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RESEARCH REPORT

Technology-Enhanced Items and Model–Data Misfit

Carol Eckerly, Yue Jia, & Paul Jewsbury

ETS, Princeton, NJ

Testing programs have explored the use of technology-enhanced items alongside traditional item types (e.g., multiple-choice and
constructed-response items) as measurement evidence of latent constructs modeled with item response theory (IRT). In this report,
we discuss considerations in applying IRT models to a particular type of adaptive testlet referred to as a branching item. Under the
branching format, all test takers are assigned to a common question, and the assignment of the next question relies on the response to
the first question through deterministic rules. In addition, the items at both stages are scored together as one polytomous item. Real
and simulated examples are provided to discuss challenges in applying IRTmodels to branching items. We find that model–data misfit
is likely to occur when branching items are scored as polytomous items andmodeled with the generalized partial credit model and that
the relationship between the discrimination of the routing component and the discriminations of the subsequent components seemed
to drive the misfit. We conclude with lessons learned and provide suggested guidelines and considerations for operationalizing the use
of branching items in future assessments.

Keywords Technology-enhanced items (TEIs); item response theory (IRT); branching item; branching format; model–data misfit,
digital format; adaptive assessment; psychometric problem-solving; speededness; motivation; estimation of proficiencies; scaffolding;
general partial credit model (GPCM)

doi:10.1002/ets2.12353

Many established testing programs that have traditionally operated in a paper-and-pencil format have recently tran-
sitioned or are in the process of transitioning to a digital format. Some examples include the National Assessment of
Educational Progress, the GRE® test, and the Medical College Admission Test. Other tests that had been available only in
paper-and-pencil format are now available in both paper-and-pencil and digital formats, including large-scale interna-
tional assessments like the Program for International Student Assessment and the Program for the International Assess-
ment of Adult Competencies. The transition to a digital format allows for novel item types only possible in a digital
environment, defined as technology-enhanced items (TEIs). Whereas early computer-based tests largely continued to uti-
lize traditional item types, recent advancements in commercial computer-based testing software have enabled testing
programs to implement and pilot TEIs with greater ease (Parshall & Guille, 2016).

The focus of this report is the fixed branching adaptive TEI introduced by Wainer and Kiely (1987). These item types,
which we will refer to as “branching items,” consist of multiple components in which test takers are routed to different
components based on responses to the routing component(s). Branching items have several desirable properties. First,
though branching items are adaptive in nature, the routing paths are much more controlled than in fully adaptive assess-
ment (i.e., a computerized adaptive test). This trait allows test developers to limit some potential psychometric problems
with fully adaptive assessments, including differential context effects related to item location, cross-information, or unbal-
anced content (Wainer&Kiely, 1987). Furthermore, branching items retain someof the advantages of adaptive assessment,
including tailoring assessment content to better match test takers’ abilities (e.g., test takers of higher ability will be less
likely to receive the easiest content, and vice versa). Thus, these items have the potential to help with speededness of timed
tests, motivation of test takers of lower ability, and more precise estimation of proficiencies of test takers of lower and
higher ability.

Additionally, branching items have the potential to introduce dynamic scaffolding into test content. Scaffolding is
a strategy that provides instructional supports (i.e., scaffolds) to students who may not be able to solve a task inde-
pendently (Rodgers & Rodgers, 2004). Although scaffolding has traditionally been utilized in formative assessment and
classroom settings, technological advancements enable dynamic assessments tomake use of scaffolding within traditional
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C. Eckerly et al. Technology-Enhanced Items and Model–Data Misfit

assessments as a strategy to elicit partial knowledge. In the branching item context, the routing component can be utilized
to informwhat type of scaffold will be presented to the test taker next (i.e., a more difficult component or an easier compo-
nent). For example, if a student answers the routing component incorrectly, the prompt of the subsequent component can
introduce context that may help the test taker answer the following component correctly. Such a design has the potential
to provide test takers with opportunities to show knowledge and abilities beyond what can be shown with independent,
single-score items (Wolf et al., 2016).

In practice, testing programs have been evaluating the use of TEIs like branching items alongside traditional item types
(e.g., selected-response and constructed-response items) as measures of latent constructs with item response theory (IRT)
methodology. The branching item format described was utilized in several pilot items as part of an interactive computer
task for a pilot subject test in a large-scale educational assessment in which significant model–data misfit was observed
for all branching items when standard operational scaling procedures were implemented. In this report, we describe our
investigation to understand the source of the observed misfit, including (a) alternate analyses of the empirical data and
(b) a simulation study designed to reproduce the observed ef fects. We learned that the relationship between the discrim-
ination of the routing component and the discriminations of the subsequent components seemed to drive the misfit.
We conclude with lessons learned from the pilot administration and provide suggested guidelines and considerations for
operationalizing the use of branching items in future assessments.

Scoring of Branching Items

Wainer andKiely (1987) described twoways in which branching items can be scored: (a) Score levels of an ordered polyto-
mous IRTmodel are determined by various response patterns to all components, or (b) each component in the branching
item is scored as a separate item. Descriptions and implications of each are described in the following sections.

Scoring Branching Items with an Ordered Polytomous Item Response Theory Model

Fully hierarchical adaptive branching items (Wainer &Kiely, 1987) in which the difficulties of the components are ordered
have an ordered set of unique possible outcomes determined by the sequence of administered items and the response to the
final item (Bolt, 2016). Thisordered set of outcomes can be used to construct the scoring rubric. For example, the scoring
categories of a branching item that includes one dichotomous routing component, one dichotomous high component
(i.e., a component of higher difficulty than the router that will be presented to test takers who respond correctly to the
routing component), and one dichotomous low component (i.e., a component of lower difficulty than the router that will
be presented to test takers who respond incorrectly to the routing component) is shown in Figure 1. In the f igure, a “1”
indicates a correct response and a “0” an incorrect response. The score categories for the responses to both components
are as follows: 0 points, incorrect routing component, incorrect low component; 1 point, incorrect routing component,
correct low component; 2 points, correct routing component, incorrect high component; and 3 points, correct routing
component, correct high component.

Branching items should be scored polytomously if conditional independence among the responses to individual com-
ponents cannot be assumed. Conditional independence in the branching context is described in the following section.

Scoring Branching Item Components Separately

If branching item components are scored as separate items, it is necessary to ensure that the missing data in the high and
low components do not lead to estimation problems for IRT model item parameters. When estimating item parameters

Figure 1 Example of a three-component, four-level branching item, with dichotomous components.

2 ETS Research Report No. RR-22-11. © 2022 Educational Testing Service
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C. Eckerly et al. Technology-Enhanced Items and Model–Data Misfit

using marginal maximum likelihood (MML) estimation, missing data in the response matrix are considered ignorable
when they are missing completely at random or missing at random (MAR; Mislevy, 2016). In the branching item context,
the data missing by design (i.e., missing due to routing) in the low and high components (i.e., missing responses in the
high component for students who were routed to the low component and missing responses in the low component for
students who were routed to the high component) are MAR, because the probability of missingness is independent of
the missing responses conditional on the routing responses. Because the missing data are MAR, the missingness can
be ignored in marginal likelihood inference, so MML item parameter estimates using the likelihood are statistically
consistent. However, sample sizes and ability ranges of test takers responding to each component should be monitored
to ensure that item parameters of the high and low components can be estimated with sufficient precision.

It is also necessary to address potential violations of the local independence assumption that may arise because
of an intended item development feature of constructing the components around a common stimulus. Marais and
Andrich (2008) distinguished between two types of violations of the local independence assumption for standard
unidimensional IRT models: (a) response dependence, in which the response function, conditional on ability, for one
item depends on the observed response to another item, and (b) trait dependence, in which there is an additional
trait dimension that is not modeled (e.g., Bolt, 2016; Li et al., 2006; Wainer et al., 2002; Wainer et al., 2007; Wainer &
Kiely, 1987). DeMars (2012) noted that response dependence may occur when the response to one item, conditional on
ability, depends directly on the correctness of another item, such as when the second item asks the test taker to explain
their answer to the first item. Additionally, trait dependence may occur when multiple items are linked to the same
stimulus but those items do not directly build off each other.

The first type of dependence, response dependence, for a simple branching item with three dichotomous components
(i.e., a routing, low, and high component), can be described by the following joint probabilities representing all possi-
ble combinations of responses to the individual components for a three-component branching item with dichotomous
components. Each of the probabilities on the right-hand sides of the equations can be determined by an appropriate IRT
model, and the probability of response to the high or low component is conditional on the observed response to the
routing component in addition to θ:

P
(
xroute = 1, xhigh = 0 | θ

)
= P

(
xroute = 1 | θ) ∗ P

(
xhigh = 0 | xroute = 1, θ

)
, (1)

P
(
xroute = 1, xhigh = 1 | θ

)
= P

(
xroute = 1 | θ) ∗ P

(
xhigh = 1 | xroute = 1, θ

)
, (2)

P
(
xroute = 0, xlow = 0 | θ

)
= P

(
xroute = 0 | θ) ∗ P

(
xlow = 0 | xroute = 0, θ

)
, (3)

P
(
xroute = 0, xlow = 1 | θ

)
= P

(
xroute = 0 | θ) ∗ P

(
xlow = 1 | xroute = 0, θ

)
. (4)

Owing to the branching in which test takers are presented either the high or low component, but not both, some
combinations of components and associated responses will not be observed in the data, thus, the probability of observing
any of the following response combinations is zero:

P
(
xroute = 0, xhigh = 0 | θ

)
= 0, (5)

P
(
xroute = 0, xhigh = 1 | θ

)
= 0, (6)

P
(
xroute = 1, xlow = 0 | θ

)
= 0, (7)

P
(
xroute = 1, xlow = 1 | θ

)
= 0. (8)

Because there are no response data to estimate the item parameters of the high component from test takers who
answered the routing component incorrectly and there are no response data to estimate the item parameters of the low

ETS Research Report No. RR-22-11. © 2022 Educational Testing Service 3
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component from test takers who answered the routing component correctly (as reflected in Equations (5)–(8)), the fol-
lowing equations hold when item parameters of the IRT model are estimated using MML:

P
(
xhigh = 0 | xroute = 1, θ

)
= P

(
xhigh = 0 | θ

)
, (9)

P
(
xhigh = 1 | xroute = 1, θ

)
= P

(
xhigh = 1 | θ

)
, (10)

P
(
xlow = 0 | xroute = 0, θ

)
= P

(
xlow = 0 | θ

)
, (11)

P
(
xlow = 1 | xroute = 0, θ

)
= P

(
xlow = 1 | θ

)
. (12)

Thus, Equations (1)–(4) reduce to

P
(
xroute = 1, xhigh = 0 | θ

)
= P

(
xroute = 1 | θ) ∗ P

(
xhigh = 0 | θ

)
, (13)

P
(
xroute = 1, xhigh = 1 | θ

)
= P

(
xroute = 1 | θ) ∗ P

(
xhigh = 1 | θ

)
, (14)

P
(
xroute = 0, xlow = 0 | θ

)
= P

(
xroute = 0 | θ) ∗ P

(
xlow = 0 | θ

)
, (15)

P
(
xroute = 0, xlow = 1 | θ

)
= P

(
xroute = 0 | θ) ∗ P

(
xlow = 1 | θ

)
, (16)

indicating that response dependence cannot lead to violations of the local independence assumption of unidimensional
IRT models in the branching context. It is important to note that this will only be true if all test takers who answer the
routing component correctly are routed high and all test takers who answer the routing item incorrectly are routed low
(i.e., deterministic rather than probabilistic routing is used).

Although we have shown that response dependence is not a problem in the branching context, the second type of
dependence, trait dependence, can still lead to violations of the local independence assumption because dependencies
could potentially exist between responses to the routing component and the low component or between responses to the
routing component and the high component. Thus, if individual components are to be scored as separate items and the
components are linked to a common stimulus, it is still necessary to check for dependencies before choosing to score each
component as a separate item.

Assessing Model–Data Fit

Throughout this report, we use two strategies for assessing model–data fit: the chi-squared fit statistic (ChiSq) produced
by the version of PARSCALE modified by ETS and plots of empirical versus model-predicted probabilities. Both the
ChiSq statistic and the visual plots make use of the “pseudocounts” (e.g., Stone et al., 1994) at each quadrature point,
which reflect the summed posterior densities for test takers responding in each score category at each quadrature point
q. T he pseudocounts r for score level j given θq are shown by

rjq =
N∑
n=1

xjnP
(

xn | θq
)
A
(
θq
)
∕P

(
xn
)
,

where N is the number of test takers; xjn is 1 if the observed response of the nth test taker for the item equals j, and is 0
otherwise; P

(
xn | θq

)
is the conditional probability of the nth test taker’s response pattern xn given ability level θq;A

(
θq
)

is a weight corresponding to the normal density function at θq; and P
(

xn
)
is the marginal probability of observing the

response pattern xn. For an item, the pseudo-counts can populate a J ×Q table of observed (or empirical) counts for each

4 ETS Research Report No. RR-22-11. © 2022 Educational Testing Service
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score category at each quadrature point, where J is the number of score categories and Q is the number of quadrature
points. Expected (or theoretical) counts can be obtained from the estimated item response function. TheChiSq statistic is
then calculated in the usual way given a set of observed and expected frequencies. However, owing to using pseudocounts
in the construction of the observed frequencies, a test taker’s contribution to the item fit table is distributed over multiple
cells, so observations are not independent; thus, the statistic is used to provide a measure of relative item fit, but the
sampling distribution cannot be assumed to be chi-square.

Pseudocounts are also used to calculate empirical probabilities of scoring in each score category at each quadrature
point by dividing each pseudocount by the number of test takers. These empirical probabilities are compared to theoretical
probabilities shown by the item characteristic curve(s) of each item. Empirical and theoretical probabilities are overlaid
on the same plot for a visual indicator of model–data fit.

Methods

Real Data Example

For the branching items from the pilot assessment, all test takers were assigned to a common routing component, while the
assignment of the next component was determined by the response to the routing component. The components at both
stages were scored together as one polytomous item because each component of the branching item relied on a common
stimulus, suggesting that treating each component as a separate item may violate the local independence assumption.
Three branching items (B1, B2, and B3) that were part of the same interactive computer task were analyzed. Each of these
items has an associated routing component (R1, R2, and R3), high component (H1, H2, and H3), and low component
(L1, L2, and L3).

When the branching items were developed, each was intended to be a fully hierarchical adaptive branching item
(Wainer & Kiely, 1987) in which the difficulties of the components were ordered, with the routing component having
a higher difficulty than the low component and a lower difficulty than the high component. Details about the scoring of
the branching items are included in Table 1, in which score categories for the polytomous score rubrics of each branching
item are broken down based on the number of points received on the separate components (where, e.g., 0/1 R1 indicates
that a test taker scored 0 out of 1 point on R1):

To investigate how these pilot branching items functioned, IRT scaling was conducted in which dichotomous items
were modeled with the three-parameter logistic (3PL) model (Birnbaum, 1968) and polytomous items were modeled
with the generalized partial credit model (GPCM; Muraki, 1992) following the convention of the assessment program.
Thepilot assessment included a total of 280 items (including branching items) with an average of 1,300 student responses
per item. After observing significant misfit of the branching items following the usual procedures for analyzing pilot data,
we followed up with additional calibrations to help better understand the sources of misfit. First, we conducted scaling
procedures utilizing the response data for the 277 nonbranching items in the pilot to set the scale without the influence of
the branching items. Second, three separate calibrations were conducted to project the branching items onto the scale. In
these calibrations, the parameters of the nonbranching itemswere fixed, but the branching itemparameterswere estimated
based on three different scoring methods.

1 Calibration 1: Original rubric scoring. Branching items were scored according to the score categories from the orig-
inal deterministic rubric described in Table 1.

2 Calibration 2: Collapsed categories rubric scoring. Branching items were scored by collapsing some score categories
to improve IRT model fit.

3 Calibration 3: Separate items scoring. Branching item components (i.e., routing, high, and low) were scored as sep-
arate items.

Calibration 1was used as a baseline to evaluatemodel–data fit using the original scoring rubrics. Calibration 2 followed
the usual procedure of the testing program to collapse score categories in which the group of students who responded in
adjacent categories had similar overall ability as measured by their performance on the rest of the test. Calibration 3 was
used as a tool to evaluate the performance of individual components to see if the overall misfit could be attributed to an
individual component. Each of the calibrations was completed using expectation–maximizationMML (EM-MML; Bock
& Aitkin, 1981; Bock & Lieberman, 1970) in PARSCALE (Muraki & Bock, 1991).

ETS Research Report No. RR-22-11. © 2022 Educational Testing Service 5
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C. Eckerly et al. Technology-Enhanced Items and Model–Data Misfit

Table 1 Original Scoring Rubrics of Branching Items

Branching item

Score category 1 2 3

0 0/1 R1, 0/1 L1 0/1 R2, 0/1 L2 0/2 R3, 0/1 L3
1 0/1 R1, 1/1 L1 0/1 R2, 1/1 L2 0/2 R3, 1/1 L3
2 1/1 R1, 0/1 H1 1/1 R2, 0/2 H2 1/2 R3, 0/1 L3
3 1/1 R1, 1/1 H1 1/1 R2, 1/2 H2 1/2 R3, 1/1 L3
4 – 1/1 R2, 2/2 H2 2/2 R3, 0/2 H3
5 – – 2/2 R3, 1/2 H3
6 – – 2/2 R3, 2/2 H3

Table 2 Pilot Exam: Branching Item Descriptions

Branching item

Item property B1 B2 B3

No. of score categories
Total 4 5 7
Routing 2 2 3
High 2 3 3
Low 2 2 2

Percentage correct: Routing component 83 52 80
IRT difficulty parameter (from Calibration 3)

Routing −2.2 0.7 −2.3
High 2.8 1.5 0.0
Low 0.5 −0.2 0.8

Percentage test takers in each score category
0 10.9 12.3 3.9
1 5.8 18.3 1.7
2 80.1 19.1 9.1
3 3.2 23.1 6.2
4 – 27.2 32.3
5 – – 7.4
6 – – 39.5

Real Data Results

The proportions of test takers correctly responding to the routing components were .83, .52, and .80 for R1, R2, and
R3, respectively, indicating that R1 and R3 were much easier than R2. When a routing component is very easy, it may
be difficult to construct a subsequent component that is easier. To assess the difficulty of the high and low components
of each branching item, we used Calibration 3 to evaluate each component of each branching item in an IRT frame-
work. Although Calibration 3 was used as a tool to evaluate the performance of individual components of branching
items, results should be interpreted with caution because of potential violations of the local independence assump-
tion and, in some instances, small sample sizes for estimation. Small sample sizes were observed for low components
that followed easy routing items (i.e., B1 and B3). For example, in Item B3, only 90 test takers were routed to and
responded to L3 (a multiple-choice item with four options), and of those, only 25 test takers answered it correctly,
slightly more than would be expected if those 90 test takers had responded to the item using random guessing. Param-
eter estimates for the separate components for each branching item and additional descriptive statistics are shown
in Table 2.

On the basis of the preceding analysis of the three branching items B1, B2, and B3, we will focus on B2 because
the IRT analysis of the individual components and the percentages of students responding correctly to the router
suggest that it was the only branching item of the three that performed as intended, with a medium-difficulty rout-
ing component, lower difficulty low component, and higher difficulty high component. Although the individual
components of Item B2 showed acceptable fit and generally exhibited difficulties in the targeted range, when all

6 ETS Research Report No. RR-22-11. © 2022 Educational Testing Service
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R2 H2 L2

Figure 2 Model–data fit of individual components of Branching Item 2 (B2) from Calibration 3.

Original Scoring Rubric Collapsed Scoring Rubric

Figure 3 Model–data fit of Branching Item 2 (B2): Original scoring rubric (Calibration 1) and collapsed scoring rubric (Calibration 2).

components were scored as 1 five-category polytomous item using the GPCM, significant model misfit was observed.
This can be seen in Figures 2 and 3, in which plots of empirical versus model-predicted probabilities are shown asso-
ciated with Calibration 3 (Figure 2) and Calibrations 1 and 2 (Figure 3). The blue triangles indicate the empirical
probabilities at each quadrature point, and the black lines represent the item characteristic curves describing model-
predicted probabilities. Larger blue triangles are associated with higher sample sizes of test takers for the associated
quadrature point.

By collapsing score categories associated with 1 and 2 points, overall fit of the model improved greatly. These
two score categories were associated with test takers who answered the routing component incorrectly but the low
component correctly and with test takers who answered the routing component correctly but received zero points on
the high component, respectively. We will refer to collapsing these two categories as collapsing at the boundary of the
router.

ETS Research Report No. RR-22-11. © 2022 Educational Testing Service 7
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C. Eckerly et al. Technology-Enhanced Items and Model–Data Misfit

Simulation Study

To better understand the potential causes of the model–data misfit observed in the branching items, we designed a small
simulation study to examine the effects of various levels of discrimination parameters of the routing and high/low com-
ponents for a simple branching item consisting of dichotomous routing, high, and low components. We based the design
of the simulation on the ideal scenario observed with the second branching item B2, where the routing component was of
medium difficulty, the low component was of lower difficulty, and the high component was of higher difficulty. Because
we were interested in evaluating the misf it that was observed when branching items were scored polytomously, we did not
simulate any conditional dependence between responses to components of the branching item. While we anticipate that
different types of misfit may occur in designs that deviate from this situation (e.g., an easy routing component that routes
to different components, both of higher difficulty), we focused on this condition in which the branching item is designed
as a best case scenario for branching as described by Wainer and Kiely (1987).

We first generated response data for 170 dichotomous nonbranching items in which responses fit a 3PL model with
θ ∼ N (0, 1) for 25,000 test takers, in which the generating item parameters were set to the estimates from the pilot exam.
To simplify the analysis, we only simulated responses to the dichotomous items from the pilot assessment. We simulated
large sample sizes of both test takers and items with the intent of introducing only negligible sampling error because we
were not investigating misfit due to sampling. Additionally, response data were generated for dichotomous components
of the branching items, in which the generating item parameters varied across two factors: the discrimination parameter
of the routing component (i.e., aroute) and the common discrimination parameter of the high and low components (i.e.,
ahigh_low). The levels of each factor were set to the 10th, 30th, 50th, 70th, and 90th percentiles of the estimated discrim-
ination parameters for the 3PL items in the pilot data (i.e., 0.48, 0.64, 0.80, 0.96, and 1.31). Both of these factors were
fully crossed, leading to 25 separate branching items. We chose to vary the discrimination parameters of the compo-
nents because of what was observed for Item B2 in the real data. When each component of B2 was scored separately (in
Calibration 3), each of the components had a different estimated discrimination parameter, and acceptable model–data
fit was observed for each component. However, when the item was scored polytomously (in Calibration 1), misfit was
observed, leading us to question the role of the differing discrimination of the individual components in the misfit of the
polytomously scored item.

The generating difficulty parameters of the low, routing, and high components of each branching item were −1.0, 0.0,
and 1.0, respectively, to reflect the ideal ordered item difficulties of branching items. The generating guessing parameters
for each component were set to the average guessing parameter estimate from the pilot data (i.e., .24). Response data
for the branching items were generated by first simulating responses for the routing, high, and low components across
all test takers. Then, responses to low items were treated as missing for test takers whose simulated router responses
were correct, and responses to high items were treated as missing for test takers whose simulated router responses
were incorrect. The item was then scored according to the rubric described in the example branching item shown in
Figure 1.

To scale each of the branching items, a calibration was first conducted on the response data for the dichotomous non-
branching items using the 3PL model; item parameters were estimated using EM-MML with PARSCALE. Then, for each
simulated branching item, a separate calibration was conducted in PARSCALE, fixing the item parameters to those esti-
mated based only on the responses to the dichotomous items, while only estimating the parameters of the GPCM for
the branching item. We chose to evaluate the model f it of the branching items in this context because we are evaluating
how this particular TEI type functions when assuming that the branching items are created to measure a unidimensional
construct that can be measured with traditional multiple-choice questions.

Parameter recovery was sufficient, where correlations between the generating values and the a, b, and c parameter
estimates were .994, .998, and .936, respectively. Owing to the large sample size and sufficient item parameter recovery,
little variability in the ChiSq fit statistics was expected across additional replications. To ensure that our expectation was
accurate, we conducted one additional replication and observed that the distributions of ChiSq statistics for both repli-
cations had very similar shape and that the correlation between the fit values produced by the two replications was .996.
The results presented in this report are from the first replication.

8 ETS Research Report No. RR-22-11. © 2022 Educational Testing Service

 23308516, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ets2.12353, W

iley O
nline L

ibrary on [14/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



C. Eckerly et al. Technology-Enhanced Items and Model–Data Misfit

Simulation Results

Total test scores were calculated for each test taker by summing across all nonbranching item responses. Figure 4 shows
mean total test score by each score category for each of the simulated branching items, separated by the various levels of
ahigh_low. This figure helps to describe how well each score category of each simulated branching item separates test takers
of different ability levels. By design of the branching item, the average scores for the rest of the items on the test should
increase as the score category increases if the item is discriminating well. Figure 4 shows that this is generally not the case
for Score Categories 1 and 2 (i.e., score categories at the boundary of the router). Conditions with high values of ahigh_low
relative to values of aroute show either minimal difference between average score of test takers scoring in Categories 1 and
2 or test takers in Category 1 actually exhibiting higher scores than those in Category 2.

These results are not unexpected because the routing item will inherently misclassify a number of test takers in
both directions (high and low). Thus, we may not observe a meaningful difference between test takers who incorrectly
responded to the router but correctly responded to the low item and test takers who correctly responded to the router
but incorrectly responded to the high item. When model misfit is observed for a polytomous item and the groups of test
takers that scored in each of two adjacent score categories have similar average performance on the rest of the test, it is
common to collapse those adjacent categories into one score level to improve model–data fit (see, e.g., National Center
for Education Statistics, 2008).

Informed by the real data analysis and results in Figure 4, we employed the strategy of collapsing score categories at the
boundary of the router (i.e., Score Categories 1 and 2) for each of the branching items to observe the effect on model fit.
In some instances, the patterns observed for simulated branching items with high levels of aroute and low levels of ahigh_low
showed higher levels of separation of test taker ability between Score Categories (1 and 2) than between Score Categories
(0 and 1) and (2 and 3), we did not consider collapsing the latter two pairs of categories as a strategy to improve fit, because
the resulting item would only reflect test taker responses to the routing component.

Figure 5 shows comparisons of empirical versus model-predicted probabilities for the simulated branching items with
the highest and lowest values of ChiSq, respectively, scored using the original rubric. The item with the best fit (i.e., the
lowest level of ChiSq) is associated with a highly discriminating router relative to the high and low components, and the
item with the worst fit (i.e., the highest level of ChiSq) is associated with highly discriminating low and high components
relative to the router.

The results of Figure 5 suggest that the difference between the discrimination parameter of the routing and high/low
components may be a predictor of the ChiSq fit statistic, as this difference is large and negative for the item with the
best fit and large and positive for the item with the worst fit. To further explore this relationship, Figure 6 shows a plot
of

(
ahigh_low − aroute

)
versus the ChiSq fit statistic for each simulated branching item, for which observations are color

coded by the level of aroute. Results are shown separately for simulated branching items scoredwith the original rubric (with
Score Categories 0, 1, 2, and 3) versus the collapsed rubric (with Score Categories 0, 1, and 2, for which Score Category
1 combines Score Categories 1 and 2 from the original rubric). For the original rubric, we see a pronounced quadratic
relationship between

(
ahigh_low − aroute

)
and the ChiSq fit statistic, with the highest levels of

(
ahigh_low − aroute

)
being

associated with the worst fit. The discrimination of the router also appears to have a modest effect, because for a given
level of

(
ahigh_low − aroute

)
, lower discriminating routers are associated with better fit.

To quantify these relationships between the predictors
(
ahigh_low − aroute

)
and aroute and the outcome variable ChiSq

for simulated branching items using both the original and collapsed rubrics, we estimated the following regressionmodels:

Model 1: ChiSqoriginal regressed on
(
ahigh_low − aroute

)
,
(
ahigh_low − aroute

)2
, and

(
aroute

)
.

Model 2: ChiSqoriginal regressed on
(
ahigh_low − aroute

)
and

(
ahigh_low − aroute

)2
.

Model 3: ChiSqcollapsed regressed on
(
ahigh_low − aroute

)
,
(
ahigh_low − aroute

)2
, and

(
aroute

)
.

Model 4: ChiSqcollapsed regressed on
(
ahigh_low − aroute

)
and

(
ahigh_low − aroute

)2
.

Model 2 is a reduced version of Model 1, and Model 4 is a reduced version of Model 3.
Results for Models 1 and 2 are shown in Table 3, and results for Models 3 and 4 are shown in Table 4.
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C. Eckerly et al. Technology-Enhanced Items and Model–Data Misfit

Figure 4 Average score by score category for simulated branching items.
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C. Eckerly et al. Technology-Enhanced Items and Model–Data Misfit

aroute = 0.48, ahigh_low = 1.31
ChiSq = 1243.0

aroute = 0.96, ahigh_low = 0.48
ChiSq = 40.2

Figure 5 Model–data fit of simulated branching items with lowest and highest ChiSq: Original rubric.

Figure 6 ChiSq fit statistic of simulated branching items: Original versus collapsed rubrics.

ETS Research Report No. RR-22-11. © 2022 Educational Testing Service 11

 23308516, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ets2.12353, W

iley O
nline L

ibrary on [14/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



C. Eckerly et al. Technology-Enhanced Items and Model–Data Misfit

Table 3 Regression Results: ChiSqoriginal

Model 1 Model 2

Variable B SE B B SE B

(ahigh_low − aroute) 823 15.3 687.2 14.3
(ahigh_low − aroute)2 609 12.8 662.9 27.7
aroute 255.7 18.4
R2 0.997 0.972
N 25 25

Table 4 Regression results: ChiSqcollapsed

Model 3 Model 4

Variable B SE B B SE B

(ahigh_low − aroute) 159.8 6.8 88.66 15.0
(ahigh_low − aroute)2 44.4 9.9 80.23 30.2
aroute 140.4 9.8
R2 0.971 0.651
N 25 25

While both Models 1 and 3 explain most of the variation in their respective outcome variables ChiSqoriginal and
ChiSqcollapsed, each of the effects for Model 3 is smaller than its counterpart for Model 1 mainly because ChiSqcollapsed has
less variation than ChiSqoriginal. However, the unique explanatory contribution of aroute is much larger for Model 3 than
for Model 1, which can be observed by removing aroute as a predictor in both regressions (see Models 2 and 4). In doing
so, R2 decreases from 0.997 to 0.972 for Model 2 and from 0.971 to 0.651 for Model 4.

The narrower spread of values of ChiSqcollapsed indicates that collapsing score categories at the boundary of the router
can be used as a strategy to improve model fit. For each of the simulated branching items, collapsing these two score
categories decreases the ChiSq fit statistic. While we would expect some decrease in ChiSq for the collapsed versus orig-
inal version of an item even in the absence of improved fit due to summing over a smaller number of cells (see Stone
et al., 1994), the magnitude of the decrease in the range of ChiSqcollapsed versus ChiSqoriginal for the simulated items is
telling. These results are consistent with what was observed in Figure 4, where the average performance of students who
scored in Categories 1 and 2 was similar in most instances, suggesting that it is not appropriate to model two separate
scoring categories.

TheGPCMhas a slope parameter αj that is constant for all adjacent category characteristic curves of an item j, as shown
by

p
(
xj = kj | θ

)
=

exp
[∑kj

h=1 αj
(
θ − δjh

)]

∑mj
c=1 exp

[∑c
h=1 αj

(
θ − δjh

)] ,

where θ is the latent trait, δjh is the transition location parameter between categories h and h− 1, andmj is the number of
categories. This common slope parameter αj indicates the assumption of the model that responses in each of two adjacent
categories (h and h− 1) can be modeled using dichotomous 2PL IRT models with different locations δjh but the same
slope αj. See the appendix for a detailed description and evaluation of this assumption.

The results of the simulation indicate that this assumption will likely be violated in the branching context. Even in the
conditions in which individual components (i.e., routing, high, and low) had the same discrimination parameters when
treated as separate items, the observedmodelmisfit suggests that a common discrimination parameter cannot be assumed
to model the transition from each category to an adjacent category. The results shown in Figure 6 and Table 3 suggest that
the best-fitting branching items prior to any collapsing of score categories will be those that have a routing component
that is more discriminating than the high and low components. However, as the difference gets very large, misfit will again
start to increase. This is illustrated well with results in the conditions that have the lowest level of ahigh_low (i.e., .48). As
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C. Eckerly et al. Technology-Enhanced Items and Model–Data Misfit

aroute increases in these conditions, the ChiSq statistic steadily decreases until aroute = .96, but when aroute further increases
to 1.31, the ChiSq statistic increases again, illustrating the quadratic relationship between ChiSq and

(
ahigh_low − aroute

)
.

Discussion

The results shown in this report suggest that constructing and modeling branching items that exhibit acceptable
model–data fit is a complex task. Even if individual components of branching items f it well as separate items, scoring
the branching item as one polytomous item according to Wainer and Kiely’s (1987) framework will likely result in misfit
when the GPCM is used to model student responses, as the overall model–data fit will be determined by several factors
related to individual component properties. Thus we offer several recommendations to practitioners who plan to employ
branching items scored using a polytomous IRT model.

First, it may be helpful to pilot multiple versions of individual components to have multiple potential combinations
of components available to choose from for the operational branching item. For example, if two or more routing com-
ponents are piloted, it is possible to choose the best-performing routing component (e.g., with difficulty in the targeted
medium range) for the operational branching item to improve its performance. This strategy is similar to that employed
in a multistage testing context in which blocks of items are constructed from an item pool to target-specific ability levels
based on known statistical properties of the items. To better understand the properties of the individual components, a
strategy of routing test takers to the low and high component probabilistically rather than deterministically in the pilot
stage may prove useful as well.

Second, when the GPCM is used as the scoring model, we recommend that practitioners carefully check model fit
and be prepared to collapse score categories at the boundary of the router as was illustrated in the real and simulated
data examples. The simulated branching items showed that for a range of plausible combinations of routing and high/low
component discrimination parameters, average simulated total test scores for the group of test takers who responded
to the routing component correctly but the high component incorrectly and the group of test takers who responded
to the routing component incorrectly but the low component correctly were similar when individual components were
simulated to have difficulty levels in the targeted range. Intuitively, it makes sense that if the routing item is not very
discriminating, misclassification at the routing stage will lead to groups of test takers in adjacent score categories that
cannot be distinguished well in terms of ability. However, improving the classification of the router will not necessarily
lead to acceptable model–data fit, as the GPCM’s assumption of a common discrimination parameter (at the item level)
can still be violated in the branching context even with highly discriminating routers, depending on the properties of the
high and low components.

Last, modeling item responses with the nominal response model (NRM; Bock, 1972) rather than the GPCMmay lead
to improvedmodel–data fit if sample sizes are sufficient to recover the parameters of theNRM.TheGPCM is a constrained
version of the NRM, in which the NRM relaxes the assumption of the GPCM that a common discrimination parameter
can describe the relationships between probabilities of scoring in each pair of adjacent categories. Thus, the NRM can
handle situations in which the groups of test takers scoring in different categories are very similar to each other and/or the
assumed ordinal pattern of the scoring rubric does not hold. Although the NRM does not require that score categories
coincide with the ordering in the scoring rubric, if an underlying ordinal relationship among the categories is present,
the parameter estimates of the NRM should reflect that relationship when sample size in each category is sufficient and
adjacent categories are sufficiently discriminative (García-Pérez, 2018).

These recommendations are based on the premise that branching items should be scored polytomously because the
branching items in the real data example were specifically constructed with a common stimulus, which may lead to viola-
tions of the local independence assumption to some extent if the components were assumed to be separate items.However,
it may be preferable to score components separately if desiredmodel–data fit cannot be obtained by scoring polytomously
and if it can be shown that assumptions for modeling the components as separate items are reasonably satisfied.

This study had several limitations. First, only dichotomous components were included in the simulation study. Second,
the simulation study only examined the ideal conditions in which the routing component was medium difficulty, the low
component was lower difficulty, and the high component was higher difficulty. Last, we only investigated the fit of the
GPCM in this study. We hypothesize that the NRM may alleviate some of the concerns with model–data fit and suggest
an investigation into the utility of the NRM for future research.
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C. Eckerly et al. Technology-Enhanced Items and Model–Data Misfit

As assessment programs continue to transition to digital formats, TEIs will likely become increasingly ubiquitous.
We have described several considerations for including one such item type, the branching item, on assessments while
continuing to utilize traditional measurement models like the 3PL and the GPCM. Some of the discussion in this report
focused on issues that are not unique to digital formats, such as violations of the local independence assumption for groups
of items that share a common stimulus, while others focused on issues unique to a digital format, such as IRTmodelmisfit,
which may occur when a branching item is scored using the GPCM.

The results and discussion presented in this report highlight the need to better understand sources of misfit specific to
the new item types to potentially modify either the items or the modeling strategy. In the context of the branching item,
we showed that misfit of branching items that were scored polytomously with the GPCM could be improved by adjusting
the scoring rubric to collapse score categories at the boundary of the router, and we discussed how it may be possible
to model each component of the branching item as a separate item. While the branching item is just one of many TEI
types, the analysis of potential causes and solutions of misfit presented in this report can serve as an example of the type
of investigation that may need to be done to understand why TEIs may function in unexpected ways when we rely on
traditional psychometric modeling techniques.
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Appendix A

TheGPCMmodels the probability of a test taker responding in the hth score category of item j as

p
(
xj = kj | θ

)
=

exp
[∑kj

h=1 αj
(
θ − δjh

)]

∑mj
c=1 exp

[∑c
h=1 αj

(
θ − δjh

)] ,

where θ is the latent trait, αj is the slope parameter, δjh is the transition location parameter between the hth category and
the h− 1 category,mj is the number of categories, and kj = {1, … ,mj} is associatedwith score levels {0, … ,mj − 1}. In the
GPCM, the probability of a test taker scoring in category h rather than category h− 1 in item j is modeled as a 2PLmodel,

P
(
xj = kj | xj ∈

{
kjkj − 1

}
, θ, αj, δjh

)
=

exp
[
αj
(
θ− δjh

)]

1 + exp
[
αj
(
θ− δjh

)] ,

for kj > 1.
Theset of such 2PLmodels for a polytomous item describes the response process for each ofmj − 1 pseudoitems under-

lying the GPCM. The four category branching items from the simulation study in this report each has three pseudoitems
associated with score levels (0,1), (1,2), and (2,3). Decomposing the GPCM into its associated pseudoitems helps with
conceptual understanding of the common slope parameter αj. Figures A1 and A2 illustrate model–data fit for each of the
pseudoitems associated with the simulated branching items with the lowest ChiSq fit statistic and the highest ChiSq fit
statistic, respectively. Parameters for each of the pseudoitems were fixed to values obtained from the calibration of the
GPCM. To observe the empirical probabilities, data were recoded from the original score levels of the branching item to

Pseudo-Item 1: (0,1) Pseudo-Item 2: (1,2) Pseudo-Item 3: (2,3)

Figure A1 Model–data fit of generalized partial credit model pseudoitems for simulated branching itemwith lowest ChiSq fit statistic.
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Pseudo-Item 1: (0,1) Pseudo-Item 2: (1,2) Pseudo-Item 3: (2,3)

Figure A2 Model–data fit of generalized partial creditmodel pseudoitems for simulated branching itemwith highest ChiSq fit statistic.

1 for the highest score level in the pair and 0 for the lowest score level in the pair (for Pseudoitem 1, this recoding was not
necessary, because the response data already followed this pattern). Item responses that were different from the adjacent
pair of score levels associated with each pseudoitem were recoded as missing.

We observe that the item characteristic curves for each pseudoitem associated with the same branching item are par-
allel, illustrating the common slope parameter αj. For the branching item with the lowest ChiSq fit statistic shown in
Figure A1, empirical and model-based probabilities of correct response correspond closely. However, for the branching
item with the highest ChiSq fit statistic shown in Figure A2, significant misfit is observed between empirical and model-
based probabilities, especially for Pseudoitem 2. This indicates that the assumption of a common slope parameter αj for
the pseudoitems is not reasonable.
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