
Using Markup Languages for Accessible Scientific, Technical,
and Scholarly Document Creation

Jason J.G. White1

1Educational Testing Service

Abstract
In using software to write a scientific, technical, or other scholarly document, authors have
essentially two options. They can either write it in a ‘what you see is what you get’ (WYSI-
WYG) editor such as a word processor, or write it in a text editor using a markup language
such as HTML, LATEX, Markdown, or AsciiDoc. This paper gives an overview of the latter
approach, focusing on both the non-visual accessibility of the writing process, and that of the
documents produced. Currently popular markup languages and established tools associated
with them are introduced. Support for mathematical notation is considered. In addition,
domain-specific programming languages for constructing various types of diagrams can be
well integrated into the document production process. These languages offer interesting po-
tential to facilitate the non-visual creation of graphical content, while raising insufficiently
explored research questions. The flexibility with which documents written in current markup
languages can be converted to different output formats is emphasized. These formats include
HTML, EPUB, and PDF, as well as file formats used by contemporary word processors. Such
conversion facilities can serve as means of enhancing the accessibility of a document both for
the author (during the editing and proofreading process) and for those among the document’s
recipients who use assistive technologies, such as screen readers and screen magnifiers. Cur-
rent developments associated with markup languages and the accessibility of scientific or
technical documents are described. The paper concludes with general commentary, together
with a summary of opportunities for further research and software development.

*Corresponding Author, Jason J.G. White jason@jasonjgw.net
Submitted March 2, 2022
Accepted April 25, 2022
Published online October 27, 2022
DOI: 10.14448/jsesd.14.0005

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

1

mailto:jason@jasonjgw.net


Introduction

Two alternative methods of preparing electronic
documents are in widespread use today. The
first approach is to use a ‘what you see is what
you get’ (WYSIWYG) editor—usually a word
processor—for writing and revision. In this case,
the presentation of the document in the editing
environment somewhat resembles its final form
as displayed or printed, including layout and
choice of fonts. Control over presentation is ex-
ercised entirely through the graphical user in-
terface of the application. In currently popular
word processors, the underlying markup codes
are largely hidden from the user. There is no
‘reveal markup’ mode, such as that provided by
the once popular WordPerfect word processor.
The second option is to write the document in a
plain text file, annotating the text with markup
language code that influences its later process-
ing, including its layout and presentation. To
generate a rendering of the document, a sepa-
rate program is run, typically via editor com-
mands or using a command line interface.

Although it is not the purpose of this paper to
compare word processing with markup-based
document authoring, differences between the
two approaches are noted as they arise. An
empirical study by Knauff and Nejasmic (2014)
found that writing text in a word processor
was less error prone and more efficient than
writing in LATEX for document transcription
tasks, for both more and less experienced LA-
TEX users. The performance of LATEX users
was greater, however, in transcribing equations.
Moorhead (2020) acknowledges the significance
of this study as perhaps the only peer-reviewed
investigation of its kind, while noting that it
has been criticized on methodological grounds.
See the discussion in Moorhead (2020) and the
sources there cited. The considerations in favor
of LATEX tend to be founded on qualitative

sources of evidence (see e.g., Bahls Wray, 2015;
Sotomayor-Beltran, Barriales, Lara-Herrera, 2021;
Wright, 2010). There have also been anecdotal
reports of the experience of its use by students
who are blind or vision-impaired (Ahmetovic et
al., 2021; Zu Bexten Jung, 2002).

The markup language-based alternative to cre-
ating documents in a WYSIWYG editor, which
is to be considered here, remains particularly
prominent in mathematical, scientific and other
broadly technical disciplines. It is not, of course,
exclusive to these disciplines, as it offers a gen-
erally applicable paradigm for document devel-
opment suitable for a wide variety of applica-
tions. Nevertheless, the relevance of using markup
languages to write and revise documents in sci-
entific and technical fields provides an impor-
tant justification for considering the potential
accessibility-related benefits of this approach.
It is also reasonable to expect that students
and professionals working in such fields (espe-
cially at the undergraduate level and above) are
more likely to possess technical skills that facil-
itate the practical use of text editors and tools
related to markup languages, such as familiar-
ity with elementary programming concepts and
command line interfaces. Knowledge of the UNIX
command line interface, including programming
concepts, as introduced in texts such as Shotts
(2019), constitutes valuable, though not indis-
pensable, background to using many of the tools
and strategies described here.

This paper is motivated by two commitments.
First, the accessibility-relevant characteristics
of markup language use are considered both
from the perspective of the document’s author
in writing and editing the material, and in rela-
tion to the quality of what is ultimately made
available to readers (i.e., the accessibility of the
formats that can be produced by processing the
marked up input text). Second, the scope of

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

2



the discussion is limited to issues of non-visual
access as encountered by authors and readers
who use speech or braille output as their only,
or at least principal means of interaction. There
are two reasons for this restriction: pragmati-
cally, it confines the subject-matter of the paper
within reasonable bounds, and, more impor-
tantly, it focuses the exposition on issues with
which the author has had experience. Hence,
the discussion is more a reflection of the au-
thor’s experience of working with markup lan-
guages in an entirely non-visual setting, than a
comment on the relatively small body of rele-
vant scholarly literature. Nevertheless, atten-
tion is devoted to recent developments of sig-
nificance in this field, and to identifying insuf-
ficiently explored research questions which, in
the author’s view, merit further attention.

As is implied by the contrast with the WYSI-
WYG approach to editing, the markup languages
to be considered here are those which can con-
veniently be written and manipulated in a text
editor. These languages include LATEX,1 Hy-
pertext Markup Language (HTML), (Web Hy-
pertext Application TechnologyWorking Group,
2021), various XML-based formats, such as Doc-
Book (Walsh Hamilton, 2010), and ‘light-weight’
markup languages, for example, Markdown,2

AsciiDoc (Allen, White, individual Asci- iDoc-
tor contributors, 2021), and ReStructuredText
(Jones, 2021). The file formats used by word
processors, presentation tools, and graphical of-
fice applications more generally tend to be poorly
suited to direct, markup-based editing. Although
the most important of these formats are ap-
plications of XML,3 their complexity and syn-

1For recent introductions, see Flynn (2021), Grätzer (2016),
and Kottwitz (2021).
2There are multiple versions of the Markdown format,
among the most useful of which is that supported by the
Pandoc document conversion tool. See Mailund (2019) and
MacFarlane (2021) for further details.
3The formats that provide the basis of Microsoft’s office

tactic verbosity preclude creating and editing
document instances in a text editor. For prac-
tical purposes, documents in such formats are
best produced in the graphical office applica-
tions which support them, or by conversion from
another markup language that is more amenable
to manual editing.

In the sections that follow, an admittedly arti-
ficial distinction is drawn between the author’s
and the reader’s perspectives, while acknowl-
edging that, in the process of writing, review-
ing and revising a document, the same per-
son alternately performs the functions of au-
thor of the marked up text, and reader of a
rendered product. Nevertheless, to organize the
discussion conveniently, issues of editing are ad-
dressed first, followed by consideration of the
accessibility of the document upon conversion
to formats in which it is ultimately read, not
only by the author but by its intended audi-
ence.

Writing and Editing Documents in Markup Lan-
guages

A fundamentally important consequence of writ-
ing a document in a markup language using a
text editor, and then using appropriate tools to
convert it to desired output formats for read-
ing and distribution, is that authors have the
freedom to choose their preferred editing soft-
ware and accompanying tools. As automatic
citation and bibliography generation programs
used by markup language processors retrieve
bibliographical entries from text files in special-
ized formats such as BibTeX, the author is also
free to avoid using graphical reference manage-
suite are standardized as Office Open XML (OOXML) (In-
ternational Organization for Standardization and Interna-
tional Electrotechnical Commission, 2016). The file for-
mats used in applications such as the open-source LibreOf-
fice office suite are standardized as Open Document Format
(ODF) (International Organization for Standardization and
International Electrotechnical Commission, 2015).

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

3



ment tools and hence to avoid their accessibility-
related limitations. The ability to choose a text
editor, and to manipulate the document with
any software capable of operating on text files,
constitutes a fundamental departure from the
approach taken by word processors, in which
the editing and formatting functions are insep-
arably integrated into a single application. In
principle, any text editor capable of manipulat-
ing plain text files will suffice. This flexibility
enables a well informed author to make choices
that satisfy her or his accessibility-related needs,
as well as other software-related preferences,
which may vary according to the demands of
the task and the situation. For example, com-
mercially available braille displays and braille
note-taking devices commonly support the cre-
ation and editing of text files. These portable
systems can thus be used for writing and editing
markup-based documents, which may later be
transferred elsewhere for conversion to intended
output formats or for additional processing. A
user may rely on the text editing functionality
of a braille device primarily for writing notes,
or it may also be the preferred means of com-
posing longer documents. Much depends on the
demands of the task, and on the extent to which
these can be satisfied by the editing functional-
ity of the device which is available to the user.

A Brief Survey of Text Editors for Desktop Op-
erating Systems

Under desktop operating systems such as Linux,
Apple Mac OS, and Microsoft Windows, there
is a broad choice of available text editing ap-
plications. In these software environments, it
is again a question of selecting tools that cor-
respond to the skills, the willingness to learn,
and the needs of the individual. Text editors
vary greatly in the support they provide for
editing and manipulating different markup lan-

guages. While they can all achieve it, at least
in principle, some editors offer features specific
to the markup language in use that can en-
able the author to work more efficiently and
to avoid or correct syntax errors. Editing en-
vironments that offer more features and which
provide keyboard-based functionality that pro-
motes efficiency also necessitate more learning
on the user’s part, but the skills thus acquired,
as is true of proficiency in programming con-
cepts and command line interfaces more widely,
can be of long-lasting value from the perspec-
tive of an entire career in a scientific or technical
profession.

At the most sophisticated end of the scale are
editors popular among software developers and
professional system administrators, which typ-
ically offer functionality or software extensions
tailored to various markup languages, including
Markdown, HTML, XML, and LATEX. The
Emacs editor4 is particularly accessible to speech
users, thanks to the Emacspeak software (Ra-
man, 1997, 2021), which provides a highly cus-
tomized and efficient spoken interface not only
to the central functions of the editor itself, but
also to a wide variety of its extension pack-
ages. Emacs is also somewhat accessible using
a screen reader in the Microsoft Windows envi-
ronment, but in this case, one loses the advan-
tages of the Emacspeak spoken interface. In-
deed, the author of this paper found Emacs,
together with Emacspeak and a braille display,
under the Linux operating system, to be a prefer-
able environment for writing his doctoral the-
sis in con- temporary Philosophy of Language.
More specifically, AUCTeX mode—an exten-
sion of Emacs for editing LATEX documents—
was used; see “AUCTeX” (2020) for documen-
tation. To facilitate the editing of technical

4See the official Emacs documentation (Free Software Foun-
dation, Inc., 2021), and Cameron, Elliott, Raymond, and
Rosenblatt (2009) for an introductory text.

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

4



content in LATEX documents, Emacspeak can
provide a spoken rendering of mathematical ex-
pressions (i.e., notation occurring in math mode),
while indicating incidents of markup errors in
the mathematics (Sorge, 2016b). Structural nav-
igation of the notation is also possible (Sorge,
2016b). For a description and an empirical eval-
uation of somewhat similar functionality im-
plemented as an extension to the Eclipse soft-
ware development environment under Microsoft
Windows, see Manzoor et al. (2019).

Modern descendants of the Vi editor—long re-
garded as the principal rival to Emacs—also
allow for the development of software exten-
sions that facilitate markup editing. For exam-
ple, the VimTeX extension (“VimTeX”, n.d.)
facilitates the editing of LATEX documents.
In contemporary usage, Vim, and a relatively
recent derivative, Neovim, continue to attract
software development effort. See Robbins and
Hannah (2021) and McDonnell (2014) for intro-
ductions to the Vim editor. Vim is relatively
accessible with a screen reader as a terminal
application under Linux, Mac OS or Windows
operating systems. (The user interface of the
Neovim editor is essentially similar, and the two
projects need not therefore be distinguished for
purposes of this discussion.) However, the ex-
tent to which text is spoken automatically as
the user performs navigational and editing com-
mands varies depending on the screen reader in
use. A satisfying experience is more likely for
braille display users, or for users of Linux-based
screen readers generally, which are designed to
be effective in a text-based terminal environ-
ment.

Unlike text editors designed primarily to of-
fer graphical user interfaces, Emacs and Vim
are both centered on the use of keyboard com-
mands. Each editor offers a rich repertoire of
such commands, which can be further enhanced

by the installation of extension packages (e.g.,
for use with particular markup languages). Ei-
ther editor thus offers the non-visual user an
opportunity to work with software in which the
keyboard is intended as the primary means of
control, rather than as secondary to mouse or
touch input as in a graphical interface. Conse-
quently, the available keyboard commands are
more extensive than typically found in other en-
vironments, and the documentation describing
the use of the editors often refers to the key-
board interface rather than to menus or graph-
ical operations. It is not clear whether the dis-
tinctive, modal approach taken by the Vi and
Vim editors, in which many of the standard
keys on the keyboard are assigned by default
to editor commands, and may be used for text
entry only in insert mode, has any particular
advantages or drawbacks with respect to acces-
sibility with screen readers. It is more likely to
be, as for the user population more broadly, a
question of personal preference.

Among the more feature-rich graphical editors,
Microsoft’s Visual Studio Code is especially rel-
evant, in that its accessibility-related features,
including support for screen readers (Microsoft
Corporation, 2021) continue to be enhanced.
The editor includes facilities by default for edit-
ing Markdown documents, and extension pack-
ages are available, for example for editing and
processing LATEX documents. Visual Studio
Code is designed to be accessible with screen
readers under Linux, Mac OS and Windows en-
vironments, as the application is built on Web
technologies using the Electron framework. As
of the time of writing, there remain accessibility-
related issues that limit its effectiveness in edit-
ing markup-language documents. In particular,
word wrap is unavailable if a screen reader is in
use, and hence each logical line of text (termi-
nated by a new-line character), however long,

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

5



is treated as a single line for purposes of cur-
sor navigation. This problem can be mitigated
to some extent by installing an extension that
introduces line breaks into the file as text is en-
tered;5 however, wrapping the lines of the text
file may not be desirable, for instance if one is
working with collaborators who have different
window size preferences or who require mag-
nification. Another alternative is to adopt the
convention of using ‘semantic line breaks’ in the
source text (Matt, n.d.), in which each clause
or sentence in a paragraph is terminated by a
new line.

There are also specialized text editors designed
for working with LATEX documents. Of these,
TeXShop— designed for the Mac OS environ-
ment—appears to be relatively accessible with
a screen reader, except for its PDF viewing
functionality. TeXShop is included in the Mac-
TeX software distribution (TeX Users Group,
n.d.). The features provided by such custom-
designed editors are similar, in important re-
spects, to those of the extensions available for
the editors already described that provide spe-
cialized support for LATEX. However, the LATEX-
specific editors do not include the wealth of key-
board commands distinctive of Emacs or Vim.

As indicated earlier, any text editor suitable for
manipulating text files may be used for writ-
ing and revising markup-language documents.
General-purpose, graphical editors of significance
in this connection include TextMate (Macro-
Mates Ltd., 2021), which runs in the Mac OS
environment, and Notepad++ (Ho, n.d.) un-
der Microsoft Windows. TextMate notably pro-
vides extensions for working with markup lan-
guages, including Markdown, LATEX, and HTML
documents. These features, combined with its

5See the discussion of the issue and its work-around in“Word
wrap should not be disabled when accessibility is turned on
95428” (2021).

good screen reader compatibility, ensure that
it is a promising option for a variety of editing
tasks.

Markup-Related Features of Text Editors

The markup language-specific features of text
editors vary greatly, according to the markup
language used, the text editor, and any installed
extension packages. Although these features
are designed for a general user population, they
can especially benefit screen reader users by im-
proving efficiency and assisting in the preven-
tion or correction of syntax errors in the use of
the markup language. Thus, there are typically
menus and keyboard commands for inserting
frequently needed document structures, such as
headings and lists. Keyboard commands can
also typically be used (e.g., the tab key or the
escape key) to complete a partially typed markup
language code, such as an HTML element or
a LATEX command or environment, thus en-
hancing typing efficiency while contributing to
the avoidance of errors. Similarly, keyboard op-
erations can be used quickly to close markup el-
ements by inserting a closing tag in an HTML
or XML document. The text editor may also
enable sections of a document to be selectively
expanded or collapsed, via a code folding fea-
ture, thus creating an outline. Some editing en-
vironments also provide navigational commands
for moving the cursor by structural components
of the document, such as section headings, and
commands for manipulating these objects may
be available as well, for example in the Vim ed-
itor. Some editors, including TextMate, Emacs
and Vim also permit multiple place markers to
be set at specific cursor locations, to which the
user can quickly return by issuing a keyboard
command. Since screen readers present text
primarily in response to cursor navigation, the
strategy available to sighted users of scrolling

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

6



the display to read text elsewhere in the file
while leaving the cursor in place is either un-
available or inconvenient in a non-visual setting
(Mealin Murphy-Hill, 2012)—a limitation that
place markers overcome.

The potential value of this functionality to users
who depend on braille or spoken interaction is
suggested by the fact that some of these fea-
tures, particularly document navigation com-
mands, are implemented by screen readers them-
selves for use in Web browsers and word pro-
cessors that lack them. In contrast, the most
advanced text editors implement the keyboard-
based document navigation and editing func-
tions directly, and for all users.

Editor commands are often also available for
processing markup-language documents by run-
ning external tools, such as TEX engines or
conversion programs (e.g., Pandoc). Error mes-
sages produced by these tools, reflecting syntax
errors in the markup, are typically displayed
in a window to which the user can navigate.
In some implementations, editor commands are
provided to move the cursor to the location
in the document corresponding to each error,
thereby improving efficiency for keyboard users
generally, and for screen reader users especially.
The accessibility of editor features designed to
assist in the identification and diagnosis of markup
errors is crucially important to the user’s over-
all productivity in creating and revising marked
up documents non-visually. Thus, it has be-
come an important focus of attention in the
development of customized speech-based inter-
faces for markup editing (Manzoor et al., 2019;
Sorge, 2016b).

Interestingly, in the case of LATEX documents,
the warnings issued by the TEX engine can
also provide insight into typographical prob-
lems that could otherwise be discovered only
by visual means. For example, if a paragraph

cannot be typeset optimally without exceeding
the width of the text block and thus, in lan-
guages such as English that are written left to
right, intruding into the right margin, a warn-
ing is issued in the TEX log file to alert the user.
Corrective changes can then be made, for exam-
ple by inserting a discretionary hyphen into a
word. Without the availability of the log file,
only a discerning sighted reader would be able
to report the issue.

Choosing an Appropriate Markup Language

Markup languages differ considerably in their
syntax and capabilities. Choosing a tool that
is appropriate to a given task and to the needs
of the particular user is a clear necessity. The
‘light-weight’ markup languages, such as Mark-
down, AsciiDoc, RestructuredText and Emacs
Org-mode (“Org Mode: your life in plain text”,
n.d.), all have the advantage of a concise syn-
tax that makes extensive use of punctuation
and symbols, thus enhancing the readability of
the source text not only to visual users, but
to braille and speech users as well. However,
the light-weight languages do not allow for the
extensive features and control over presenta-
tion that can be gained from a typesetting lan-
guage such as LATEX, or from the combina-
tion of HTML, Cascading Style Sheets (CSS)
and JavaScript. Of course, developing profi-
ciency in using a more complex markup lan-
guage demands a greater investment in learn-
ing, whereas the light-weight languages have
the advantage that they can be mastered rel-
atively quickly.

This is among the principal reasons for Seo, Mc-
Curry, and Team (2019) to propose the use of R
Markdown, combined with a custom-developed,
simple Web-based editing and format conver-
sion application, for screen reader users who
lack the background in programming concepts

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

7



that would equip them to use more complex
markup-based languages and tools. A project
with similar features, implemented in Python
and packaged for distribution by its authors, is
documented in Godfrey and James (2016). A
Markdown-based authoring tool intended to as-
sist screen reader users in writing presentation
slides while avoiding a WYSIWYG solution is
described in Oelen and Auer (2019).

Despite the ease of learning characteristic of
light-weight markup languages, it should be noted
that tools which transform documents marked
up in these languages to presentational formats
often do so via a conversion to HTML or LA-
TEX. Hence, knowledge of either of the latter
languages is necessary to anyone who wishes
to customize the templates or procedures used
in such conversions. It follows that learning
HTML, LATEX, or both, together with a light-
weight markup language, would be advanta-
geous, especially to those whose work involves
extensive editing of technical documents.

From the non-visual author’s perspective, work-
ing with a markup language is quite different
from writing a document in a contemporary
word processor. In the former case, the entire
text and structure of the document, together
with any presentational controls, are included
as part of the text. None of these components
is hidden. In the latter case, presentational at-
tributes such as fonts, spacing, and word pro-
cessor styles, typically need to be queried via
screen reader commands, although a screen reader
may provide for a mode in which formatting
changes are announced proactively as the docu-
ment is read. A further beneficial characteristic
of the markup-based approach is that mathe-
matical notation is simply included as part of
the marked up text, thus avoiding the use of
and the potential accessibility issues associated
with graphical equation editors. The TEX no-

tation for mathematics is widely supported. It
may be used, for example, in Markdown doc-
uments, or in HTML documents that invoke
MathJax to render mathematical expressions.
A second text-based notation for mathematical
content is AsciiMath, which is supported, for
instance, in the AsciiDoc format.

Although graphical content can be integrated
into marked up documents by making reference
to vector or rasterized image files created by
graphics editors, it is also possible to construct
certain types of diagrams by writing code in
a domain-specific programming language. The
source code gives a precise description of the
diagram, which is then rendered as an image
when the document is processed. In the LA-
TEX environment, for example, diagrams can
be programmed in languages such as TikZ (Tan-
tau, n.d.), Asymptote (“Asymptote: the Vec-
tor Graphics Language”, n.d.), and Graphviz
(“Graphviz”, 2021). Specialized packages sup-
port specific types of graphics, for example chem-
ical diagrams, flow charts, and electrical cir-
cuits. Plots of mathematical functions can be
generated by symbolic algebra systems for in-
clusion in marked up documents. Likewise, the
R statistics package, and its accompanying markup
language—RMarkdown—offer rich graphing ca-
pabilities and the ability to embed the output
directly in a document. See Baumer and Ud-
win (2015) for an overview, together with the
more detailed expositions in Xie, Allaire, and
Grolemund (2018) and Xie (2016).

The availability of such domain-specific languages
opens interesting opportunities for the indepen-
dent, non-visual creation of graphical material.
For example, in preparing a recent publication,
the author developed conceptual diagrams as
directed graphs, implemented in the Graphviz
language and refined under the guidance of col-
leagues. This was inspired by Raman (1997, ac-

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

8



knowledgements), who acknowledges using the
PSTricks graphics package to prepare the fig-
ures for his book. The design of methods and
tools for enhancing the non-visual construction
of diagrams in domain-specific languages remains
a largely unexplored area of potential research.
Which languages can be most effectively used in
a non-visual setting for creating different types
of graphical content, and what language fea-
tures are most desirable in non-visual author-
ing scenarios, remain important questions that
has so far not received sustained attention in
the scholarly literature.

An exception is Takagi, Suzuki, and Araki (2020),
in which a domain-specific language is described
that has been designed to support authors who
are blind by reducing the need for the com-
putation of coordinates in specifying diagrams
composed of elementary geometric constructs
such as lines and plane figures. A dynamic tac-
tile graphics display was introduced to make a
graphical rendering of the diagrams thus pro-
duced accessible to the user. The authors note
the value of domain-specific languages in en-
abling educators or other professionals who are
blind to create precise diagrams for a sighted
readership. Practical initiatives to advance this
approach further could include the development
of libraries for existing graphics languages that
facilitate working with diagrams non-visually,
as well as tools for producing an accessible ren-
dering of the graphical material, for example
as a description or for tactile display. Thus, it
is important not only to choose an appropriate
markup language for a particular purpose, but
also to select, if needed, a language in which to
construct the graphical components of the doc-
ument. Once these choices have been made,
the author is well placed to use her or his pre-
ferred text editor to create and revise scientific,
technical and scholarly documents of arbitrary

length and complexity.

Brief Comments on Revision Control and Col-
laborative Writing

Whether for purposes of individual or collabo-
rative writing projects, the use of revision con-
trol tools to keep track of changes to marked up
documents is invaluable. Making experimental
changes, recovering from mistakes, and compar-
ing different versions of a document are among
the tasks that can be completed more easily
and efficiently if the text is placed under revi-
sion control. If one is working with collabora-
tors, the approval and merging of changes into
the primary version of the text can be carried
out in a precise and well organized manner by
maintaining distinct branches of development.
For these reasons, revision control systems cre-
ated for use in programming projects can be
and in practice have been applied to the main-
tenance of marked up documents as well. In
particular, Git is currently a popular tool which
is well suited to this application. A useful intro-
duction to Git appears in Straub and Chacon
(2014).

Some text editors, such as Emacs, TextMate,
and Visual Studio Code implement direct sup-
port for working with version control systems,
including Git. In the author’s experience, these
tools generally prove to be accessible, at least
for basic functions such as committing changes
to a repository. Likewise, the Git command line
tool itself is very accessible with a screen reader.
The main difficulty, from a non-visual perspec-
tive, lies in making sense of the diff patches used
to represent the differences between revisions of
a file. This task is especially challenging if the
changes occur within paragraphs of text, each
paragraph is represented as a single line in the
source file, and the differences are shown on a
line-by-line basis, as is the default. To solve this

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

9



problem, the author has found it convenient to
use the Git –word-diff option, which displays
the differences word-by-word, with insertions
shown as {+inserted text+}, and deletions as {-
deleted text-}. If each paragraph is represented
as a single line in the file, the –unified=0 option
is often desirable to omit context lines from the
output. Git can also be configured to respect
the syntax of LATEX markup in determining
what constitutes a ‘word’ in computing the dif-
ferences between revisions.

In a collaborative setting, it is also typical for
comments on the document to be maintained
separately from the text, using an issue track-
ing tool such as that provided by the GitHub or
GitLab Web-based repository hosting service.
Thus, issues can be created and discussed with-
out modifying the document itself, and thus
without introducing potentially distracting com-
ments and responses to them into the source
text. This solution may be contrasted with
what is offered by contemporary word proces-
sors, in which screen reader announcements of
comments and replies thereto can be confus-
ing and may distract the user’s attention from
writing and editing tasks (Das, Piper, Gergle,
2022, § 4).6

Although all authors can make changes to the
document simultaneously, each participant’s mod-
ifications are not available to collaborators un-
til they are uploaded to a repository, and con-
flicts are resolved in a discrete step with the
merging of branches. The approaches to col-
laborative work engendered by revision control
systems are thus different from those associated
with real-time, collaborative editing systems, in
which changes introduced by co-authors are im-
mediately reflected in each contributor’s editing

6In Das, Piper, and Gergle (2022), the authors investigate
alternative techniques for enhancing the non-visual user in-
terface to reduce these difficulties in the word processor en-
vironment.

environment as they occur. From a non-visual
perspective, the cognitive demands of attempt-
ing to monitor the changes made by collabo-
rators while concurrently writing and editing a
document, which are inherent in co-editing sys-
tems, are avoided entirely. The established con-
ventions of committing change sets to a reposi-
tory as discrete tasks (e.g., adding a section to
a document or correcting typographical errors),
and of writing an appropriate log message for
each commit, simplify the task of identifying
and understanding the work of collaborators,
often without having to review the exact differ-
ences between revisions. It is the author’s ex-
perience that, together, the characteristics and
practices surrounding revision control tools can
enhance collaboration without imposing a cog-
nitive burden on a non-visual contributor’s edit-
ing activity, as co-editing systems do.

Research investigating the accessibility issues
raised by real-time co-editing systems has fo-
cused largely on word processors rather than on
markup-based text editors. To date, the com-
plications introduced by scientific and technical
writing in this connection do not appear to have
been explored. It is nevertheless clear that, for
a multiplicity of practical reasons, real-time co-
editing is often challenging and can impose sig-
nificant cognitive demands upon authors who
are blind, notwithstanding the accessibility-related
features of current screen readers and word pro-
cessors (Das, Gergle, Piper, 2019; Das, Piper,
Gergle, 2022, § 4; Das, McHugh, Piper, Gergle,
2022, § 4). As the use of online, collaborative
editors becomes increasingly widespread in sci-
entific, technical and scholarly writing projects,
this lack of accessibility threatens to pose grow-
ing barriers to participation in tasks arising in
education and in the workplace. The accessibil-
ity of real-time, collaborative, markup editors is
thus a topic to which further research and de-

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

10



velopment effort could valuably be directed. An
interesting potential approach is that of hetero-
geneous editing, in which different editors—for
example, Emacs and Vim—are used by differ-
ent authors in the real-time, cooperative inter-
action (Cho, Sun, Ng, 2019). It is reasonable
to predict that authors—whether or not they
have accessibility-related needs—will continue
to differ in their editor preferences, and for a
multiplicity of reasons, only some of which are
related to disability and support for assistive
technologies. Given this condition, it would be
advantageous for accessible, collaborative edit-
ing solutions to be developed that do not re-
quire the same editor to be used by all parties
in order for them to cooperate in an interactive
authoring session.

Converting Marked Up Documents for Presen-
tation to Readers

Having considered the use of markup languages
exclusively from the author’s perspective in the
preceding section, the discussion now switches
to the reader’s perspective by focusing on the
non-visual accessibility of marked up documents
as they are ultimately presented. As has been
made clear, what is delivered to readers is typ-
ically produced by applying document process-
ing or conversion tools, for example a typeset-
ting program such as TEX, or a file format
converter such as Pandoc or AsciiDoctor. In-
deed, it is customary for the author to review
such output repeatedly in the course of creating
and revising a document. Hence, the accessibil-
ity of the output is important to the author as
well as to readers in general. In an alternative
scenario, the markup language can be used to
prepare study materials or other documents for
reading by individuals with print disabilities,
for example by an educational institution for its
students (Murillo-Morales, Miesenberger, Rue-
mer, 2016; Voegler, Bornschein, Weber, 2014).

The accessibility-related characteristics of the
output produced obviously depend on both the
relevant features of the markup language and
the nature of the conversion process employed.
Although the various combinations of languages
and tools cannot be reviewed in detail here,
general observations can be made that may nonethe-
less prove useful.

Of the two most common output formats—HTML,
and Portable Document Format (PDF)—it is
the author’s experience that the former is con-
siderably more accessible in practice than the
latter. As the primary format of the World
WideWeb, HTML is well supported by browsers
and assistive technologies across all widely used
desktop and mobile operating systems, ensur-
ing a high degree of accessibility, as long as ap-
propriate practices and standards are followed.
The principal Web standard specifying accessibility-
related requirements for HTML documents, in-
cluding those generated by markup language
conversion tools, is presently Web Content Ac-
cessibility Guidelines (WCAG) 2.1 (WorldWide
Web Consortium, 2018b). Even fully automated
document processing tools could enhance sup-
port for accessibility by implementing relevant
aspects of Authoring Tool Accessibility Guide-
lines (ATAG) 2.0 (World Wide Web Consor-
tium, 2015). Although PDF standards have
long provided for tagging, via the use of a struc-
ture tree that captures structural components
of the document,7 this and associated accessibility-
supportive features have not been fully and widely
implemented, in a variety of operating systems,
either in PDF producing applications, or in doc-
ument reading software. The effect of these lim-
itations on screen reader users varies depend-
ing on the complexity of the document and on
the software involved in both production and
reading. It can entail a lack of support for
structural navigation in PDF documents, an in-

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

11



correct reading order of text, or the inability
to obtain alternative text for images or com-
prehensible mathematical notation altogether.
The cumulative consequences may readily be
disastrous for non-visual access to scientific and
technical documents presented in PDF format
(Polsley, Lacy, Hammond, 2021). Although
some PDF reading applications attempt to rec-
ognize headings or other structural aspects of
the document while processing an untagged PDF
file, the results of this analysis may be quite
inaccurate. In the absence of alternative text
for images and without an adequate encoding
of the structure and content of mathematical
notation, untagged PDF files have substantial
accessibility-related limitations that typically ren-
der diagrams and equations incomprehensible
to the braille or speech user.

By contrast, the accessibility-related features of
HTML and related standards find support not
only in Web browsers and screen readers, but
also in the conversion tools used to process doc-
uments written in various markup languages.
Although the extent of this support varies ac-
cording to the implementation, one can typi-
cally produce alternative text for images, and
convert mathematical notation to the Mathe-
matical Markup Language (MathML), either
directly or via the inclusion of a MathJax script
in the resulting HTML document. As has been
elaborated in greater detail elsewhere (Soiffer
Noble, 2019; White, 2020), MathML is not only
the standard for representing mathematical no-
tation on the Web; it is also the only repre-
sentation that has been implemented by screen
readers, allowing for braille and spoken ren-
dering of the notation as well as for interac-
tive, structural navigation and reading. In ad-
dition, HTML content can be processed by pro-
prietary or open-source braille translation soft-
ware to produce embossed braille versions of a

document, although the extent of support for
mathematical content varies among the avail-
able translation tools. These considerations place
HTML as the best supported output format to
which documents can be converted in a manner
that preserves their accessibility-related char-
acteristics. Since the EPUB digital publishing
format (World Wide Web Consortium, 2018a)
is based on HTML and CSS, and permits the in-
clusion of mathematics in Presentation MathML
form, it shares the accessibility-related advan-
tages of HTML described here.

Many of the features needed for non-visual ac-
cessibility can also be preserved by a conversion
to a word processor format—in particular, Of-
fice Open XML, or Open Document Format.
However, the extent to which structural navi-
gation of the document and braille or speech-
based reading of mathematical expressions are
available is contingent on the word processor
and the screen reader used. For example, Mi-
crosoft Word in the Windows environment, to-
gether with a suitable screen reader, offers all of
these capabilities, but other word processor and
screen reader combinations exhibit limitations
that differ among implementations, including
versions of the same word processor built for
different operating systems. Thus, word pro-
cessor formats are best suited to circumstances
in which further editing of the document by its
recipients is expected, rather than as a delivery
format for general reading.

In general, document conversion tools differ not
just in their capabilities, but also in the nature
and extent of the customizations that can be
introduced to tailor the output to meet specific
needs and preferences. The Pandoc processor,
for example, which can convert between a range
of file formats, allows for the creation of user-
supplied document templates, and for the writ-
ing of filters—programs that manipulate the in-

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

12



termediate, abstract representation of the docu-
ment which it uses internally. The accessibility
of the output is thus a product of the content
of the source document (e.g., whether it is well
structured through proper use of markup, or
whether alternative text for images is supplied
by the author), the capabilities of the conver-
sion tool, and the influence of any customiza-
tions which are in effect. In the hands of the
ultimate recipient, of course, the capabilities of
the Web browser or other reading software, the
assistive technology, and the user’s knowledge
and skills, all contribute to the level of under-
standing which is achieved and hence to the
performance of tasks associated with using the
document.

The conversion of LATEX documents to other
markup languages such as HTML is particu-
larly complex, as the underlying TEX typeset-
ting system amounts to a specialized program-
ming language. Modern TEX engines produce
output in PDF format by default, although the
older device-independent (DVI) format remains
supported. Conversion of LATEX documents
to HTML can be achieved by a range of tools.
A particularly successful approach is to use a
TEX engine as part of the process, enabling
the tool to execute TEX code and more easily
to support a larger subset of the many LATEX
packages that may be used by authors. Current
examples of this approach are TeX4ht (TEX
Users Group, 2021) and Lwarp (Dunn, 2021).
An alternative strategy is to implement desired
aspects of the TEXmacro language in an inter-
preter designed for document conversion, as in
LaTeXML (Miller Ginev, n.d.), which is writ-
ten in Perl 5. Together, these tools presently of-
fer the best freely and publicly available routes
for producing HTML or word processor files
from LATEX source documents. Two qualifi-
cations should be noted, however. First, the

results of the conversion are improved if the
source document relies only on LATEX pack-
ages which are supported by the conversion tool.
Second, enhancements in the accessibility of the
output may be achieved by customizing the con-
version process, using features of the chosen
tool as detailed in its documentation. Since
the PDF files produced by LATEX by default
are not tagged, and hence provide limited ac-
cessibility, non-visual writing and revision of
LATEX documents can be greatly facilitated
by converting them to an HTML format for
review using one of the tools already noted.
Indeed, the process of generating HTML and
PDF output in parallel can be easily automated
by means of a simple ‘make’ file or shell script.

Recent Developments in Document Conversion

Three encouraging developments related to the
conversion of marked up documents to accessi-
ble formats suggest areas in which further progress
can be expected in the coming years. Together,
these initiatives promise considerable improve-
ment in the non-visual accessibility obtainable,
by fully automated means, from properly marked
up source files.

Currently, it is not feasible to generate tagged
PDF from LATEX documents without making
use of experimental packages that sometimes
require considerable, manual interventions in
the source text. See Moore (2020) for an overview
of the interventions needed to tag a technical re-
port written in LATEX using a current experi-
mental package. Hagen (2010) describes an im-
plementation of basic support for tagged PDF
in ConTEXT, another TEX-based markup lan-
guage that is less widely used than LATEX.
However, the core developers of LATEX have
recently commenced a funded project with the
purpose of progressively implementing support
for tagged PDF in LATEX itself (Mittelbach

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

13



Rowley, 2020). Ultimately, it is hoped that this
functionality will enable the automated creation
of PDF files that satisfy accessibility standards,
including coverage of the images and mathe-
matical notation occurring in scientific and tech-
nical texts.7 By integrating tagging into the
core of LATEX, it should also be possible to
extend this functionality to many of the LA-
TEX packages that have been developed by the
open-source community, and which are avail-
able in software distributions, such as TEXLive,
for use by authors. This project also has the
potential to lead to the creation of common
software infrastructure for converting LATEX
to other markup languages, principally HTML,
yielding more reliable conversion processes as
well as more effective and maintainable support
for a larger set of LATEX packages than current
tools accommodate. Indeed, an algorithm for
converting tagged PDF to HTML has already
been standardized (PDF Association, 2019).8

It could be adopted, perhaps with further re-
finements to enhance accessibility, as a common
approach to producing HTML or EPUB docu-
ments from LATEX sources. A further benefit
of this work noted by Mittelbach and Rowley
(2020) is that a large class of existing docu-
ments could be made considerably more acces-
sible by simply rebuilding them with updated
tools to produce tagged PDF and HTML ver-
sions. If this strategy were to become prac-
ticable, it would greatly enhance access to a
potentially large academic and scholarly liter-

7Alternative methods of representing mathematical notation
for purposes of enabling non-visual access in PDF files gen-
erated from LATEX sources are explored in Moore (2014).
Ahmetovic et al. (2018) describe a LATEX package that
inserts the TEX source of mathematical expressions as al-
ternative text in the generated PDF file, but without tagging
document structures. A dictionary is provided to improve
the spoken presentation of the notation.
8The author gratefully acknowledges Ross Moore, in a dis-
cussion on the TEX Users Group’s ‘accessibility’ mailing
list, for referring to this specification and pointing out its
potential.

ature written in LATEX. Meanwhile, the best
pragmatic response by students and researchers
who are blind who wish to access existing LA-
TEX documents is to obtain the original source
files from the authors or publishers, and then to
read them directly in a text editor or using any
of the available document conversion tools.

A second, recent initiative concerns the addi-
tion of support for braille translation and for-
matting to conversion tools developed for the
PreTeXt (“PreTeXt”, n.d.) markup language.
PreTeXt is an XML-based markup language
optimized for writing and editing directly by
authors, and originally created for the produc-
tion of mathematical texts. The accompany-
ing software can convert PreText documents
to output formats including HTML, and PDF
via LATEX. Using a process based on XSLT
(World Wide Web Consortium, 2017), and the
Liblouis braille translator and formatter (Li-
blouis, n.d.), code for converting PreTeXt doc-
uments to embossed braille has been integrated
as a generally available feature of the software.
Mathematical notation is translated to Nemeth
Code braille via Speech Rule Engine (Sorge,
2022; Sorge, Chen, Raman, Tseng, 2014), a
specialized library for the production of accessi-
ble spoken, and now also braille, mathematics.

A third encouraging development signals a move
beyond hand-crafted alternative text as the pri-
mary means of making graphical content acces-
sible on the Web and in electronic documents
generally. Packages developed for the R statis-
tical programming environment automate the
creation of data representations which are non-
visually accessible. These formats are of three
kinds (Seo, 2021): first, algorithmically gener-
ated, static or interactively readable and

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

14



navigable descriptions of basic chart types;9 sec-
ond, sonification of charts (Siegert Williams,
2017); and third, creation of PDF files suit-
able for the production of tactile graphics us-
ing swell touch paper (Seo, 2020). These so-
lutions are founded on the understanding that,
though useful, plain text descriptions of graph-
ics are not sufficient for independent, non-visual
analysis and exploration of data (Fitzpatrick
et al., 2017); they need to be complemented
by efficient auditory and tactile representations,
or by representations of data that can be tra-
versed and read by interactive means. Fully
automatic generation of these accessible forms
from the data themselves support the indepen-
dence of students and professionals in engaging
in statistics-related work—an advantage that
would not be achieved by approaches to ac-
cessibility requiring manual intervention by a
sighted person, such as writing descriptions or
drawing tactile graphics by hand. Since the
original data can be preserved in R Markdown
documents, it becomes possible to produce graph-
ical and non-visual representations of the data
in parallel, leading to the construction of highly
accessible scientific texts. Examples are pro-
vided in Godfrey (2021, chapter 7), and in Seo
(2021).

Conclusion

Markup languages, and the software available
for editing and processing them, have features
that can make them convenient for the non-
visual creation and revision of scientific, techni-
cal, or scholarly documents. The newer, light-
weight markup languages have advantages in
source text readability and ease of learning. How-
9Use of the BrailleR package (Godfrey, n.d.), which pro-
vides this capability, is documented in detail by its author
in Godfrey (2021). Work undertaken to extend the BrailleR
package to build interactive, Web-based diagrams support-
ing non-visual reading and exploration with a screen reader
is reported in Fitzpatrick, Godfrey, and Sorge (2017).

ever, they typically lack the features, extensibil-
ity or flexibility of their more complex alterna-
tives. Similarly, text editors that offer greater
efficiency and more features also tend to de-
mand a larger investment in learning, for ex-
ample in understanding relevant concepts and
in acquiring proficiency in the application of
an extensive set of keyboard commands. The
tradition, established most prominently by the
UNIX operating system and its derivatives, that
separates the choice of a text editor from the
selection of a markup language, and which pri-
oritizes using plain text files to store content,
has proven to be of lasting value in enabling
the matching of available tools with the needs
of the individual user.

The capacity to enhance and extend certain
text editors by independently created software
packages has opened opportunities to achieve
a quality of non-visual access that screen read-
ers have often not afforded. Emacspeak is the
most enduring, and appears to be the earliest
example of this approach. However, it is the
author’s observation, based on discussions that
have taken place via Internet mailing lists dur-
ing almost three decades, that few, if any, of the
editor-related research projects intended to im-
prove non-visual access have gained a sustain-
able community of users or developers. Instead,
the software seldom progresses beyond the con-
fines of the project in which it was envisioned.
This may be a reasonable outcome if the intent
is purely to conduct research and to publish
findings, which are worthy aims in themselves,
but it also limits the benefits of the work to
the people whose needs it is supposed to meet.
Projects with ambitions beyond the publication
of research, in the author’s view, need a strat-
egy for sustaining development, for example by
publication as an extension package in distribu-
tion repositories associated with an established

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

15



text editor, or by integration as new features or
accessibility-related enhancements of the editor
itself that can be maintained over the long term.
Encouraging emergence of a community of users
is also desirable. Further text editor-related re-
search is justified, particularly in regard to the
accessibility of real-time, collaborative editing
systems.

Recent efforts further to improve the non-visual
accessibility of the output producible from marked
up documents are encouraging. The inclusion
of support for tagged PDF in the core code of
LATEX promises significantly to enhance the
accessibility of new and existing documents pre-
pared in this format, not only, or perhaps even
primarily, via the direct consumption of the
PDF output, but by improving the quality and
reliability of conversions to other formats, es-
pecially those based on HTML. The integra-
tion of mechanisms for braille production di-
rectly into tools supporting a mathematically-
oriented markup language is useful in itself, while
suggesting a strategy of development that could
profitably be pursued further.

Generation of non-visually accessible charts via
the R statistics environment also illustrates the
significant benefits obtainable from small but
strategic software projects, engaging develop-
ers who are also users of these accessibility-
related tools. Further research and develop-
ment work could usefully explore the potential
of other graphics-oriented programming languages,
especially those used in the construction of di-
agrams for inclusion in marked up documents,
not only to produce accessible non-visual out-
put, but also to be applied by authors who are
blind to the task of producing graphics for read-
ing by educators and colleagues. Here also, a
case can be made for extending existing lan-
guages and tools to improve non-visual access,
rather than for designing new graphics languages

intended primarily to be used by people with
disabilities, which would be isolated from the
evolution of more widely used alternatives and
thus unable to benefit from their larger com-
munities of users and developers.

It is here hypothesized that domain-specific lan-
guages which describe diagrams in terms of the
objects, properties and relations represented,
rather than in purely geometric terms, can cap-
ture semantic distinctions that should prove valu-
able in automatically generating non-visual rep-
resentations adapted to be comprehensible to
the person interpreting them. A further illus-
tration of this strategy for making diagrams
accessible appears in Sorge (2016a) and Sorge,
Lee, and Wilkinson (2015), in which Chemical
Markup Language (CML) is used as an inter-
mediate representation of diagrams which are
subsequently rendered as interactive, graphical
objects that can be magnified, or read and navi-
gated via a screen reader. More generally there-
fore, domain-specific languages have potential
both as a medium of expression for authors in
preparing marked up documents non-visually,
and as source formats from which highly us-
able representations may be derived by means
of sonification, tactile graphics, or text-based
reading and interaction in speech or braille.

Acknowledgments

The author is indebted to colleagues, friends,
e-mail correspondents, and participants in on-
line fora who have influenced his views over the
years on the issues presented here. Naturally,
full responsibility for the opinions developed in
the paper rests entirely with him. Particular
gratitude is owed to T.V. Raman for his in-
sights, and for valuable discussion of Emacs-
peak as well as pointing out the significance of
domain-specific languages for non-visual draw-
ing of diagrams. Volker Sorge helpfully noted

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

16



the relevance of his work on chemical diagrams
to the topic of the paper. Participants in the
‘BlindMath’ mailing list have discussed LATEX,
Markdown, R, the accessibility benefits of con-
verting documents to HTML format, and re-
lated topics on various occasions, providing valu-
able information and ideas. Mark Hakkinen
and Heather Buzick (Educational Testing Ser-
vice), and Clayton Lewis (University of Col-
orado Boulder) reviewed the manuscript and
provided insightful comments.

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

17



References

Ahmetovic, D., Armano, T., Bernareggi, C.,
Berra, M., Capietto, A., Coriasco, S., ...
Taranto, E. (2018). Axessibility: A latex
package for mathematical formulae acces-
sibility in pdf documents. In Proceedings
of the 20th international acm sigaccess con-
ference on computers and accessibility (pp.
352–354).

Ahmetovic, D., Bernareggi, C., Bracco, M., Murru,
N., Armano, T., Capietto, A. (2021). La-
tex as an inclusive accessibility instrument
for highschool mathematical education. In
Proceedings of the 18th international web
for all conference (pp. 1–9).

Allen, D., White, S., individual AsciiDoctor
contributors. (2021). Asciidoc language doc-
umentation. Retrieved December 8, 2021,
from https://docs.asciidoctor.org/asciidoc/
latest/

Asymptote: the Vector Graphics Language. (n.d.).
Retrieved January 4, 2022, from https : / /
asymptote . sourceforge.io

AUCTeX. (2020). Retrieved December 8, 2021,
from https://www.gnu.org/software/auctex/
manual/auctex/

Bahls, P., Wray, A. (2015). Latexnics: The
effect of specialized typesetting software on
stem students’ composition processes. Com-
puters and Composition, 37, 104–116.

Baumer, B., Udwin, D. (2015). R markdown.
Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 7 (3), 167–177.

Cameron, D., Elliott, J., Raymond, M. L. E. S.,
Rosenblatt, B. (2009). Learning gnu emacs,
3rd edition. O’Reilly Media, Inc.

Cho, B., Sun, C., Ng, A. (2019). Issues and ex-
periences in building heterogeneous co-editing

systems. Proceedings of the ACM on Human-
Computer Interaction, 3, 1–28.

Das, M., Gergle, D., Piper, A. M. (2019). ” it
doesn’t win you friends” understanding ac-
cessibility in collaborative writing for peo-
ple with vision impairments. Proceedings
of the ACM on Human-Computer Interac-
tion, 3(CSCW), 1–26.

Das, M., McHugh, T. B., Piper, A. M., Gergle,
D. (2022). Co11ab: Augmenting accessibil-
ity in synchronous collaborative writing for
people with vision impairments. Retrieved
January 14, 2022, from https: //maitraye.
github.io/files/papers/BVICWCHI22.pdf

Das, M., Piper, A. M., Gergle, D. (2022). De-
sign and evaluation of accessible collabora-
tive writing techniques for people with vi-
sion impairments. ACM Transactions on
Computer-Human Interaction, 29 (2), 1–42.

Dunn, B. (2021). The lwarp package: Latex to
html. Retrieved from http://mirrors.ctan.org
/macros/latex/ contrib/lwarp/lwarp.pdf

Fitzpatrick, D., Godfrey, A. J. R., Sorge, V.
(2017). Producing accessible statistics dia-
grams in r. In Proceedings of the 14th in-
ternational web for all conference (pp. 1–4).

Flynn, P. (2021). Formatting information: A
beginner’s introduction to typesetting with
latex. Retrieved December 8, 2021, from
http://latex.silmaril.ie/formattinginformation/

Free Software Foundation, Inc. (2021). The
emacs editor. Retrieved December 8, 2021,
from https://www. gnu.org/software/emacs/
manual/htmlnode/emacs/

Godfrey, A. J. R. [A Jonathan R], James, M.
C. (2016). Simple authoring of statistical
analyses by and for blind people. In Pro-
ceedings of the international workshop on
digitization and e-inclusion in mathematics

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

18



and science 2016 (pp. 47–54).

Godfrey, A. J. R. [A. Jonathan R.]. (n.d.).
Brailler: Improved access for blind users.
massey university. r package version 0.32.1.
Retrieved January 24, 2022, from
https://cran.r-project.org/package=BrailleR

Godfrey, A. J. R. [A. Jonathan R.]. (2021).
Brailler in action. Retrieved January 12,
2022, from https://r-resources.massey.ac.nz/
BrailleRInAction/

Graphviz. (2021). Retrieved January 4, 2022,
from https://graphviz.org

Grätzer, G. (2016). More math into latex (5th).
Springer, CHAM.

Hagen, H. (2010). Tagged pdf in context. TUG-
boat, 31(3), 197–202.

Ho, D. (n.d.). Notepad++. Retrieved Jan-
uary 13, 2021, from https://notepad-plus-
plus.org/

International Organization for Standardization.
(2008). Iso 32000-1:2008—document man-
agement—portable document format—part
1: Pdf 1.7.

International Organization for Standardization
and International Electrotechnical Commis-
sion. (2015). Iso/iec 26300-1:2015, informa-
tion technology—open document format for
office applications (open- document) v1.2.

International Organization for Standardization
and International Electrotechnical Commis-
sion. (2016). Iso/iec 29500-1:2016: Infor-
mation technology—document description and
processing languages— office open xml file
formats—part 1: Fundamentals and markup
language reference.

Jones, R. (2021). A restructured text primer.
Retrieved December 8, 2021, from
https://docutils.sourceforge.io/docs/user/

rst/quickstart.html

Knauff, M., Nejasmic, J. (2014). An efficiency
comparison of document preparation systems
used in academic research and development.
PloS one, 9 (12), e115069.

Kottwitz, S. (2021). Latex beginner’s guide
(2nd). Packt Publishing Ltd.

Liblouis. (n.d.). Liblouis—an open-source braille
translator and back-translator. Retrieved
January 11, 2021, from http://liblouis.org

MacFarlane, J. (2021). Pandoc user’s guide.
Retrieved December 8, 2021, from
https://pandoc.org/MANUAL. html

MacroMates Ltd. (2021). Textmate for macos.
Retrieved January 13, 2022, from
https://macromates.com/

Mailund, T. (2019). Introducing markdown and
pandoc: Using markup language and docu-
ment converter. Apress.

Manzoor, A., Arooj, S., Zulfiqar, S., Parvez,
M., Shahid, S., Karim, A. (2019). Alap:
Accessible latex based mathematical docu-
ment authoring and presentation. In Pro-
ceedings of the 2019 chi conference on hu-
man factors in computing systems (pp. 1–12).

Matt. (n.d.). Semantic line breaks. Retrieved
December 29, 2021, from https://sembr.org/

McDonnell, M. (2014). Pro vim. Apress.

Mealin, S., Murphy-Hill, E. (2012). An ex-
ploratory study of blind software develop-
ers. In 2012 ieee symposium on visual lan-
guages and human-centric computing (vl/hcc)
(pp. 71–74). IEEE.

Microsoft Corporation. (2021). Accessibility in
visual studio code. Retrieved January 18,
2021, from https://code.visualstudio.com/
docs/editor/accessibility

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

19



Miller, B., Ginev, D. (n.d.). Latexml a latex
to xml/html/mathml converter. Retrieved
April 22, 2022, from https://math.nist.gov/
BMiller/LaTeXML/

Mittelbach, F., Rowley, C. (2020). Latex tagged
pdf—a blueprint for a large project. TUG-
boat, 41(3), 292–298.

Moore, R. (2014). Pdf/a-3u as an archival for-
mat for accessible mathematics. In Inter-
national conference on intelligent computer
mathematics (pp. 184–199). Springer.

Moore, R. (2020). Tagging with latex—part
1: Author considerations. TUGboat, 41(2),
223–242.

Moorhead, A. (2020). Is latex use correlated
with the number of equations in a manuscript?
In Aas/division of dynamical astronomy meet-
ing (Vol. 52, pp. 103–07).

Murillo-Morales, T., Miesenberger, K., Rue-
mer, R. (2016). A latex to braille conver-
sion tool for creating accessible schoolbooks
in austria. In International conference on
computers helping people with special needs
(pp. 397–400). Springer.

Oelen, A., Auer, S. (2019). Content authoring
with markdown for visually impaired and
blind users. In 2019 ieee international sym-
posium on multimedia (ism) (pp. 285–290).
IEEE.

Org Mode: your life in plain text. (n.d.). Re-
trieved January 13, 2022, from
https://orgmode.org/

PDF Association. (2019). Deriving html from
pdf: A usage specification for tagged iso
32000-2 files. Retrieved January 6, 2022,
from https://www.pdfa.org/wp-content/
uploads/2019/06/DerivingHTMLfrom

PDF.pdf

Polsley, S., Lacy, A., Hammond, T. (2021).
Are best practices best? making technical
pdfs more accessible. Retrieved January 4,
2021, from https://www.w3.org/WAI/about/
projects/wai-coop/paper102.html

PreTeXt. (n.d.). Retrieved January 6, 2022,
from https://pretextbook.org

Raman, T. (1997). Auditory user interfaces:
Toward the speaking computer. Kluwer Aca-
demic Publishers.

Raman, T. (2021). Emacspeak: The complete
audio desktop. Retrieved January 18, 2022,
from https://github.com/tvraman/emacspeak

Robbins, A., Hannah, E. (2021). Learning the
vi and vim editors (8th). O’Reilly Media,
Inc.

Seo, J. (2020). Tactiler: R package for creating
tactile graphics for users with visual impair-
ments. Retrieved January 24, 2022, from
https://github.com/jooyoungseo/tactileRSeo,
J. (2021). Accessible data science for the
blind using r. Retrieved January 10, 2022,
from https : / /jooyoungseo.com/post/
ds4blind/

Seo, J., McCurry, S., Team, A. (2019). La-
tex is not easy: Creating accessible scien-
tific documents with r markdown. Journal
on Technology and Persons with Disabili-
ties, 7, 157–171.

Shotts, W. (2019). The linux command line:
A complete introduction (2nd). No Starch
Press.

Siegert, S., Williams, R. (2017). Sonify: Data
sonification - turning data into sound. r
package version 0.0-1. Retrieved January
24, 2022, from https://cran.r-project.org/
web/packages/sonify/

Soiffer, N., Noble, S. (2019). Mathematics

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

20



and statistics. In S. Harper Y. Yesilada
(Eds.), Web accessibility—a foundation for
research (pp. 417–443). Springer.

Sorge, V. (2016a). Polyfilling accessible chem-
istry diagrams. In International conference
on computers helping people with special
needs (pp. 43–50). Springer.

Sorge, V. (2016b). Supporting visual impaired
learners in editing mathematics. In Pro-
ceedings of the 18th international acm sigac-
cess conference on computers and accessibil-
ity (pp. 323–324). Sorge, V. (2022).

Speech rule engine. Retrieved January 25, 2022,
from https://github.com/Speech-Rule-
Engine/speech-rule-engine

Sorge, V., Chen, C., Raman, T., Tseng, D.
(2014). Towards making mathematics a first
class citizen in general screen readers. In
Proceedings of the 11th web for all confer-
ence (p. 40). ACM. Sorge, V., Lee, M.,
Wilkinson, S. (2015).

End-to-end solution for accessible chemical di-
agrams. In Proceedings of the 12th interna-
tional web for all conference (pp. 1–10).

Sotomayor-Beltran, C., Barriales, A. L. F., Lara-
Herrera, J. (2021). Work in progress: The
impact of using latex for academic writing:
A peruvian engineering students’ perspec-
tive. In 2021 ieee world conferenceon en-
gineering education (edunine) (pp. 1–4).
IEEE.

Straub, B., Chacon, S. (2014). Pro git (2nd).
Apress.

Takagi, N., Suzuki, T., Araki, T. (2020). De-
velopment of a drawing assistant system for
blind users using an object-oriented graphic
description language. In 2020 international
conference on machine learning and cyber-
netics (icmlc) (pp. 88–93). IEEE.

Tantau, T. (n.d.). Tikz pdf manual for version
3.1.8b. Retrieved January 4, 2022, from
https://mirrors.rit.edu/CTAN/graphics/pgf/
base/doc/pgfmanual.pdf

TeX Users Group. (n.d.). Mactex. Retrieved
January 13, 2022, from https://www.tug.org/
mactex/

TEX Users Group. (2021). Tex4ht. Retrieved
January 6, 2022, from https://tug.org/tex4ht/

VimTeX. (n.d.). Retrieved December 30, 2021,
from https://github.com/lervag/vimtex

Voegler, J., Bornschein, J., Weber, G. (2014).
Markdown–a simple syntax for transcription
of accessible study materials. In Interna-
tional conference on computers for handi-
capped persons (pp. 545–548). Springer.

Walsh, N., Hamilton, R. L. (2010). Docbook 5:
The definitive guide. O’Reilly Media, Inc.

Web Hypertext Application Technology Work-
ing Group. (2021). Html: Living stan-
dard. Retrieved December 8, 2021, from
https://html.spec.whatwg.org/

White, J. (2020). The accessibility of mathe-
matical notation on the web and beyond.
Journal of science Education for Students
with disabilities, 23(1).

Word wrap should not be disabled when ac-
cessibility is turned on 95428. (2021). Re-
trieved January 24, 2022, from
https://github.com/microsoft/vscode/issues
/95428

World Wide Web Consortium. (2015). Author-
ing tool accessibility guidelines (atag) 2.0.
Retrieved from
https://www.w3.org/TR/ATAG20/

World Wide Web Consortium. (2017). Xsl
transformations (xslt) version 3.0. Retrieved
April 20, 2020, from https://www.w3.org/TR/

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

21



xslt-30/

World Wide Web Consortium. (2018a). Epub
3.2. Retrieved April 20, 2020, from
https://www.w3.org/ publishing/epub3/epub-
spec.html

World Wide Web Consortium. (2018b). Web
content accessibility guidelines (wcag) 2.1.
Retrieved from https://www.w3.org/TR/
2018/REC-WCAG21-20180605/

Wright, C. H. (2010). Technical writing tools
for engineers and scientists. Computing in
Science Engineering, 12(5), 98–103.

Xie, Y. (2016). Bookdown: Authoring books
and technical documents with r markdown.
CRC Press.

Xie, Y., Allaire, J. J., Grolemund, G. (2018).
R markdown: The definitive guide. CRC
Press.

Zu Bexten, E. M., Jung, M. (2002). Latex at
the university of applied sciences giessen-
friedberg—experiences at the institute for
visually impaired students. In International
conference on computers for handicapped
persons (pp. 508–509). Springer.

Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation
DOI: 10.14448/jsesd.13.0005

22


