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 In our investigation of university students’ knowledge about real numbers in relation to 

computer algebra systems (CAS) and how it could be developed in view of their future activity as 

teachers, we used a computer algorithm as a case to explore the relationship between CAS and 

the knowledge of real numbers as decimal representations. Our work was carried out in the 

context of a course for university students who aim to become mathematics teachers in high 

schools. The main data consists of students’ written responses to an assignment of the course 

and interviews to clarify students’ perspectives in relation to the responses. The analysis of 

students’ work is based on the anthropological theory of the didactic (ATD). Our results indicate 

that simple CAS-routines have a potential to help university students (future teachers) to apply 

their university knowledge on certain problems related to the decimal representation of real 

number which are typically encountered but not well explained in high school. 
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INTRODUCTION 

Klein (2016, p. 1) pointed out that young university students find it hard to use the mathematical 

knowledge, which they learnt at school as they deal with university level mathematics problems. Then, after 

they graduate from the university and go back to upper secondary school as mathematics teachers, it is also 

hard for them to find connections between teaching there, and what they learnt at university. This constitutes 

Klein’s (2016) classical “double discontinuity” problem.  

Durand-Guerrier (2016) studied the first discontinuity in relation to the specific case of real numbers. The 

author identified several gaps between the ways real numbers are conceived and taught in high school and 

at university. Along the lines of Durand-Guerrier (2016), González et al. (2019) proposed two challenging 

situations for the teaching of real numbers at high school. In this paper we show a proposal for university 

teaching that aims to address the second discontinuity in the special case of student’s relation to real 

numbers.  

So, the question is what should future teachers know about the real numbers and especially, what should 

they learn about real numbers at university? This question is almost as old as mathematics education research 

itself. Already, Klein (2016, p. 34-35) suggested that decimal notation was historically decisive to lead 

mathematicians onto the general arithmetic of “irrational numbers”. Nevertheless, research on real numbers 

teaching or learning we can find is not much. González-Martín et al. (2013) believe that one of the difficulties 

in teaching or learning real numbers lies in the relevant definitions. For example, Zazkis and Sirotic (2004) 

found the obstacle to learn irrational numbers for students is their understanding of the equivalence of 

definitions. There is a “missing link” between the fraction representation and decimal representation of a real 
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number. This kind of “missing link” is not only the negligence in teaching but also the unclear definition of real 

numbers in high school textbooks. González-Martín et al. (2013) studied the introduction of irrational and real 

numbers in Brazilian textbooks for secondary education. They found that the definition of real numbers 

always appears after the definition of irrational numbers and is expressed as the union of the set of rational 

numbers and the set of irrational numbers, i.e., ℝ = 𝕀 ∪ ℚ, where ℝ, 𝕀, and ℚ are the sets of real, irrational, 

and rational numbers respectively. However, the definition of the irrational number is based on the 

assumption of the existence of real numbers, i.e., 𝕀 = ℝ\ℚ. This seems to make sense but in fact, an 

independent definition of real numbers did not appear at all. This problem is easily ignored in textbooks by 

teachers and students, and they accept the definition in textbooks as “a transparent rule which does not need 

justification” (González-Martín et al., 2013, p. 239). Enhancing teachers’ knowledge of real numbers might 

assist them in going beyond circular and unsatisfactory definitions as found in the textbooks mentioned 

above. Our present work is on the teacher knowledge about decimal representations of real numbers and 

focuses on those university students who intend to become teachers at secondary school.  

Another question arises: How could we support them to develop that knowledge? Maybe today’s 

widespread use of digital technology (in mathematics and other school subjects) offers and requires modified 

answers to this question. We can find some studies related to the use of computer algebra systems (CAS) in 

mathematics education (e.g., Gyöngyösi et al., 2011; Lagrange, 2005). In this paper we take into consideration 

an aspect of secondary school mathematics which has so far been neglected in most of the literature on the 

teaching of real numbers there: the use of calculators and computers, including more advanced uses such as 

graphing and programming, which is common at this level in many countries. In Denmark, CAS like Maple, TI 

Nspire, and Geogebra are commonly used in upper secondary schools. In schools and in society at large, real 

numbers and functions are increasingly accessed and handled through CAS and other mathematics software. 

However, in the teaching of mathematics at university, such use of tools appears at most in introductory 

Calculus courses and not in later, more theoretical courses. Future teachers of mathematics often take such 

more theoretical courses and find that they are far from what is taught at secondary school. In this paper, we 

particularly investigate the use of simple programming as one strategy to bridge the gap. 

The paper is structured as follows. In the next section, we will recall how the anthropological theory of the 

didactic (ATD) works as a theoretical framework to reformulate Klein’s (2016) second discontinuity problem 

and based on this formulate our research questions. Then, the mathematical context will be introduced, 

including the background on infinite decimal model of real numbers, the elaboration of the given computer 

algorithms and addition of infinite decimals. After mathematical context, we will introduce the empirical 

context for the study, and the methodology used to analyze the research questions will also be shown in this 

section. Then, we will present the results based on data collected in a “capstone course” called UvMat. In the 

end we will draw up conclusions along with perspectives for further research.  

THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS 

ATD, initiated by Chevallard (2019), was used by numerous authors (Barquero & Winsløw, 2022; Winsløw, 

2013; Winsløw & Grønbæk, 2014) to model Klein’s (2016) “double discontinuity”. Following Chevallard (2019), 

we denote by 𝑅𝐼(𝑝, 𝑜) the relation between a position 𝑝 within the institution 𝐼, and the knowledge object 𝑜. In 

ATD, a knowledge object is modelled as a praxeology. A praxeology contains a praxis block and a logos block. 

There are two parts in the praxis block, a type of tasks and techniques used to solve the tasks. The logos block 

is composed by the technology part, which is a discourse about the techniques, and the theory part which 

justifies the technology part and explains its relation to praxis block. These notions are more thoroughly 

introduced in Chevallard (2019) or Winsløw (2011).  

The praxeologies we study in this paper are related to real numbers as these appear in Danish high school 

and at university. Using the theoretical model of Klein’s (2016) second discontinuity proposed by Winsløw 

(2013) we can represent the passage we are interested in, as  

𝑅𝑈(𝜎, 𝜔ℝ) → 𝑅𝑆(𝑡, 𝑜ℝ),                                                                                                                                                     (1) 

where 𝜔ℝ is any mathematical praxeology about real numbers worked by students 𝜎 in the university 𝑈, while 

𝑜ℝ is any mathematical praxeology about real numbers supposed to be taught in the institution secondary 

school 𝑆 by teachers 𝑡 (the → of the passages above can be considered as a gap between university and high 
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school). Future teachers’ knowledge could be important for narrowing this gap. In particular, we can 

sometimes select some elements related to logos blocks from 𝜔ℝ to justify the praxis blocks from 𝑜ℝ. In other 

cases, we need to add some mathematical elements to bridge the gap, ending up with a slightly larger object 

which we denote by 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ . Therefore, for those future teachers in university (represented by 𝜎𝑓𝑡), we aim 

at a new relation 𝑅𝑈(𝜎𝑓𝑡, 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅), where 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is really connected by links known to 𝜎𝑓𝑡. 

The first question is what kind of content should be included in 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Barquero and Winsløw (2022) 

have considered the decimal representations of real numbers such as constructing a decimal representation 

for a given number. They particularly investigated students’ work on the graphs of a function by using different 

representations of √3 on Maple (a CAS the students know from the first semester courses). In this paper, we 

continue to consider real numbers as decimal representations, particularly about addition of infinite decimals 

operated on Maple. 

In university, mathematics students who intend to become future teachers will acquire a certain amount 

of knowledge of real numbers. How students select the suitable theoretical elements from 𝜔ℝ to explain the 

real number problems in secondary school is a sub-discontinuity under the Klein’s (2016) second gap, which 

can be formalized as the following transition: 

𝑅𝑈(𝜎, 𝜔ℝ) → 𝑅𝑈(𝜎𝑓𝑡 , 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅).                                                                                                                                         (2) 

How to support this transition is our second question, which is also the main work in this paper. We 

formulate these two questions as the precise research questions:  

RQ1: How could the idea of ‘infinite decimal’ be related to university mathematics and taught to future 

secondary school teachers?  

RQ2: In particular, how can working with a given computer algorithm support university students’ use of 

(university level) mathematical knowledge to address secondary school level questions related to the infinite 

decimal model of real numbers? What new mathematical and didactical knowledge on decimal 

representations of real numbers can such work enable students to develop? 

Note that RQ1 is a theoretical research question, asking for specific links between a school mathematical 

notion (“infinite decimals”) and appropriate undergraduate mathematics, thus it is about the knowledge to be 

taught to future teachers. RQ1 is in general answered by several classical and newer texts (e.g., Sultan & Artzt, 

2018), and we summarize one answer at the beginning of the next section. We address RQ2 by investigating 

students’ work on a concrete assignment, also presented in the next section. Our answers to RQ2 are derived 

from analyzing students’ written reports in response to the assignment, as well as interviews with selected 

students. 

MATHEMATICAL CONTEXT 

Real Numbers Represented as Infinite Decimals 

In university, students will meet the completeness property of real numbers in one of the first courses in 

analysis. They may also be given various explanations of what real numbers are, from the number line to 

Cauchy sequences or Dedekind cuts (Bergé, 2010), although these constructions are seldomly treated in detail 

(so, they do not study equivalence classes of Cauchy sequences, etc.). The elements actually covered, 

particular various consequences of completeness related to convergence and compactness, then form part 

of 𝜔ℝ, but with little direct connection to the earlier praxeologies 𝑜ℝ learnt at school. The completeness 

property, however, was coined at the end of the 19th century in order to formalize the idea that any real 

number can be represented by an infinite decimal (Bergé, 2010), an idea already met in school. 

Completeness–or, more intuitively, the decimal representation–can be used to explain that the set of real 

numbers satisfies the Archimedean axiom, i.e., for any 𝑥 ∈ ℝ , there is an 𝑁 ∈ ℤ such that 𝑥 ≤ 𝑁. It follows from 

this that, for any 𝑥 ∈ ℝ, there is a unique 𝑁 ∈ ℤ such that 𝑁 ≤ 𝑥 < 𝑁 + 1.  

This kind of knowledge is thus formally related to logos block in 𝜔ℝ, but will not be explicit at the secondary 

school level, although it is entirely compatible with the “number line” metaphor used there. It may not even 

be taught to university students although it is crucial to the connected extension 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (a metaphorical 

notation we use to designate the coherent praxeology aimed at future teachers). For RQ1, our aim is to 
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elaborate from 𝜔ℝ the meaning of an infinite decimal as a more or less unique representation of a real 

number. An infinite decimal is denoted as ±(𝑁. 𝑐1𝑐2𝑐3 …), where 𝑁 ∈ ℕ ∪ {0} and 𝑐𝑖 ∈ {0, 1, 2, … , 9}. We mainly 

consider nonnegative infinite decimals here, as a negative infinite decimal can be defined as the additive 

inverse of a positive one. We use a part of chapter 8 in the book The mathematics that every secondary school 

math teacher needs to know (Sultan & Artzt, 2018) to outline a possible answer to RQ1.  

An infinite decimal 0. 𝑐1𝑐2𝑐3 …  ∈ [0, 1], where 𝑐1 , 𝑐2 , 𝑐3 … ∈ {0, 1, 2, … , 9} can be rigorously defined by 

0. 𝑐1𝑐2𝑐3 … = ∑ 𝑐𝑖 ∙ 10−𝑖∞
𝑖=1 . It is sufficient to consider the interval [0, 1] because we can get numbers in other 

intervals by adding some integer. The two main results that should be established are (a) ∑ 𝑐𝑖 ∙ 10−𝑖∞
𝑖=1  always 

converges and (b) every 𝑥 ∈ (0, 1) can be written as a unique infinite decimal which does not terminate in 9̅. 

Result (a) means that any infinite decimal makes sense because the infinite series ∑ 𝑐𝑖 ∙ 10−𝑖∞
𝑖=1  always has a 

finite sum, due to convergence properties known from 𝜔ℝ (geometric series). Result (b) begins with the 

converse: any real number in (0, 1) can be written as an infinite decimal. The last part of (b) amounts to prove, 

again from 𝜔ℝ, that 0. 𝑐1 … 𝑐𝑘000 … and 0. 𝑐1 … 𝑐𝑘−1(𝑐𝑘 − 1)999 … represent the same number. The two results 

are divided into three theorems (Sultan & Artzt, 2018) and the corresponding proofs based on 𝜔ℝ can be 

found there too. After this, we can define irrational numbers as infinite decimals that do not represent a 

fraction of integers. It is also proved that irrational numbers correspond exactly to infinite, non-periodic 

decimals. Several examples and exercises related to secondary school mathematics are provided by Sultan 

and Artzt (2018), concerning, for instance, how to find a fraction representation of a periodic infinite decimal 

representation. These praxeologies can, to some extent, eliminate the “missing link” of the two 

representations mentioned before. With this we have outlined the central elements of 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, which forms 

the basis of our answer to RQ1. We now consider how to elaborate on this answer by considering RQ2. 

Computer Algorithms 

Before we answer RQ2, we need to introduce two things: computer algorithms, and more knowledge on 

infinite decimals related to (but exceeding) what is presented by Sultan and Artzt (2018). These two things are 

concretely developed in an assignment (see Appendix A) designed for students and the answer to RQ2 is 

based on students’ answers to the assignment. This assignment contains two parts. The first part is the 

understanding of a given routine. This routine is implemented in Maple and can be used to find the first 10 

digits of √2, one by one.  

It is not a new idea that programming could be a possibly central tool to introduce in undergraduate 

mathematics. As early as 1959, Forsythe (1959) proposed to integrate coding in most of all introductory 

university mathematics. Our aim with the assignment was not quite as ambitious. The aim of introducing the 

Maple based routine is to show how to compute the decimals of certain well-known irrational numbers by 

elementary computations (relying only on the four operations with finite decimals, and on evaluating 

inequalities of rational numbers) that could in principle be carried out manually. The routine merely allows us 

to speed up the calculation. Producing the decimal representation of √2 is a secondary school task, carried 

out there with calculators, but seeing how it could be done concretely is not a common experience in 

secondary school. Thus, the new technique contributes to the praxis block in 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, while considering its 

justification and consequences contributes to its logos block. 

No matter which way we use, computer or pen-and-paper, we usually cannot specify all of the decimal 

representation of an irrational number. Therefore, we usually use an approximate decimal to represent an 

irrational number and this approximate decimal is a rational number. Let 𝑥 = 𝑁. 𝑐1𝑐2𝑐3 … be an infinite decimal 

where 𝑁 ∈ ℕ and 𝑐𝑖 ∈ {0, 1, 2, … ,9} for all 𝑖 ∈ ℕ. We denote by 𝑥(𝑛) the 𝑛 digits approximation of 𝑥, so 𝑥(1) =

 𝑁. 𝑐1 = 𝑁 +
 𝑐1

10
 , 𝑥(2) = 𝑁. 𝑐1𝑐2 =  𝑁 +

 𝑐1

10
+

𝑐2

100
,…, 𝑥(𝑛) = 𝑁. 𝑐1𝑐2𝑐3 … 𝑐𝑛 = 𝑁 + ∑ 𝑐𝑖 ∙ 10−𝑖𝑛

𝑖=1 . Obviously {𝑥(1), 𝑥(2), 

…, 𝑥(𝑛), …} is a monotone bounded sequence, so the limit of this sequence exists and is in fact equal to 𝑥. This 

is connected to the content in the previous subsection and justifies the praxis block.  

In this routine we use the polynomial 𝑓(𝑥) = 𝑥2 − 2 whose unique positive root is √2. Since 𝑓 is increasing 

on (0, ∞), and we have 𝑓(1) = −1 < 0 and 𝑓(2) = 2 > 0, it follows from the intermediate value theorem (𝜔ℝ) 

that √2 is located in (1, 2). Similar basic reasoning shows that √2 is in (1.4, 1.5). Therefore, the first decimal of 

√2 is 4. The routine uses two loops to repeat this process until it finds all first 10 decimal digits of √2. First of 

all, the initial value (which is called 𝐾 here) should be set to 1, the integer part of √2 according to the above. 
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In the routine, 𝑖 is used to number the decimals that we aim to find, and this is the “external” loop. The number 

of the decimal digits to be produced can be modified by the users (in the assignment, we set it so as to find 

the first 10 decimal digits of √2). Considering that our focus is on the decimal part, we simplified the routine. 

Now, let us turn to the “inner” loop, where 𝑗 ∈ {0, 1, 2, … , 9} and 𝑗 ∙  10−𝑖 represents a potential 𝑖th decimal 

contribution to the sum. When (𝐾 + 𝑗 ∙  10−𝑖)
2

− 2 ≤ 0, the computer will save the last value 𝑝 = 𝐾 + 𝑗 ∙  10−𝑖 

and continue to increment 𝑗 until (𝐾 + 𝑗 ∙  10−𝑖)
2

− 2 ≥ 0. After the if- condition is satisfied, the value of the 

sum 𝐾 will be updated for the next 𝑖 and the computer will print the value 𝑥(𝑖) which is equal to 𝑝 = 𝐾 + 𝑗 ∙

 10−𝑖 (Maple by default gives a fraction form of 𝑝, so we have to use the evalf-command to transform 𝑝 to a 

(finite) decimal form; no “rounding” is done here. The number of digits produced by the evalf-command 

includes the integer part, so we need to use 𝑖 + 1). In general, for each 𝑖, the “inner” loop will produce a new 

𝐾 and an 𝑥(𝑖) (In order to only show 𝑥(𝑖) in the final result, we use “:” to make 𝐾 invisible). 

The main part of this routine is the “inner” loop (the “external” loop is mainly used to determine the 

position of the decimal digits). In this loop, we can get that for each 𝑥(𝑖), one has 𝑥(𝑖)2 − 2 ≤0 and 

(𝑥(𝑖) + 10−𝑖)2 − 2 ≥ 0. Therefore, by results known from 𝜔ℝ, lim
𝑖→∞

𝑥(𝑖) = √2. The proof of the limit is a part of 

what students could produce as an answer to question b) in the assignment. We also hope students could 

associate with the intermediate value theorem for continuous functions as they explain the working of this 

routine. A complementary visualized explanation from students to this routine is also asked for (question c)); 

indeed, using Maple to “visualize” difficult points forms part of what could reasonably be expected from 

teachers’ relationship to instrumented techniques. 

Addition of Infinite Decimals  

The real numbers are not simply to be computed digit by digit; we also need to consider operations with 

real numbers, which leads to difficulties in the case of decimal representations. To add two integers or finite 

decimals numbers, the algorithm learnt in primary school is to add digits from the last position on the right 

(possibly “carrying over” exceeding digits). For some infinite decimals like irrational numbers, this way does 

not work. Can we add with approximate decimals of numbers? To be concrete, two irrational numbers, 0.1234 

… and 0.8765 …, the sum of their first four decimal digits is 0.9999. If the sum of their 5th decimal digits is more 

than nine, the first four decimal digits of the new sum will turn out not be 9’s but 0’s. Some students may have 

become aware of this problem while studying decimals, or their teachers could have mentioned this in 

secondary school. The investigation about how students use the computer algorithms above to address this 

question from the new university level construction is also a part of our answer to the first part of RQ2. 

We need to introduce some notation from the first part of the assignment. Let 𝔻𝑛 = {10−𝑛𝑦: 𝑦 ∈ ℤ} for 𝑛 ∈

ℕ and 𝔻 = ⋃ 𝔻𝑛𝑛∈ℕ . We denote by 𝔻∞ the set of formal expressions ±(𝑁. 𝑐1𝑐2𝑐3 …) where 𝑁 ∈ ℕ ∪ {0} and 𝑐𝑖 ∈

{0, 1, 2, … , 9}, and by 𝔻0 be the set of formal expressions ±(𝑁. 𝑐1𝑐2 … 𝑐𝑗0000 … ) where 𝑁 ∈ ℕ ∪ {0} and 𝑐1 … 𝑐𝑗 ∈

{0, 1, 2, … , 9}. Clearly we can interpret numbers in 𝔻∞\ 𝔻0 as real numbers based on the above (the 

representation being furthermore unique). Let 𝑥, 𝑦 ∈ 𝔻∞\ 𝔻0. Through calculation (by computer or pen-and-

paper), we can only get 𝑛 digits approximation of 𝑥 and 𝑦, denoted by 𝑥(𝑛) and 𝑦(𝑛) where 𝑥(𝑛), 𝑦(𝑛) ∈ 𝔻𝑛. 

For each 𝑛 we can form 𝑧(𝑛) = 𝑥(𝑛) + 𝑦(𝑛). When 𝑛 goes to infinity, one has that lim
𝑛→∞

𝑥 (𝑛) + lim
𝑛→∞

𝑦 (𝑛) =

lim
𝑛→∞

𝑧(𝑛) determines some number 𝑤 in 𝔻∞\ 𝔻0. But we have not, thereby, reduced addition on 𝔻∞\ 𝔻0 to the 

addition on 𝔻; but we cannot know if “carry overs” will lead to a failure of the following equation: 

𝑥(𝑛) + 𝑦(𝑛) = 𝑤(𝑛), for any 𝑛 ∈ ℕ.                                                                                                                                     (3) 

This quandary is not treated in any depth by Sultan and Artzt (2018). We hope this quandary would be 

discovered by students through working with the example in e) and f) of the assignment in Appendix A. This 

will then develop students’ technical and theoretical knowledge related to the non-trivial addition of two 

infinite decimals.  

In the question e) of the assignment in Appendix A, students were concretely asked to discuss the sum of 

√2 and √3. If we regard √2 + √3 as one number, which is still an irrational number, the above routine can be 

adapted to produce the first 10 (or more) decimal digits of √2 + √3 . The main job for students is to find a 

polynomial with √2 + √3 as root, and with integer coefficients (in order to remain with finite decimals in the 

algorithm). The simplest candidate, found by many students (following a technique known from exercises in 
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the textbook) is 𝑝(𝑥) = 𝑥4 − 10𝑥2 + 1. Now, let 𝑥 = √2, 𝑦 = √3 and 𝑤 = √2 + √3. Students were expected to use 

the above routine to find 𝑥(𝑛), 𝑦(𝑛) and 𝑤(𝑛) for 𝑛 from 1 to 10. When 𝑛 = 6, we will get 𝑥(6) + 𝑦(6) = 3.146263 

and 𝑤(6) = 3.146264, which means 𝑥(6) + 𝑦(6) ≠ 𝑤(6). This shows concretely that the equation (3) does not 

always hold, and that is the point which students are asked to make in question f).  

It is clear that the use of computers to answer the last question greatly saves time and in practice enables 

getting to the point above. Students’ didactical knowledge gained from this assignment will be analyzed later.  

CONTEXT AND METHODOLOGY 

We conducted an experiment to investigate the two research questions presented above in a course called 

UvMat, which is taught for future mathematics teachers in secondary school at the University of Copenhagen 

(Denmark). UvMat is not a mandatory course, and it involves 20-30 students each year, a professor who plans 

the course and gives the lectures, and a teaching assistant (TA) who is in charge of exercise classes and of 

grading assignments. In Denmark, high school teachers have to qualify in two subjects, one is called “major” 

and is studied for about three years, the other is the “minor” and is studied for about two years. Most 

participants in UvMat study mathematics as a minor, in addition to their major subject (such as physics) and 

will then be authorized to teach these subjects in high school. Due to the shortage of authorized teachers, 

some of them already have some experience with part-time high school mathematics teaching. The aim of 

this “capstone course” is to help future teachers to consider high school mathematics from an advanced 

standpoint, according to Klein’s (2016) expression. This kind of “capstone course” thus aims to strengthen the 

connections between praxeologies met in high school and at university. Throughout the course, students 

attend lectures and exercise classes (in Danish), following the textbook (Sultan & Artzt, 2018), and they also 

do mandatory written assignments in groups (in Danish), every week.  

The fourth week of UvMat is based on the second part of chapter 8 of the textbook, dealing with decimal 

representation of real numbers. We designed a group assignment (called WA4) with six questions for this 

week (the full text is included here as an appendix which the original version is in Danish). Our study is 

designed to investigate RQ2 by analyzing data collected from students’ written answers to WA4 and the 

interviews with students. Our answer to RQ1 (see the previous section) outlines what students could learn 

from lecture and textbook and is part of the background for WA4.  

The first question in RQ2 is analyzed from the logos blocks that were used by students to explain the given 

computer algorithm (question b) and c) in WA4 and their observations related to the addition of infinite 

decimals with the help of this computer algorithm [question f] in WA4). Eight groups’ answers to WA4 from 

students were received. First, we reviewed their answers to question b) and c) which asked students to explain 

the given routine in two ways: mathematical proof, and visualization. Our analysis focused on two aspects: 

what university-level knowledge the students applied, and how students made use of this knowledge. 

Secondly, we reviewed students’ answers to question f). The analysis of students’ answers considered their 

extent to which they can apply the mathematical theory of the course to explain observations from using the 

routine on the given concrete case. In addition, we also interviewed five students from five different groups 

who had volunteered to participate. The purpose of the first part of the interviews is to further understand 

the written answers given by the students. For example, some groups post similar visualizations to question 

c), but without a clear description, so the rationales and intentions behind those visualizations could still differ. 

In the interview, they got another chance to explain what they want to express through the visualizations and 

how it is, for them, connected to the given routine. In addition, there were also some errors that appeared in 

students’ written answers to question f), where we could not decide whether they are due to calculation 

mistakes or more conceptual problems, as many groups did not show how they get to their answers. So, in 

the beginning of the interview, students were asked to elaborate on their answers to question c) and f), which 

was used to complement our previous analysis for the first question of RQ2. The last part of the interviews 

relate to more general questions relating to the purpose of the assignment and its relation to the rest of the 

course. 

UvMat does not aim to impart didactical knowledge, but we still expected that students could develop 

some didactically relevant knowledge from WA4. Question f) was designed not only to investigate the addition 

between two infinite decimals, but also to identify the theoretical perspectives that students could develop 
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from exploring this question (the second question of RQ2). To investigate the perspectives and views of 

students emerging from their work with WA4, we asked relatively broad questions in the interviews such as: 

what did you learn from working with WA4? and what is the relation between WA4 and mathematics teaching 

in high school? Our analysis for the second question of RQ2 was based on their answers to such questions 

(and follow up questions) raised during the interview.  

RESULTS 

Students’ Work With the Given Computer Algorithm 

In question b), we asked students to solve the tasks: Explain what the routine does, why 𝑥(𝑛) ∈ 𝔻n, and 

why 𝑥(𝑛) → √2. The main challenge of question b) is explaining the convergence of 𝑥(𝑛). Therefore, in 

students’ answers, the university-level notions involved were “sequence” and “limit of sequences”. However, 

students use these notions in similar and rather informal ways in their answers. We found that seven groups 

did not give a formal argument (as hoped for) but explained the convergence informally, like merely 

summarizing what they observed from the numbers produced by running the routine. Such empirical reasons 

are common in secondary school but are not acceptable in most undergraduate mathematics courses. A 

typical example of an explanation is this answer from one group:  

In this way, the routine finds, for each decimal added, the decimal number that is closest to √2 from 

below. We thus form a sequence of numbers 𝑥(𝑛), where 𝑛 is the number of decimals, and 𝑥(𝑛) 

converges towards √2. That is lim
𝑛→∞

𝑥(𝑛) = √2 (translated from Danish). 

Only one group solved this task as we explained in the former section by using the definition of limit:  

We will now show that lim
𝑛→∞

𝑥(𝑛) = √2. By construction, 𝑥(𝑛) ≤ √2 for all 𝑛, as in the code, we only 

add decimals as long as the number is smaller than √2. Furthermore, the decimal which is added 

in the 𝑛th decimal is the largest number for which the output remains under √2, so if you add 10−𝑛, 

you will get above √2. Therefore, 𝑥(𝑛) + 10−𝑛 ≥ √2. If we put this together, we can get 𝑥(𝑛) ≤ √2 ≤

𝑥(𝑛) + 10−𝑛, which is the same as 0 ≤ √2 − 𝑥(𝑛) ≤ 10−𝑛. That means |√2 − 𝑥(𝑛)| ≤ 10−𝑛. So, for any 

𝜀 > 0, we have |√2 − 𝑥(𝑛)| <  𝜀, for all 𝑛 > 𝑙𝑜𝑔10(
1

𝜀
). So, for all 𝜀 > 0, there is 𝑁 ∈ ℕ such that 

|√2 − 𝑥(𝑛)| <  𝜀 when 𝑛 > 𝑁. This means exactly lim
𝑛→∞

𝑥(𝑛) = √2 (translated from Danish). 

In general, students do have a strong tendency to prefer informal explanations based on secondary school 

mathematical conceptions even though the concept of sequence only appears at university in Denmark–not 

in high school. This situation can be attributed to students not putting themselves in the right position, as 

university students about to deepen their knowledge of high school mathematics. When they were facing 

what they perceive as a secondary school task, without being given specific directions for what to do, most 

students act as high school students 𝑠 rather than preservice students 𝜎𝑓𝑡 at university. They did not 

spontaneously consider that it is necessary or useful to draw on university level methods. In addition, this 

also reflects the lack of coherence, perceived by students, between logos blocks (from 𝜔ℝ ) and praxis blocks 

(from 𝑜ℝ). Therefore, this type of exercise helps with the construction of 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and thus the transition (2). 

We also asked students to explain the routine in another way (question c): use Maple to produce a visual 

explanation of how the routine works. Similar with question b), the pertinent university level knowledge in 

question c) is about sequences and continuity, and we focus on whether students’ answers draw on such 

knowledge,. All groups used the point plot to show first 10 elements of the sequence {𝑥(𝑛)}𝑛=1
∞ , which can be 

done easily after running the routine. Students used this way to illustrate the convergence 𝑥(𝑛) → √2 , as 

visualization of their explanations in question b). To explain this convergence, some groups combined the 

point plot with a function plot for 𝑥 ↦ 𝑥2 − 2. Another common way is to superpose the point plot with a plot 

of the line 𝑦 = √2 where we can see the 10 points are closer and closer to this line. One group superposed 

the graph of the function 𝑦 = 𝑥2 − 2 and the ten points (𝑥(1), 𝑦(𝑥(1))) , … , (𝑥(10), 𝑦(𝑥(10))), showing how they 

get closer and closer to the zero (√2, 0) of 𝑦. Even though this group had plotted the function 𝑦 = 𝑥2 − 2 on 

the interval (0, 1.42), after the fourth point it is no longer possible to see the changes between points. This 
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problem was also indicated in the group’s answer. In fact, this problem also occurred on figures with the 

added line 𝑦 = √2. One of the groups solved this problem with three local zooms of the figure. 

The visualizations above emphasize the sequence produced by the routine, rather than how the routine 

actually works (the two loops) and why (intermediate value theorem). Two of the groups made up for this by 

also presenting another kind of point plot (e.g., Figure 1), to explain how the “inner” loop works. Figure 1 

shows how the “inner” loop determines 𝑥(1), by stopping as it “overshoots” and returning the previous value. 

In fact, Figure 1 only compared (𝐾 + 𝑗 ∗ 10−𝑖) with √2 when 𝑖 = 1, which simplified from the if-command in the 

routine (which compares, in fact, (𝐾 + 𝑗 ∗ 10−𝑖)
2

− 2 with 0). The “inner” loop stops when it finds some 𝑗 such 

that (𝐾 + 𝑗 ∗ 10−𝑖)
2

− 2 > 0 and that is why in Figure 1, the sequence stops at 𝑗 = 5. 

 

Figure 1. The point plot that shows how the “inner” loop of the routine determines 𝑥(1) (Source: Author’s 

own elaboration) 

Although we think most visualizations fail to substantially address “how the routine works”, students were 

quite confident about their work, when asked to explain it during interviews. They believed the figures match 

their explanation of the routine. One student described their figure in the interview as: “… it made good sense…” 

Many groups also, verbally, explained details in the coding of the routine, like why 𝐾 starts from 1, but this 

was not visualized. From the explanations both in their answers and interviews, students thought the routine 

is used to create the sequence and thus, the convergence is, to them, the most important aspect of the 

routine. Therefore, the point plot which shows the subsequence of  {𝑥(𝑛)}𝑛=1
∞  appears sufficient for students. 

Still, we think that merely showing a visualization of the outcome or product of the routine does not really 

correspond to the normal understanding of “visualizing how the routine works” (the process that produces 

the outcome or product). 

In addition to the students’ capacity of reading the routine, question c) also requires students to use simple 

codes from Maple by themselves. Students’ competence to use computer tools influenced their creation of 

the visualizations. In the interviews, all participants were satisfied with the content of their figures, but they 

still thought the figure itself could be improved. One interviewee said his group considered to use an 

animation to show the “inner” loop and the final subsequence, but they failed to realize that idea. Though all 

students had some experience with Maple before UvMat, the interviewees still recognized that they spent 

more time on tedious details of how to make a figure than on how to understand the routine. One student 

described the main difficulty in answering question c) as related to names of colors in Maple:  

“… I was not sure which colors Maple has. That was something I could not find easily, and I was not 

sure how to program the colors …” 

Questions d) and e) serve to extend students’ work with the routine, and to prepare question f). The first 

half of question d) prompts students to activate their knowledge of the intermediate value theorem, which 

clearly belongs to university mathematics. This theorem, in fact, guarantees the success of the routine. The 
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second part of question d) and e) asked students to use the routine to find approximate decimals of √3 and 

√2 + √3 respectively. All groups were able to modify the routine to get correct answers. Question e) also 

examined students’ knowledge of polynomial which typically presents at university. We will use the results 

obtained in question d) and e) by students and analyze their answers for question f) in the next subsection.  

Students’ Work on the Addition of Infinite Decimals 

The last question of the assignment is: f) investigate what the results from b), d), and e) tell you about 

addition on 𝔻∞\ 𝔻0. This is a very open question. It does not require new applications of the routine, but 

rather to reflect on previous results. As explained before, the point of this question is that addition and 

approximation to finite decimal do not commute: with 𝑥 = √2, 𝑦 = √3 and 𝑤 = √2 + √3, we may have 𝑥(𝑛) +

𝑦(𝑛) ≠ 𝑤(𝑛). In fact, students computed 𝑥(1) to 𝑥(10) using the given routine in b), 𝑦(1) to 𝑦(10) in d) and 𝑤(1) 

to 𝑤(10) in e). Comparing, they could notice that 𝑥(6) + 𝑦(6) ≠ 𝑤(6).  

To explain this phenomenon, the students can combine knowledge from 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. On the one hand, we 

know from practice with calculators that something which ought to be 0 sometimes end up as something 

which is not zero. On the other hand, the theoretical model of real numbers as infinite decimals does not 

offer an easy way to describe the basic operations like addition: we cannot add “from the right” and adding 

from the left may lead to errors (as in the case above).  

Six groups pointed out the “unusual” addition. Three of them showed the comparison of 𝑥(𝑛) + 𝑦(𝑛) and 

𝑤(𝑛) on Maple and found the special case when 𝑛 = 6 as we expected (e.g., Figure 2). However, the other 

three groups did not show any examples, but they all pointed out that two infinite decimals cannot be added 

decimal by decimal. We interviewed two students from these groups. One of them was not happy with this 

answer because they did not see what the question required from them. According to this student they 

compared the data obtained from the previous questions both by hand and Maple, and noticed 𝑥(6) + 𝑦(6) ≠

𝑤(6), but then struggled to explain the phenomenon, considering if it might be related to the possibility of 

equivalent decimal representations which terminate in infinite numbers of 9’s or 0’s.  

 

Figure 2. An example from one group that how to find the “unusual” addition by Maple (reprinted with 

permission of the students) 

In fact, this concern is irrelevant because the question was restricted to the set 𝔻∞\ 𝔻0, which avoids 

decimals with nothing but 0’s in the end. The other student was very satisfied with the given answer and 

thought there was no need to put more effort into question f) because the conclusion they gave was obvious. 

In this group they did not compare the results from previous questions because they believed cases like 𝑥(6) +

𝑦(6) ≠ 𝑤(6) were not a surprise. As the student from this group said  

“… it makes sense, but we did not think we have to do it …” 

In addition to the above-mentioned six groups, there were also two groups that produced entirely 

misleading answers. One of the groups presented their conclusion after comparing 𝑥(𝑛) + 𝑦(𝑛) and 𝑤(𝑛) thus:  
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After looking at the different decimal numbers, it is the same whether you first take the different 

decimal expansions separately or you take it together …” (translated from Danish).  

One possible reason for this answer is that students did not carefully compare the data. Another group did 

not pay attention to the comparison between 𝑥(𝑛) + 𝑦(𝑛) and 𝑤(𝑛). They gave the following answer: 

“… If we combine the three observations, these examples indicate that addition in 𝔻∞\ 𝔻0 is a closed 

operation, since the sum of two elements from 𝔻∞\ 𝔻0 is again an element in 𝔻∞\ 𝔻0. This is 

consistent with that 𝔻∞\ 𝔻0 is isomorphic with ℝ (question a)), which is closed during addition …” 

(translated from Danish). 

We can see this group was trying to answer question f) at a theoretical level using ideas (about properties 

of operations) learnt at university, but there are two problems in their answer. Firstly, all results from the 

routine are finite decimals which means the addition between these decimals happened in 𝔻𝑛. Students could 

not get any results about addition in 𝔻∞\ 𝔻0 directly from such observations but they could consider the “cut 

off” map 𝜑: 𝔻∞\ 𝔻0 →  𝔻𝑛 given by 𝜑(𝑥) = 𝑥(𝑛). Then the question would turn into looking at whether 𝜑(𝑥 + 𝑦) 

equal to 𝜑(𝑥) + 𝜑(𝑦). Obviously, from the same case (𝑛 = 6), the equation does not always hold, so that (in 

university language) 𝜑 is not a homomorphism. Secondly, the operation on ℝ can be transferred to 𝔻∞\ 𝔻0 

because there exists a bijection between 𝔻∞\ 𝔻0 and ℝ (proved in question a)) so that, trivially 𝔻∞\ 𝔻0 is 

isomorphic with ℝ when endowed with this addition. But the results to be considered for question f) suggest 

that students should think about whether the addition on 𝔻∞\ 𝔻0 could be defined directly using decimals. 

This, however, is far from straightforward, as the examples show. From the interview of one student of this 

group, we know that they did not really reflect on this difficulty. The way they thought about this question 

falls short of university level standards and also lacks links to praxis block of secondary school mathematics 

(as we will now detail).  

Students’ Mathematical and Didactical Knowledge From the Assignment 

Finally, how could the knowledge have developed from students’ work on this assignment support 

teaching–as integrated mathematical and didactical knowledge? One of the purposes of this assignment is to 

help students think about how computers and calculators handle infinite decimals. We all understand that 

infinite decimals cannot be completely displayed by a computer, so the computer has to somehow convert 

infinite decimals into finite decimals. In particular, irrational numbers are handled as a special kind of rational 

numbers. This transformation could cause computers to make apparent errors when they operate on 

irrational numbers (e.g., question f). Indeed, secondary school teachers in Denmark need to manage pupils’ 

use of CAS in relation to real numbers. How can a teacher deal with infinite decimals on CAS when they teach 

real numbers? The routine given in the assignment allows students to take a look into a possible procedure 

for directly calculating the first 10 decimal digits of √2 (and, in fact, a wide range of zeros of other given 

functions). Although we do not consider the actual algorithms behind commands such as “sqrt” (square root) 

or “solve”, the routine opens up the “black box” to some extent. This could help future teachers reflect on how 

computers may more generally handle real numbers. In addition, the discussion about addition on infinite 

decimals could also help teachers understand why this sometimes leads to strange-looking results. 

However, not all students saw the didactical relevance of WA4 as we would like them to. When we asked 

students about the relation between this assignment and secondary school teaching during interviews, only 

one student’s response directly involved the representation of infinite decimals on computers and suggested 

that secondary school teachers  

“should be able to figure out when Maple is good to use and when it is not.”  

Whereas other interviewees gave a neutral answer like  

“… no matter what you teach, it is always a good thing to know more than you actually need …”  

or claimed that this assignment is beyond the secondary mathematics level,  

“… the curriculum of high school students is very far from this …” 
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Students did not mention question c) about visualizing the algorithm when asked to identify the main 

points of the assignment. We consider this question may have been too open or technically demanding to 

really contribute to their relation of type 𝑅𝑈(𝜎𝑓𝑡 , 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅).  

Students’ responses in the interview did not reflect much awareness about the didactical implications of 

the assignment. It would require further research to evaluate if and how working with such interface tasks 

could nevertheless leave an impact on students’ subsequent teaching practice. 

DISCUSSION 

How can a course like UvMat support the development of secondary school mathematics? More 

specifically, to what extent can achieved new relationships 𝑅𝑈(𝜎, 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) improve their future teaching? Our 

data does not shed light on this, but the relation between teachers’ knowledge and school teaching is not a 

new topic. For example, Hill et al. (2005) found teachers’ mathematical knowledge (close to the mathematics 

they teach) has a significant effect on their students’ achievement at primary level in USA. From a more global 

point, the teacher education and development study in mathematics (TEDS-M) conducted surveys about 

teacher education within 17 countries, which included future teachers at secondary level (Krainer et al., 2015). 

Schmidt et al. (2011) reexamined the data from 2010 TEDS-M and focused on middle school teachers’ course 

taking. Their results indicate that high performing teacher education programs include both general 

undergraduate mathematics courses and also courses which, like UvMat, focus more specifically on 

mathematics for teaching. But these studies all consider mathematical knowledge in very broad categories, 

and it is a completely open question how work with specific school mathematical themes like the real number 

system in practice contribute to teaching related to those themes.  

CONCLUSION 

Our brief analysis of the students’ answers and interviews with them, suggests that problem situations 

involving simple CAS-routines could be a promising setting for applying university mathematics on high school 

level problems related to real numbers, but that this does not necessarily develop new, didactically relevant 

knowledge. Indeed, we found that when we do not clearly indicate the direction of problem solving, some 

students do not draw properly on university knowledge, but resort to informal or misguided explanations 

rooted in their high school experience. Further research is needed to explore how problems could be 

designed in order to reduce or eliminate this kind of regression.  

To summarize our answer to RQ1, the main idea is to explore the definition of real numbers as ‘infinite 

decimals’ in terms of infinite, convergent sums of fractions. This turns out to be a challenging approach for 

students, in particular when confronted with special cases where these sums are computed step by step using 

a computer routine, and do not add up as expected. Indeed, our observations in relation to RQ2 suggest (as 

developed in more detail in previous sections) that students struggle to explain the subtle difficulties that 

arise with addition and, more generally, with the operations on real numbers in this approach. Nevertheless, 

this approach is highly relevant to understand the shortcomings of computers and calculators when it comes 

to numerical computations with real numbers. 

Indeed, with the increasing use of digital tools in high school mathematics, it becomes problematic if 

teachers have no idea of the connections–and differences–between theoretical mathematics (in particular, 

real numbers and their operations) and the representations and operations which such tools offer. We should 

also note that the first answers by students, considered here, were not the end of their work with the 

assignment: incorrect or incomplete answers had to be reworked in order for the assignment to be accepted. 

Confronting students with inadequacies or insufficiencies in their initial answers, and prompting them to 

submit acceptable ones, certainly leads the students to realize how advanced mathematical viewpoints can 

be used to think about subtleties in what appears, initially, to be elementary and somewhat trivial. To make 

students realize the need to question and analyze outputs from digital tools–as well as to look into how they 

are or may be produced–is one important goal which assignments, such as the one considered, may 

contribute to achieve. 



 

Huo 

294 European Journal of Science and Mathematics Education, 11(2), 283-296 

 

Author contributions: All authors were involved in concept, design, collection of data, interpretation, writing, and 

critically revising the article. All authors approve final version of the article.  

Funding: The authors received no financial support for the research and/or authorship of this article. 

Acknowledgements: The author would like to thank all people who were involved in this paper, especially to her 

supervisor, Professor Carl Winsløw, for his valuable suggestions and instructions in this study. This study would not 

have been possible without the support of the University of Copenhagen. 

Ethics declaration: Author declared that the study did not involve any personal identified or sensitive data and to 

satisfy standard ethical principles, individual students have been completely anonymized in this paper. All participants 

knew the purpose of the study before the data collection, and they gave permission to use the data that was obtained. 

The author further declared that the interviews were conducted through voluntary participation. 

Declaration of interest: Authors declare no competing interest. 

Data availability: Data generated or analyzed during this study are available from the authors on request. 

REFERENCES 

Barquero, B., & Winsløw, C. (2022). Preservice secondary school teachers revisiting real numbers: a striking 

instance of Klein’s second discontinuity [Manuscript submitted for publication]. University of Copenhagen. 

Bergé, A. (2010). Student’s perception of completeness property of the set of real numbers. International 

Journal of Mathematical Education in Science and Technology, 41(2), 217-227. 

https://doi.org/10.1080/00207390903399638 

Chevallard, Y. (2019). Introducing the anthropological theory of the didactic: An attempt at a principled 

approach. Hiroshima Journal of Mathematics Education, 12, 71-114.  

Durand-Guerrier, V. (2016). Conceptualization of the continuum, an educational challenge for undergraduate 

students. International Journal of Research in Undergraduate Mathematics Education, 2, 338-361. 

https://doi.org/10.1007/s40753-016-0033-2 

Forsythe, G. E. (1959). The role of numerical analysis in an undergraduate program. The American Mathematical 

Monthly, 66(8), 651-662. https://doi.org/10.2307/2309339 

González, M. F., Kuzniak, A., Delgadillo, E., & Vivier, L. (2019). Two situations for working key properties of R. 

In U. T. Jankvist, M. Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the 11th Congress of the 

European Society for Research in Mathematics Education (pp.2492-2493). ERME.  

González-Martín, A. S., Giraldo, V., & Souto, A. M. (2013). The introduction of real numbers in secondary 

education: An institutional analysis of textbooks. Research in Mathematics Education, 15(3), 230-248. 

https://doi.org/10.1080/14794802.2013.803778 

Gyöngyösi, E., Solovej, J. P., & Winsløw, C. (2011). Using CAS based work to ease the transition from calculus 

to real analysis. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the 7th Congress of the 

European Society for Research in Mathematics Education (pp. 2002-2011). ERME.  

Hill, H. C., Rowan, B., & Ball, D.L. (2005). Effects of teachers’ mathematical knowledge for teaching on student 

achievement. American Educational Research Journal, 42(2), 371-406. https://doi.org/10.3102/ 

00028312042002371 

Klein, F. (2016). Elementary mathematics from a higher standpoint: Volume I: Arithmetic, algebra, analysis (G. 

Schubring, Trans.). Springer. https://doi.org/10.1007/978-3-662-49439-4 

Krainer, K., Hsieh, F. J., Peck, R., & Tatto, M. (2015). The TEDS-M: Important issues, results and questions. In S. 

J. Cho (Ed.), Proceedings of the 12th International Congress on Mathematical Education (pp. 99-121). Springer. 

https://doi.org/10.1007/978-3-319-12688-3_10 

Lagrange, J. B. (2005). Using symbolic calculators to study mathematics: The case of tasks and techniques. In 

D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators: Turning a 

computational device into a mathematical instrument (pp. 113-135). Springer. https://doi.org/10.1007/0-

387-23435-7_6 

Schmidt, W. H., Houang, R., & Cogan, L. S. (2011). Preparing future math teachers. Science, 332(6035), 1266-

1267. https://doi/10.1126/science.1193855 

Sultan, A., & Artzt, A. F. (2018). The mathematics that every secondary school math teacher needs to know. 

Routledge. https://doi.org/10.4324/9781315391908 

https://doi.org/10.1080/00207390903399638
https://doi.org/10.1007/s40753-016-0033-2
https://doi.org/10.2307/2309339
https://doi.org/10.1080/14794802.2013.803778
https://doi.org/10.3102/00028312042002371
https://doi.org/10.3102/00028312042002371
https://doi.org/10.1007/978-3-662-49439-4
https://doi.org/10.1007/978-3-319-12688-3_10
https://doi.org/10.1007/0-387-23435-7_6
https://doi.org/10.1007/0-387-23435-7_6
https://doi/10.1126/science.1193855
https://doi.org/10.4324/9781315391908


 

 European Journal of Science and Mathematics Education, 2023 

European Journal of Science and Mathematics Education, 11(2), 283-296 295 

 

Winsløw, C. (2011). Anthropological theory of didactic phenomena: Some examples and principles of its use 

in the study of mathematics education. In M. Bosch, J. Gascón, A. Ruiz-Olarría, M. Artaud, A. Bronner, Y. 

Chevallard, G. Cirade, C. Ladage, & M. Larguier (Eds.), Un panorama de la TAD [An overview of the TAD] (pp. 

117-140). Centre de Recerca Matemàtica [Center for Mathematical Research]. 

Winsløw, C. (2013). The transition from university to high school and the case of exponential functions. In B. 

Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of 8th Congress of the European Society for Research in 

Mathematics Education (pp. 2476-2485). ERME. 

Winsløw, C., & Grønbæk, N. (2014). Klein’s double discontinuity revisited: Contemporary challenges for 

universities preparing teachers to teach calculus. Recherches en Didactique des Mathématiques [Research 

in Didactics of Mathematics], 34(1), 59-86.  

Zazkis, R., & Sirotic, N. (2004). Making sense of irrational numbers: Focusing on representation. In M. Høines, 

& A. B. Fugelstaed (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of 

Mathematics Education (pp. 497-504). PME. 

 

  



 

Huo 

296 European Journal of Science and Mathematics Education, 11(2), 283-296 

 

APPENDIX A: WEEK ASSIGNMENT 4 

 
    (Source: Author) 

 

❖ 


	INTRODUCTION
	THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS
	MATHEMATICAL CONTEXT
	Real Numbers Represented as Infinite Decimals
	Computer Algorithms
	Addition of Infinite Decimals

	CONTEXT AND METHODOLOGY
	RESULTS
	Students’ Work With the Given Computer Algorithm
	Students’ Work on the Addition of Infinite Decimals
	Students’ Mathematical and Didactical Knowledge From the Assignment

	DISCUSSION
	CONCLUSION
	REFERENCES
	APPENDIX A: WEEK ASSIGNMENT 4

