
 
 

 
www.ijemst.net 

K-8 Preservice Teachers’ Statistical 
Thinking When Determining Best 
Measure of Center 
 
 
Ha Nguyen  
California State University Dominguez Hills, United States 
 
Eryn M. Maher  

Georgia Southern University, United States 
 
Gregory Chamblee  
Georgia Southern University, United States 
 
Sharon Taylor  

Georgia Southern University, United States 
 
 
 

 
 
 
 
 
To cite this article:  
 
Nguyen, H., Maher, E. M., Chamblee, G., & Taylor, S. (2023). K-8 preservice teachers’ 
statistical thinking when determining best measure of center. International Journal of 
Education in Mathematics, Science, and Technology (IJEMST), 11(2), 440-454. 
https://doi.org/10.46328/ijemst.2365 
 
 
 
 
 

The International Journal of Education in Mathematics, Science, and Technology (IJEMST) is a peer-
reviewed scholarly online journal. This article may be used for research, teaching, and private study 
purposes. Authors alone are responsible for the contents of their articles. The journal owns the copyright of 
the articles. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or 
damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of 
the use of the research material. All authors are requested to disclose any actual or potential conflict of 
interest including any financial, personal or other relationships with other people or organizations regarding 
the submitted work. 

 

 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 
 

 

http://www.ijemst.net/


 

 
International Journal of Education in Mathematics, Science and Technology 

 

2023, Vol. 11, No. 2, 440-454 https://doi.org/10.46328/ijemst.2365 

 

440 

K-8 Preservice Teachers’ Statistical Thinking When Determining Best 

Measure of Center 
 

Ha Nguyen, Eryn M. Maher, Gregory Chamblee, Sharon Taylor 

 

Article Info  Abstract 
Article History 

Received: 

08 February 2022 

Accepted: 

09 November 2022 

 

 The purpose of this study was to determine K-8 preservice teacher (PST) 

candidates’ statistical thinking when selecting the best center representation for 

the given data. Forty-four PSTs enrolled in a Statistics and Probability for K-8 

Teachers course in a university located in the southeastern region of the United 

States were asked to complete a 2007 National Assessment of Educational 

Progress test item. All 44 PSTs’ data were qualitatively analyzed for correctness 

and statistical thinking strategies used. Findings were that most PSTs either 

incorrectly selected the mean, rather than median, as the best measure of center 

for the given data or did not use appropriate statistical reasoning when explaining 

their answers. Future research includes modifying the explanation component so 

PSTs must better explain their statistical thinking for their choice of best measure 

of center using the context of the problem. Future research could also include 

implementing a pre- and post-test design with the post-test item embedded in the 

final exam. This design will provide additional understanding of how much 

knowledge PSTs bring to the course versus how much they learn in the course and 

provide incentive for giving thoughtful consideration for their answers. 
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Introduction 

 

Statistical concepts have been part of the K-12 curriculum for many years. With publications such as the National 

Council of Teachers of Mathematics (NCTM) An Agenda for Action (NCTM, 1980) and Curriculum and 

Evaluation Standards for School Mathematics (NCTM, 1989), statistics education started coming into the 

mainstream mathematics curriculum. If students needed to learn more statistics, then in-service and pre-service 

teachers needed to also. The American Statistical Association (ASA) and NCTM advocate for high quality 

statistics education for in-service and pre-service teachers (PSTs) in order to develop statistical reasoning skills 

in K-12 students (ASA & NCTM, 2013). Other organizations such as the Association of Mathematics Teacher 

Educators (AMTE, 2017) and Conference Board of Mathematical Sciences (CBMS, 2012) echo the 

recommendations for K-12 teachers’ statistical understanding. Most studies of PST’s statistical knowledge focus 

on understanding mean or median. Estrada et al. (2004) conducted research on 367 PSTs and found many made 

errors regarding the mean despite having previous training in statistics. Leavy and O’Loughlin (2006) found that 
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roughly 25% of PSTs had some form of conceptual understanding but the remainder showed limited procedural 

knowledge. According to Jacobbe and Carvalho (2011), an over-reliance on computation with little focus on 

conceptual understanding has created barriers to statistical reasoning. 

 

To investigate the statistical understanding of PSTs, the study asked one question from the National Assessment 

of Educational Progress (NAEP) test from 2007. PSTs were given a data set, the mean, and median and asked to 

interpret the mean and median and determine the best choice to represent the data. The discussion here is limited 

to the choice of the best representation of the data. The initial review of PST responses consisted of using a 

straightforward rubric of correct, partially correct, or incorrect. While using this system gave a count of PSTs in 

each category, it did not provide an understanding of PSTs’ thinking process in making their choice of best 

measure of center. To better understand the choice process, a more intense review of PST responses began. PST 

responses were sorted, and similar responses grouped together. Further sorting within each main category allowed 

researchers to pinpoint specific conceptual errors and where PSTs encountered difficulties. This deeper analysis 

highlighted flaws in PSTs’ understandings that were not possible simply looking at correct, partially correct, and 

incorrect responses. By examining PST responses as well as an in-depth analysis of their reasoning, a clear picture 

of PSTs’ misunderstandings comes into focus. The discussion of these misunderstandings and implications for 

curricular changes at the PST level follows. The research question was:  

What statistical thinking strategies do PSTs use to justify their answers when determining the best 

measure of center at the end of a statistics and probability course? 

 

Background Literature 

 
NCTM (1989 and 2000) along with the Common Core State Standards for Mathematics (National Governors 

Association Center for Best Practice & Council of Chief State School Officers, 2010) emphasize the need for K-

8 students to master statistical content and thinking. Each of these documents notes having an in-depth knowledge 

of measures of center and their applications are essential. In order for students to master these ideas, prospective 

K-8 teachers must master these ideas (CBMS, 2012; ASA & NCTM, 2013; AMTE, 2017). 

 

“Statistical literacy is no longer a skill relegated to the few. It is essential knowledge required by all that must be 

developed beginning at an early age, continuing throughout one’s school years” (Metz, 2010, p. 19). Chance 

(2002) in a historical review of what constitutes statistical thinking/reasoning noted there was no specific 

definition. However, statistical thinking/reasoning, in general, does involve questioning, justification, and writing 

in your own words and can only be accomplished via problems that test student reflexes, thought patterns, and 

creativity in novel situations (Chance, 2002, p. 12). ASA (2016) guidelines build on this idea. More specifically, 

to develop statistical thinking skills it is crucial to focus on helping students become better educated consumers 

of statistical information. Students not only need content knowledge, but they also need instruction that 

emphasizes the use and interpretation of statistics in everyday life. 

 

The National Assessment of Education Progress (NAEP) has been assessing K-12 students’ measures of center 

knowledge since 1990. In 1990, the question in Figure 1 was asked of 12th graders (NAEP, 1990-8M7 #5). NAEP 
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classified item difficulty as Easy; however, only 69% of students answered the question correctly. 

 

The average weight of 50 prize-winning tomatoes is 2.36 pounds. What is the combined weight, in pounds, of 

these 50 tomatoes? 

A. 0.0472 

B. 11.8 

C. 52.36 

D. 59 

E. 118 (correct answer) 

Figure 1. 1990 NAEP Measure of Center Question 

 

NAEP in 2007 asked eighth graders a statistical thinking question (see Figure 2) that required them to explain 

which statistic is best in a given situation (NAEP, 2007-8M9 #8). NAEP classified item difficulty as Hard. NAEP 

stated the correct answer was: Median. A correct explanation of reasoning was noting “the mean is lowered by 

one low number, 10”. A partial answer was: Median with incomplete, incorrect, or missing explanation OR Mean 

with median explanation. An incorrect answer was: incorrect responses. Six percent answered the question 

correctly, 21 percent answered the question partially correctly and 67 percent answered the question incorrectly. 

 

The table below shows the number of customers at Malcolm's Bike Shop for 5 days, as well as the mean 

(average) and the median number of customers for these 5 days. 

Number of Customers 

at 

Malcom’s Bike Shop 

Day 1 100 

Day 2 87 

Day 3 90 

Day 4 10 

Day 5 91 

Mean (average) 75.6 

Median  90 

 

Which statistic, the mean or the median, best represents the typical number of customers at Malcolm's Bike 

Shop for these 5 days? 

Explain your reasoning. 

Did you use the calculator on this question? Yes No 

Figure 2. 2007 NAEP Measure of Center Question 

 

Teaching Mean and Median in PSTs Textbooks 

 

It is common for K-8 PSTs to take a “Mathematics for Elementary Teachers” course as part of their program of 
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study. Most of these courses use books specifically designed for these students. To see how mean and median 

were covered in elementary PST textbooks, we examined six texts commonly used in pre-service content courses. 

In examining these texts for their treatment of mean, median, and which one is most appropriate there were some 

common themes. In defining the mean, the majority of texts use the formula (O’Daffer et al., 2007; Bennett et al., 

2016; Billstein et al., 2020; Musser et al., 2020). After the mathematical definition, several texts also demonstrate 

balancing as a way to provide context for the mean (Beckmann, 2014; Bennett et al., 2016; Long et al., 2018; 

Billstein et al., 2020).  

 

Texts for K-8 PSTs have a variety of ways to define median. The simplest definition appears in the Billstein et al. 

(2020) text and states the median is “the value exactly in the middle of an ordered set of numbers.” Some texts 

discuss the placement of the median based on whether there are an odd or even number of data points (O’Daffer 

et al., 2007; Long et al., 2014; Bennett et al., 2016). Musser et al. (2020) also bases the definition of median based 

on an odd or even number of data points but describes the position of the median as a formula. After presenting 

definitions of mean and median, each text presents an example with a data set with a clear outlier to demonstrate 

why the median is sometimes more appropriate than the mean as a measure of central tendency. However, after 

this one example, the concept of an appropriate choice is not revisited. In these texts, emphasis is placed on 

computational fluency in finding mean and median. There are no opportunities for students to work with mean 

and median in context. With limited support from texts, it is incumbent on faculty to provide examples not only 

of which measure is most appropriate, but also how to interpret each measure in the specific context of a problem. 

 

Mean and Median Research 

 

Mean and median research has assessed K-12 students’, practicing K-12 teachers’, and pre-service teacher 

candidates’ understanding. The research has consistently found all 3 groups have misunderstandings of these 

concepts with an emphasis on mean understanding. Cai (2000) explored United States (US) and Chinese sixth 

grade students’ understanding and representation of the averaging algorithm using two contextualized problems.  

 

The US and Chinese students were found to use similar strategies (average formula, leveling, and guess-and-

check) with those US and Chinese who used an appropriate solution strategy; the majority of them used the 

averaging algorithm (Cai, p. 852). Tenth graders in Malaysia in nine rural schools were studied to determine 

students’ measures of central tendency knowledge (mean, mode, median). Students were found to have “a high 

level of understanding regarding the definition; a moderate level of understanding regarding the procedure; a low 

level of understanding on properties; and a very low understanding on the problem and representation, as well as 

argument and proof” (Saidi & Siew, 2019, p. 78). Whitaker et al. (2015) tested middle grades and secondary 

students' statistical knowledge. Questions assessing data analysis were found to be the most difficult for students 

to answer. 

 

Estrada et al. (2004) surveyed PSTs to determine their level of statistical knowledge prior to the teaching of a 

statistics unit. Estrada et al. found only 46.9% of PSTs correctly answered a mean question when it included 

outliers. Groth (2009) conducted an online asynchronous case study to document nine practicing elementary and 
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middle grades teachers' conversations about teaching mean, median, and mode. Teachers did not oftentimes 

require students to reason about contextualized data (Groth, 2009, p. 715). A review of research on teachers’ 

understanding of mean found that teacher and student understanding of average was very similar along with an 

exaggerated reliance upon procedural algorithms and a general lack of conceptual understanding by both students 

and teachers” (Jacobbe & Carvalho, 2011, p. 207). 

 

Groth and Bergner (2006) conducted a qualitative study of preservice elementary and middle grades teachers’ 

content knowledge about mean, median, and mode. Most teachers were found to equate the mean with the average 

of a data set and the median described how one calculates the measure only in cases having an odd number of 

values in a data set” (Groth & Bergner, p. 30). Leavy and O’Loughlin (2006) researched elementary teachers' 

understanding of mean. Mastery of computational skills relating to the mean were evident, but all had difficulties 

in applying their knowledge of the mean to unfamiliar tasks (Leavy & O’Loughlin, p. 84). Reaburn (2013) asked 

32 first- and second-year PSTs in Australia to determine the best measure between mean and median in a 

contextualized problem. Half of the students did not provide an answer. Of those responding, half chose mean and 

half chose median. Mean reasoning included “takes all values into account”, “more correct”, and “because it is 

the average”. Median reasoning included “median is more representative”, median – no further answer’, and 

‘median because of soy sauce [outlier]” (Reaburn, p. 566). 

 

Method 
Participants, Context, and Procedures 

 

Participants in the study were 44 senior- and junior-level PSTs, preparing to teach ages 5-14, enrolled in two 

senior-level Probability and Statistics for K-8 Teachers courses, taught by the same instructor, at a university in 

the southeastern United States. PSTs included 32 Elementary (ages 5-11) PSTs, three Middle Grades (ages 11-

14) PSTs, three Special Education PSTs, and six Dual (Elementary / Special Education) PSTs. Prior to enrollment, 

all PSTs completed at least: (a) College Algebra, Mathematics Modeling, or higher-level mathematics; (b) 

Numbers and Operations; and (c) Data Analysis and Geometry. Measures of center are introduced in (c), 

emphasizing computing and defining mean, median, and mode. The Probability and Statistics course requires 

PSTs to apply and interpret the measures across a variety of situations and contexts. Table 1 displays the course 

overview. 

 

Table 1. Probability and Statistics for K-8 Teachers Course Overview 

Unit Topics Taught 

1 (4.5 Weeks) Sampling Design: Types of sampling designs, sampling errors, non-sampling errors, 

margin of errors, confidence statements 

Study Design: Surveys; Experimental vs. observational studies 

2 (5 Weeks) Analysis: Representations, Measures of center and variation 

Two-Variable Data: Scatterplots, Correlation, Regression 

3 (4.5 Weeks) Probability: Counting methods and use for probability and multi-stage experiments, Two-

way tables, Odds, Expected value 
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The PSTs in this course had taken a Foundations of Data Analysis and Geometry course (see (c) above). There 

are several instructors in our department who teach this course, so we cannot describe each PST’s experience with 

mean and median. However, the course used Beckmann (2014) textbook and tasks from that book, which includes 

a treatment of conceptual meanings of mean: balancing, leveling out, etc. In the final meeting of Probability and 

Statistics for K-8 Teachers (taught by the first author), before the final exam, PSTs completed the item (see Figure 

2) individually, using any type of calculator. No incentives were given, and the item was ungraded. 

 

Analysis 

 

Data were analyzed using the constant-comparative analysis technique to determine the best measure of center 

scoring results. Each author individually classified PSTs’ answers into two categories: response matched the 

NAEP key (correct) or did not match the NAEP key (not correct). Each author then classified all not correct 

responses using the NAEP key as a guide as either partially correct or incorrect. The authors met to discuss their 

findings. Inconsistent classifications were discussed as a team. PST responses that did not receive a consensus 

were re-classified individually and an additional meeting was held to discuss re-classifications. This consensus 

process was continued until all PST responses received a consensus vote. 

 

After the initial analysis, the same overarching technique was used to categorize statistical thinking strategies 

used. Items classified as correct and incorrect were grouped together. Each author individually categorized PSTs' 

explanations into themes. The authors met to discuss their findings. Inconsistent themes were discussed as a team. 

Themes that did not receive a consensus were re-analyzed individually and an additional meeting was held to 

discuss theme changes. This consensus process was continued until all themes received a consensus vote. A final 

meeting was held to discuss consolidating themes. 

 

Results 

 
Two analyses were conducted to answer the research question: scoring the best measure of center responses and 

coding statistical thinking strategies used by PSTs. Results from these analyses are presented below. 

 

Best Measure of Center Scoring Results 

 

PSTs were asked to choose the best measure for the situation and explain their reasoning. Hence correct answers 

include two parts: (a) “median” and (b) an explanation that indicates statistical reasoning that the best choice for 

measure of center is the more fair representative of the data and that, in this situation, the low value signifies that 

the mean will be less fair than the median. For example, an expected correct answer is, “The median is a better 

measure of center. Day 4’s customers are much fewer than those on other days, so the mean is smaller than it 

should be to fairly represent a typical day at the bike shop.” Of the 44 PSTs, 21 gave correct responses, while nine 

gave partially correct responses, and 14 gave incorrect responses (see Table 2).  

 

Examples of correct and partially correct responses from the data are also shown in Table 2. 



Nguyen, Maher, Chamblee, & Taylor 

446 

Table 2. Results for Choice of Statistic and Reasoning 

Scoring Common Responses Frequency % 

Correct median as best measure because of outlier  

“Median because there is an extreme low value of 10 which 

pulls the mean down” 

21  48% 

Partially 

Correct 

median as best measure; flawed reasoning 

“median because it describes the majority” 

9  20% 

Incorrect Mean as best measure and/or explanation indicated 

misconception(s) 

14  32% 

 

Incorrect responses included PSTs choosing the mean as the best measure (rather than median) and/or showing 

misconceptions. For example, one PST wrote, “The mean because it most directly reflects the middle of the data.” 

This PST mistook the meaning of median for the mean (i.e., “middle”) along with the phrase “most directly 

reflects” which may indicate most efficient rather than fairest representative of the data. 

 

Statistical Thinking Strategies Used 

 

In response to the question asking PSTs to decide on the statistic that best represents the typical number of 

customers at Malcolm's Bike Shop and to share their reasoning, 30 PSTs answered “median” and 14 answered 

“mean” (see Figure 3).  

 

 
Figure 3. Overview of PSTs’ Answers and Reasoning 

 

All but one PST provided reasoning in support of their response. To identify statistical thinking strategies used by 

PSTs to respond to this question, we organize responses in two ways. We first describe general strategies based 

on PSTs’ choice of best measure (i.e., mean or median). We then describe PSTs’ reasoning in more detail, 

categorizing aspects of statistical reasoning that were visible in any PST explanations: (a) attention to context, (b) 



International Journal of Education in Mathematics, Science, and Technology (IJEMST) 
 

447 

meaning of central measures, (c) attention to the low value, and (d) attention to the low value’s impact on the 

mean. 

 

Median and Statistical Thinking 

 

Median responses were sorted into those that exhibited complete and clear reasoning (n = 21), circular reasoning 

(n = 3), or unclear or incomplete reasoning (n = 6) (see Figure 3). In our analysis, we defined complete and clear 

reasoning as an explanation that supported their answer and that made sense to us in the way it was written. For 

example, a PST wrote, “90 or median [because] 10 is an outlier that brings down the mean.” We categorized this 

response as complete and clear because the PST gave a reason (i.e., “outlier that brings down the mean”) that 

justified their response and indicated practical statistical thinking. Three responses were categorized as circular 

reasoning. These responses restated either the meaning of median (e.g., “because it is the middle”) or a part of the 

question (e.g., “shows around what # is typically there”) without providing evidence of additional statistical 

thinking. 

 

If the reasoning did not make sense to us in some way or if it seemed to lack information, we marked it as 

incomplete or unclear reasoning. For example, one PST wrote, “Median because as the mean goes down the 

median will stay the same.” This reasoning was categorized as unclear or incomplete despite the indication of 

some understanding (e.g., that the mean is affected while the median is not) because the PST did not state why 

the mean might go down. An example of an unclear response is, “The median because it describes the majority.” 

In this analysis, we cannot differentiate between a PST using valid, but poorly communicated, reasoning and one 

using invalid reasoning. Of the 30 PSTs that chose median, 21 communicated complete and clear reasoning while 

nine did not. 

 

Responses that we identified as complete and clear varied in the amount of detail and sophistication of reasoning 

that was included. For example, compare two PSTs’ responses: “median because there is an extreme value” and 

“Median. The extreme low of 10 caused the mean to be much lower than it should [be]. The mean is not a good 

representation [because] of the extreme low.” Note that both responses mention an extreme value, but the second 

response further explains the impact of the extreme value on the mean and affirms that the impact causes the mean 

to be not as good of a representation of the center of the data. 

 

Mean and Statistical Thinking 

 

Considering responses of PSTs who answered “mean,” we found PSTs used circular reasoning (n = 6), provided 

an unclear or incomplete explanation (n = 6), an invalid explanation (n = 1), or no explanation (n = 1) (see Figure 

3). We defined circular reasoning as any explanation that the mean is the best measure of center because it “is the 

average” (e.g., providing a synonym) or “is the typical number” (e.g., restating the question). For example, two 

PSTs wrote, “mean – it’s the average” and “Mean. It’s the typical/average number.” PSTs using the former 

justification focused on the idea that mean and average are synonymous, and so mean must be the best measure 

of center, without necessarily considering the data values. 



Nguyen, Maher, Chamblee, & Taylor 

448 

Other PSTs provided explanations that we categorized as unclear or incomplete.  For example, the mean “shows 

how many people came in,” “takes all numbers into account,” or “is a bigger range.” These written responses 

could reflect valid reasoning, but do not provide enough detail to clearly communicate it. Finally, we classified 

one explanation as invalid, because the PST used the meaning of median, writing “because it most directly reflects 

the middle of the data.” The PST might have valid reasoning but wrote “middle of the data,” so her response 

indicates a misconception about the meaning of mean as opposed to median. Figure 4 shows that, regardless of 

whether or not they gave a correct answer or clear and complete reasoning, PSTs differed in their attention to the 

meaning of measure of center, their attention to the low value, and their explanation of the impact of the low value 

on the mean (and not on median).  

 

 
Figure 4. Responses Sorted by Measure of Center, Low Value, and Impact  

 

In the following sections, we consider all PSTs’ responses to explore these aspects of their statistical thinking. 

Particularly, we explain and share student examples of the categories shown in Figure 4. We begin by exploring 

students’ use of the meaning of mean or median in their responses. We then give examples of students’ attention 

to the low value on Day 4, when the shop had 10 customers rather than the 100, 87, 90, or 91 customers on the 

other days. Finally, we explore students’ responses when they reference the low value’s impact on the mean and 

why they led them to believe that median was the best choice. 

 

Meaning of Measuring Central Tendency 

 

Mean and median are measures of center, intended to provide a fair representation of what is a typical or fair 

representation of all data values. Because the question includes this wording, it is difficult to parse the difference 

between circular reasoning (e.g., restating the question) and understanding the measure of center. In this section, 

we consider only the wording used by PSTs. In their written justifications, many PSTs (n = 12) clearly referenced 

the idea of “best represents the typical number of customers” using phrases such as: accurate representation (n = 

2), typical number of customers (n = 5), good or reliable description of the average number of customers (n = 5). 

For example, one PST wrote, “The median because on day 4 the store had a very low number of customers that 

is not a reliable description of the average number of customers at the store.”  

 

The inclusion of the idea of “reliable description of the average” shows some awareness of the meaning of measure 



International Journal of Education in Mathematics, Science, and Technology (IJEMST) 
 

449 

of center. Other PSTs (n = 6) less clearly referenced the meaning of measure of center, but still seemed to reflect 

the need for a measure of center to describe all data fairly, using phrases such as: describes the majority or all of 

the data (n = 5) or directly reflects the middle (n = 1). For example, one PST wrote, “there are more numbers in 

the 90’s – 100’s than 75.6.” This explanation is incomplete and unclear, but seems to reference the idea of fairness, 

that a measure of center should represent “more numbers.” 

 

Attention to Low Value 

 

In statistics, extreme value and outlier can have different meanings, but formally outlier refers to a datum outside 

the inner fences and extreme value outside the outer. In the task given, the outlier calculation shows that 10 is not 

an outlier because it is not less than the lower fence: Q1 - 1.5* IQR = 48.5 - 1.5*47 = -22, where Q1 is the lower 

quartile, and IQR is the interquartile range, where Q1 is the lower quartile, and IQR is the interquartile range. 

Because it is not an outlier, 10 is also not an extreme value: Q1 - 3*IQR = 48.5 - 3*47 = -92.5.   

 

Using these formal meanings, Day 4’s data point of 10 customers is neither an outlier nor an extreme value. 

Because data are assumed to be clustered around a central value, however, statisticians and laypeople can 

informally use the terms extreme values or outliers to refer to data values that seem unusually far from the main 

cluster. Most PSTs (n = 25) used one or more of the following terms as a part of their reasoning: extreme value 

(n = 11), outlier (n = 10), very low value (n = 2), or Day 4’s 10 customers (n = 17). Even though the low value is 

not an outlier or an extreme value, the question is structured to draw attention to it and to encourage PSTs to 

choose median as a measure of center because of its impact on the mean. 

 

Impact of Low Value on Mean and Median 

 

Many PSTs (n = 15) included the unusually low value’s impact on the mean in their reasoning. Of these, most (n 

= 9) also mentioned the direction of the impact (i.e., “drags down” or “lowers”), but several did not. Two PSTs 

(one PST from each group) described the impact as skewing the mean or results. Other PSTs used a variety of 

language and metaphors that we discuss here. 

 

PSTs who did not indicate a direction of impact, used “affected by” (n = 2), “throws off” (n = 1), or “causes 

inaccuracy” (n = 1) to explain the impact of the low value on the mean. PSTs who included direction used words 

such as “brings” or “pulls” the mean down (n = 5), “caused the mean to be lower” (n = 3), or “mean goes down” 

(n = 1).  Although one PST used the description of median as a “resistant summary measure” to justify their 

response, and it does not explicitly reference an impact on the mean, we felt it was appropriate to mention here as 

acknowledgement that the mean is a sensitive summary measure while median is resistant. 

 

Discussion 

 
Almost half of the PSTs (48%) provided correct responses (“median” and complete explanation) while about a 

third (32%) gave incorrect responses (“mean” and/or explanation indicating misconceptions). Compared to PSTs 
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in Estrada et al.’s (2004) research, a lower percentage of PSTs in this study chose the mean as the best center 

measure (32% versus 46.9%, respectively). Compared to eighth graders who were given the same task, PSTs in 

this study scored higher (48% versus 6% correct responses and 32% versus 67% incorrect responses, respectively) 

(NCES, 2007). PSTs had difficulty with the data analysis and conceptual understanding aspect of the question. 

This finding extends Whitaker et al.’s (2015) and Jacobbe and Carvalho’s (2011) studies to PSTs. We agree, a 

focus on correctness without also attending to reasoning does not demonstrate mastery of the concept.  

 

Several PSTs used circular logic to explain their reasoning for choosing the median (n = 2) or the mean (n = 5). 

Examples of those include, “The median because it is the middle of all the customers,” and “mean - it’s the 

average.” Using “middle” to explain the median and “average” to explain the mean do not provide insights into 

their reasoning for choosing the center measure. Several PSTs explained the mean was better because it “shows 

the range.” Researchers assumed that by “range,” PSTs meant the distance between extreme values, but such an 

interpretation would not align properly with the meaning of mean (or center). Our PSTs’ statistical reasoning 

echoes Reaburn’s (2013) students’ responses; although, Reaburn’s students were first- and second-year PSTs 

while ours are in their third or fourth year of the program. However, our PSTs’ level of reasoning also resonates 

with responses from practicing teachers (e.g., Engledowl & Tarr, 2020; Groth & Bergner, 2006). 

 

While the scoring results gave a clear picture of correct, partially correct, and incorrect responses, the mapping 

revealed that regardless of their choice for best statistic, the PSTs in this study displayed (mis)conceptions that a 

correct, partially correct, and incorrect response model would otherwise miss. Specifically, about 41% of the PSTs 

gave responses that have potentially valid measure of center meanings by including in their reasoning phrases 

such as: accurate representation, typical number of customers, good representation of the data points, or a reliable 

description of the average number of customers. A response to this NAEP 2007 question can be superficial (e.g., 

“median because of the outlier”) but PSTs showed glimpses of other understandings as they attempted to explain 

using statistical thinking what they knew based on memorized procedures. 

 

Approximately 57% of the PSTs noted an extreme value, an outlier, a very low value, and/or Day 4’s 10 customers 

in their explanations. The term “outlier” was mentioned 10 times while “extreme value” was mentioned 11 times 

and “Day 4 or 10 customers” 17 times. This reasoning indicates that many PSTs acknowledged 10 customers on 

Day 4 impacted their choice. However, the uncertainty about whether 10 should be classified as an outlier or 

extreme value shows that the PSTs had not yet totally conceptualized how these ideas are similar and different. 

The following PST’s response, “Median as 10 was an extreme low value, maybe an outlier,” illustrates PSTs’ 

awareness of the difference between “outliers” and “extreme values.” 

 

Overall, based on the PSTs’ responses in this study, the researchers found in terms of statistical thinking a correct 

answer with complete, clear, and sophisticated reasoning consists of all the following components: 1) correct 

answer, 2) reasoning, and 3) supporting concepts. The correct answer is “median.” Clear and complete reasoning 

uses valid mathematical language and provides concepts to support the PSTs’ choices. Supporting concepts 

convey the meaning of center measures, meaning of outlier as compared to extreme value and unexpectedly low 

value, and impact of data values that are different than the “typical” value (e.g., median as a resistant summary 
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measure in contrast to mean as sensitive to values that are much higher or lower than the typical values).  

 

Conclusions, Limitations, and Future Research 
 

In this section, we first present conclusions of the study. We connect our findings back to NCES (2007). We then 

discuss limitations and suggest future research directions. 

 

Conclusions 

 

PSTs continue to have difficulty determining the best measure of center when presented with a statistical thinking 

problem (NCES, 2007; Jacobbe & Carvalho, 2011), and their explanations tend to focus on procedures 

(Landtblom & Sumpter, 2021; Landtblom, 2018). Textbooks typically used in classes for K-8 PSTs continue to 

primarily teach measures of center from a computational fluency perspective. PSTs need to encounter a more 

robust introduction to statistics course curriculum where statistical thinking, discussions of typical measures of 

center misconceptions are addressed, and how these constructs are similar/different in context. 

 

As the researchers classified and discussed PSTs’ correct responses, the idea of how faculty teach PSTs extreme 

values and outliers in the context of choosing the best measure of center was discussed. The researchers noted in 

PSTs responses the idea of one or more extreme values pulling the mean in the direction of that value arose. Is 

the description “the mean goes down” mathematically correct to describe the impact on the mean?  

 

The authors of this paper, instructors all, admit that we use the action verb when talking to PSTs about this concept. 

In some sense, the verb pull personifies the extreme value and provides a dynamic and visual explanation as to 

why some distributions are said to be skewed left or skewed right. On the other hand, the data is not active, it is 

static (nothing is actually moving!), so the phrase pull in this context may obscure a conceptual understanding of 

the relationship between the mean, the appropriate measure of center, and the distribution. 

 

In the original NAEP item, as well as in this study, the word mean is followed by the parenthetical “(average).” 

Providing this connection in the stem of the question may reinforce PSTs’ (sometimes false) expectation that the 

mean is the more appropriate measure of center because it is emphasized that the mean is the average, and, as 

such, perhaps the only true measure of center.  

 

Since the mean and median were given in the NAEP item, the intent was to focus on students’ statistical thinking 

rather than performing computations to explain their best choice of center. Outliers, in general, are a major 

construct when determining the best center measure. Thus, the low value “10 customers” was designed to draw 

attention to the eighth graders and PSTs in this study and to prompt them to choose median as the best center 

measure for the data without performing any calculations.  

 

The NAEP key referred to “10 customers” as an outlier. However, based on the formal meanings, the data point 

of 10 customers is neither an outlier nor an extreme value. Thus, PSTs can possibly make an argument that the 
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mean could be a reasonable representation for the data. We agree with Metz (2010) that extra attention be given 

to designing well-constructed tasks where statistical thinking explanations require PSTs to demonstrate 

interconnectedness of statistical concepts. 

 

Limitations 

 

There are a few possible limitations to this research. First, the sample size of 44 PSTs is small. Second, the 2007 

NAEP item was given on the last day of the semester, along with several other tasks, when PSTs were ready to 

be done with the course and might have not taken the time to work on the NAEP item. Third, incentives were not 

offered, so it is possible that PSTs might have not tried their best, even though they were given ample time to 

work on all the tasks. 

 

Recommendations 

 

Future research includes modifying the explanation component so PSTs must better explain their statistical 

thinking for their choice of best measure of center using the context of the problem. Additionally, removing the 

word “average” from the question may reduce the number of circular arguments given by PSTs. Future research 

could also include implementing a pre- and post-test design with the post-test item embedded in the final exam. 

This design will provide additional understanding of how much knowledge PSTs bring to the course versus how 

much they learn in the course and provide incentive for giving thoughtful consideration for their answers. 
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