of the solution.  

Knowledge for teaching mathematical problem-solving with technology 

As different technological tools have their own potentials and limitations and provide different affordances 

to work on mathematical problems (Koehler & Mishra, 2008), it seems important that teachers know those 

possibilities and guide their students to use them and thus develop their techno-mathematical fluency in rich 

mathematics classroom experiences. Thus, this exploratory study opens a new perspective regarding 

teachers’ knowledge to teach mathematical problem-solving with the use of digital technologies. Knowledge 

for teaching mathematical problem-solving with technology includes mathematical problem-solving 

knowledge that must be efficiently intertwined with technological knowledge to develop a conceptual model 

of the solution and to express the techno-mathematical thinking produced.  

Limitations and directions for further research  

This study has achieved its main goal by expounding the role of digital tools in the processes of 

mathematical problem-solving-and-expressing as well as the techno-mathematical thinking of a veteran 

teacher. Still, it has some limitations that are worth discussing. First, the research was designed as a single 

case study, thus the findings are not generalizable nor transferable, as anticipated. Furthermore, the 

participant in which this study rests was intentionally chosen using a set of predetermined characteristics, 

which included being an in-service teacher with long experience in using digital technologies in teaching 

mathematics to middle grade and secondary students. We believe this study can be replicated, hence more 

explorations with respect to participants with different experience backgrounds may add empirical evidence 

on the two main topics addressed. 

But, most importantly, this exploratory study’s findings point towards two promising directions within 

mathematics education research. One of them is the need to further develop the conceptualization of techno-

mathematical thinking as conveying the particular features of mathematical thinking mediated by digital tools 

and entailing the skills needed to efficiently solve-and-express mathematical problems. Additionally, it may 

be timely to inquire what techno-mathematical thinking looks like when digital tools are used to address 

modelling problems. Finally, and despite the limitations discussed above, these and further findings may be 

the necessary trigger to rethink professional development and teacher education programmes so that 

mathematics teachers, either pre-service or in-service, may develop their techno-mathematical thinking and 

fluency to teach their students to solve non-routine mathematical problems with digital technologies. 
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