
 

 
Received January 2022. 

Cite as: Bende, I. (2022). Data Visualization in Programming Education. Acta Didactica Napocensia, 15(1), 52-60, 
https://doi.org/10.24193/adn.15.1.5 

Volume 15, Number 1, 2022 - DOI: 10.24193/adn.15.1.5 

DATA VISUALIZATION IN PROGRAMMING EDUCATION 

Imre BENDE 

Abstract: Understanding data structures is fundamental for mastering algorithms. In order to solve 
problems and tasks, students must be able to choose the most appropriate data structure in which 
the data is stored and that helps in the process of the solution. Of course, there is no single correct 
solution, but in many cases, it is an important step to find the most efficient data structure to solve 
the task. In this paper, I will present the most common data representations and data structures that 
can help get to know them, to master them, and then to reuse them for solving different tasks. 

Key words: algorithm visualization, programming education, algorithm, data structure 

 

1. Introduction 

Understanding data structures is fundamental for mastering algorithms. In order to solve problems and 
tasks, students must be able to choose the most appropriate data structure in which the data is stored 
and that helps in the process of the solution. “We noticed that the students are afraid of the searcher 
algorithms as they find them too complicated, that exceeds their abilities. So it is very important to 
make these algorithms tangible and bring them close. One great method for this is the visualization of 
the algorithm” (Kovásznai et al., 2011). Of course, there is no single correct solution, but in many 
cases, it is an important step to find the most efficient data structure to solve the task (runtime / 
memory requirements, solution complexity can be reduced by a well-chosen data structure). It is 
important to state that teaching the algorithms and data structures cannot work separately, as they must 
be reviewed by connecting and building on each other. In this paper, I will present the most common 
data representations and data structures that can help get to know them, to master them, and then to 
reuse them for solving different tasks. 

2. Visualization of simple data 

At a younger age, when students have not encountered data structures yet, only simpler data and 
variables are available to work with. I find it important that even though in many cases understanding 
them is not a problem, it is worth introducing different tools and visualizations in programming 
education at the beginning. With the help of these we can easily represent variables, relationships 
between variables, or objects with several data members, which can then help the students understand 
the instruction sequences and programs based on them. 

It is important for students to understand the connection between the variables. An easy example of 
this is when a value is placed in a given interval. Examples could be the number of lives in a computer 
game or the speed of a car with a fixed max value. But it can be an even stronger connection: when the 
data is actually part of an identity. An example of this is a clock with its hands (hours, minutes, 
seconds). Depending on the implementation, a complex data group can also appear as data members of 
an object, which, while helping to strengthen the connection between the data, requires a higher level 
of knowledge of the particular programming language. 

With the help of Logo and Scratch, simple variables can be easily represented and interpreted (for 
example: turtle position, variable-based drawing procedures). In addition, the Towers of Hanoi game 
is also interesting for data representation and algorithmic purposes. Here, the data appear as simple 

https://doi.org/10.24193/adn.15.1.5


Data Visualization in Programming Education 53 

 
Volume 15 Number 1, 2022 

increasing disks on a track that can be displayed both by computer (Figure 1) and offline methods (of 
course, depending on which type of game we choose and how many bars and discs we have, the 
storage in array may be considered). The problem can be brought into the classroom relatively 
quickly, as students with a fixed, low size (three to four) input can even think of a command-based 
solution. Once more knowledge has been gained, a recursive solution can emerge later on. 

 

Figure 1. Display of Towers of Hanoi game in 3D 

3. Visualization of data structures 

3.1. Array 

The first more complex data structure in programming education is the array. It is an essential tool for 
basic algorithms, and an important tool for understanding and implementing other data structures later. 
Thus, the purpose of visualizations is not only to see how they are stored in the memory, but also to 
add a visual association to specific problems, and it helps to recreate and use the arrays in a future 
programming language. 

3.1.1. Traditional visualization 

Some programming languages can automatically display arrays (whether they contain elementary data 
types or more complex objects). The first method, while getting acquainted with the first programming 
language may be to look at this, so we can see how it looks like and helps to interpret the usage of the 
memory. Displaying this is similar to declaring, assigning a value to an array in a programming 
language. 

 

Figure 2. Array visualization in a browser’s console (JavaScript code ran by Google Chrome) 

The easiest way to try that out is to run a code written in JavaScript in a browser (Figure 2) (of course 
we can also display more complex class elements here). In this case, you can see the whole array, the 
values in it, and the indexes at which they are available. This is ideal for simple visualizations; 
however, it does not allow to comprehend more complex processes, and in case of larger, more 
complex data, clarity is impaired. 

3.1.2. Display as bar graph 

The most common method of displaying arrays containing numbers in visualizations is a bar chart 
(Figure 3), which can give a clear picture of the values in it and the whole array. This makes it easy to 
visualize the most commonly used programming theorems (counting, linear searching, maximum 
searching) and also helps us understand the sorting algorithms. By representing a column in a different 
colour, special elements can be highlighted, such as the following: 



54 Imre BENDE 

 
Acta Didactica Napocensia, ISSN 2065-1430 

• for maximum search the largest value of the subinterval we examined so far (at the end the global 
maximum), 

• for counting the values, which fulfils the condition, 

• for linear search the first value, which fulfils the condition, 

• for selection the values, which fulfils the condition (elements of the result array), 

• for sorting algorithms, the two compared values, or the already sorted subarray elements. 

 
Figure 3. Array visualization as column bar graph (Halim, 2011) 

For summation, a stacked column can be similarly good, because in the end we can see globally how 
the value of the sum came out. 

3.1.3. Other type of visualizations on computers 

Mostly, we use numbers as input in programming education, which is why the possibility of the 
aforementioned diagram representations was easy, but in many cases, we have more complex data, 
which we cannot represent this way (or at least not all of the data). For specific task- and problem-
solving, however, we can use several creative modes. 

For sorting algorithms, especially when comparing values, it is useful to know how many exchanges 
took place at which stage. A useful way to do this is to replace the columns with a smaller shape, so 
the changes made so far can be followed more easily, in addition to being able to monitor the current 
comparisons (for example, a visualization can be seen in Figure 4: circles indicate each item and shifts 
between positions are indicated by a line). 

 
Figure 4. Quicksort with circles (Zapponi, 2014) 

Slightly deviating from the basic and sorting algorithms, we can find interesting tasks that allow using 
special visualizations. The first is when the tasks relate to a coordinate system and the data appear in 
an array as two-dimensional points (geometric algorithms). These tasks can also help students 
understand mathematical concepts and create a connection between the two subjects. This method can 
be used for a wide range of tasks, but as an example, a typical practice task for competitions in this 
regard is to determine the smallest convex polygon that contains all the points. 

Another common strategy for competitive tasks is the greedy algorithm. In its typical examples, the 
values are displayed in an array by interval (start-end point pairs) (Figure 5). Depending on the screen 



Data Visualization in Programming Education 55 

 
Volume 15 Number 1, 2022 

size – up to a certain limit, as it shows limited amount of data –the visualization helps understand the 
algorithm, and also provides transparency and interconnection of the data, as well as a coherent picture 
of the whole (without starting the algorithm). An example of this strategy is when we know the arrival 
and departure time of the guests at an event, and then use those to determine the minimum number of 
photos that should be taken so that everyone is on at least one picture. 

 
Figure 5. Displaying intervals for greedy algorithm 

3.1.4. Offline visualization 

In classroom conditions, the easiest method to visualize the array is when students represent a piece of 
data and array operations (such as an exchange) take place between them. The values of the students 
can be their name (based on this, it is even possible to sort them into an alphabetical order), or even a 
randomly assigned number (handheld board, badge). With this method, they can implement and play 
different algorithms in an offline environment1. Similarly, young people come across a sorting 
algorithm very early on, regardless of their prior knowledge of it: for example, for sorting a deck of 
cards in their hands or books on a bookshelf they use an algorithm similar to an insertion sort. Hereby 
I would like to mention a video material based on a similar principle, created in (Osztián et al., 2013), 
which shows the operation of more famous sorting algorithms in the form of folk dancing. 

For people with visual impairment, it is possible to provide adjacent objects with various clearly 
visible markings (e.g., larger dots like on the dices) or Braille, which will allow them to play and learn 
how the algorithm works. Another concept is to use sound signals instead of physical objects. 
Recognizing and comparing individual sounds not only helps them to understand the progression of 
the algorithm, but also improves the hearing. Unfortunately, this significantly slows down the process 
(it takes a long time to play several different sounds, and the more data there is, the harder it is to 
distinguish them), so visualization of more presentable and more complex algorithms is not possible or 
very limited with this method. 

3.2. Matrix 

In terms of data representation, there are not many differences compared to the previously detailed 
array, since basically the matrix is usually implemented as an array of arrays. In practice, the simple 
representation works here as well, only in a two-dimensional form, the examined element(s) can be 
marked in different forms, thus highlighting the essential points of the algorithm. However, its use 
arises in many individual cases, tasks, and problems, so I introduce a few application areas of these. 

Young people come across matrix-like solutions early on through simple games, think of a tic-tac-toe 
game (with a fixed size playground) or a chessboard. In both cases, the data is stored in a predefined 
“matrix”, and displaying them with data (figures, signs) can simplify the understanding of the concept. 
But in this case, regular venues that reflect the structure of the matrix, such as a cinema, theatre, or 
even a multi-story house, may be considered. In the same way a regular maze (which may need some 

 

1 I do not mention height directly in the list, as that might be detrimental to some students. 



56 Imre BENDE 

 
Acta Didactica Napocensia, ISSN 2065-1430 

graph knowledge) can perfectly be presented with a matrix and then the traversal could appear as a 
command-based solution (for example, if each element of the matrix stores the form of objects or 
arrays to which positions, we can go or not). 

Another way is to reverse the process: when the input data does not clarify the use of the matrix, but 
the data structure is necessary to solve it, or significantly speeds up the required program’s runtime. 
One of the examples for this kind of usage in problem-solving is the dynamic programming, the most 
well-known task in the topic is the knapsack problem: Given a backpack with a capacity of K and N 
objects, the mass and value of them is known, we want to determine which objects to put away, if we 
want to pack the most values, but still within the specified capacity. A simpler version for the topic is 
when we have a K * N table, where the goal is to calculate how many different steps we can take from 
the lower left corner to the upper right corner if we can only move up or to the right (Figure 6). 

 
Figure 6. Display of matrix (a) for counting the possible number of moves, and (b) for the knapsack problem (in 

the first column the value-weight pairs presented). Green cells show the results and blue cells show some 
currently investigated parameters 

3.3. Queue and stack 

3.3.1. General visualization 

While the queue and stack are important, array-based data structures that emerge relatively quickly 
during programming education are not very special in terms of visualization, thanks to their eloquent 
name, minimal usability, and simple basic operations. In this case, the device must be able to display 
the elements, then remove/insert them within an animation. The usual representation in Figure 7 and 8 
on the other hand, can perfectly illustrate these. 

They can be easily demonstrated in a classroom setting. A possible game to practice, as mentioned in 
(Bhagate et al., 2016), is when students line up according to the data structure or enter the classroom 
and only the one who follows the specific operation can leave the structure (in the case of a stack, the 
last student who entered, while in the case of a queue the first one). Creatively hand-made tools can 
also appear when displaying a queue, for example, we make a simple tube in which we place balls 
(this strictly allows the elements to be inserted or removed), if we close one end of the tube, we 
immediately get a stack (since only last inserted item can be taken out). 

3.3.2. Example task for stack 

Description: “For each element of a series of numbers, add/assign the closest smaller one from the 
preceding numbers (if no such, then -1)!” One of the possible solutions can be to continuously push 
the elements into a stack, which can still be in the result array. Figure 7 shows a step in the 
visualization mixed with minimal array visualization. 



Data Visualization in Programming Education 57 

 
Volume 15 Number 1, 2022 

 
Figure 7. Visualization of stack for the example task 

3.3.3. Example task for queue 

Description: “At one train station, a detour was built from the main track, each of which can only be 
moved from right to left. You can park any number of cars on the detour, but no cars can stop on the 
main track. An assembly arrives from the right, with numbered, mixed wagons. The wagons are 
identified by different serial numbers between 1 and K. Create a program that specifies the maximum 
number of cars we can queue using the detour and send to the left so that there are no cars left on the 
detour in the end!” (Menyhárt, 2018) For the solution we store the trains on the detour in a queue, that 
contains train cars in numerical order. Figure 8 shows a step in the visualization mixed with minimal 
array visualization. 

 
Figure 8. Visualization of queue for the example task 

3.4. Linked list 

Visualizing a linked list is very similar to visualizing the structures mentioned so far. In practice, the 
goal is to display consecutive elements so that the operations performed on it can be properly 
represented. In this case, we are talking about adding a new item, deleting an item, and using pointers 
for different purposes. The Figure 9 shows how to represent the data and then operations appear with 
the help of an animation. Like the array, it is easy to try and practice with offline tools. Based on the 
classroom example used for the array, students can represent each value and represent the pointers by 
touching another student’s shoulder (using one hand for singly and both for doubly linked lists). 

 
Figure 9. Visualization of singly linked list (Végh, 2017) 

3.5. Graph 

Usually graphs only appear at a higher level of programming education. At high school level, the 
knowledge of using this data structure is required for competitive tasks, and at university it usually 



58 Imre BENDE 

 
Acta Didactica Napocensia, ISSN 2065-1430 

appears from the second year as a possible data structure (which can be used to represent the concept 
introduced in mathematics or to solve certain tasks in different, even faster ways). 

3.5.1. Storage visualization 

The most basic form of display is when the data structure appears similarly as in the memory. 
Adjacency list representation provides less scope for transparency and less help with the traceability of 
an algorithm. The situation is better with the usage of the adjacency matrix, but similar problems arise 
here: the matrix is not transparent, it will soon become too large, and in the case of an undirected 
graph there are a lot of duplicated data. 

3.5.2. Graphic display 

Unfortunately, generally generated representations of graphs are not easy to implement. For basic 
graph algorithms, the visualization helps to understand and improves the transparency of the data 
structure if the graph can be embedded in the plane (not a binding rule, but it can be useful for 
beginners), but this will not necessarily be the case for every input. In case of a planar graph, it is still 
difficult to display it in a transparent way (do not form groups, it should be cleaned, transparent). 
Therefore, this is usually represented either by a fixed input or with minimal modification options (for 
example, in the visualization package prepared by David Galles (Galles, 2011), only the edges 
between the vertices can be randomized, the positions of the vertices or their names are retained). For 
graphical representation, the standard mathematical representation is used (Figure 10). However, the 
advantage of the computer display compared to the offline version is that it is possible to highlight the 
edges/vertices (with a thicker frame, in a different colour). The reasons for highlighting could be the 
following: 

• for traversing (DFS, BFS) the currently investigated edge, vertex and with different colour the 
already traversed ones, 

• for finding the shortest path, the current best option, 

• for graph colouring the algorithm is speaking for itself, the vertices coloured with the same 
method as the algorithm. 

 
Figure 10. Graphic display of graph (Galles, 2011) 

The tree is a similarly important data structure in informatics, but since these are practically acyclic 
connected graphs, there is no significant difference in terms of visualization. However, a programmed 



Data Visualization in Programming Education 59 

 
Volume 15 Number 1, 2022 

general display is easier to implement since we can clearly determine the level of each value, while we 
specify the input. 

4. Mastering data structures by creating AV 

The effectiveness of algorithmic visualization tools in learning increases if students are active 
participants in the usage of the tool, learning process (Naps et al., 2002). Moreover, we can achieve an 
even better result if we do not use pre-created visualization, but the students create them. However, it 
can take too much time to create these which depending on the technology, (for example, a web page 
that presents a particular algorithm/data structure nicely and in detail for each input will take more 
time than a simple presentation for a fixed input) can mean a time difference, which does not help 
understand the algorithm, but improves the knowledge of the given environment. However, research in 
(Hundhausen et al., 2000) reveals that there was no significant difference in efficiency between 
someone creating a modern tool or a simpler visualization. For this reason, it is worth to assign such 
tasks to students, because in addition to mastering the concepts of programming education, they can 
also improve their creativity, which can result in spectacular productions. As Futschek stated “the aim 
of the teacher is not to present solutions but to support students in their learning process, he should 
motivate students to make progress in finding solutions” (Futschek et al., 2010). 

5. Mastering data structures by using utility software 

Another method could be to use a separate software or plugin that automatically displays the data 
structures in the written code at runtime. This definitely requires some prior knowledge, which can be 
in the form of a sample code or by a teacher presentation (since an existing source code is needed for 
that, we can run to see the change and movement of the data). In (Nathasya et al., 2019), it turns out 
that especially for students that can advance more slowly (in the case of others, the difference is 
smaller), we can see a visible difference in the success of solving a task and the amount of time 
required for that if such tools are used in the meantime. In that article, they used the DS-PITON they 
developed, but we could also include Jeliot 3 (Moreno et al., 2004) or PlayVisualizerC (Ishizue et al., 
2018). These are generally implemented programming visualizations, that can help understand and 
debug more complex tasks and algorithms, but are not necessarily ideal for initial, demonstration 
materials: the generally displayed data structures make it less possible to examine special situations, as 
unnecessary variables, structures appear on the screen, which also makes the usage of the tool more 
difficult. 

There is another type of applets, languages, which were created only for the purpose to easily create 
fixed animations. For this type of software, a good example is JAWAA, that „can provide students 
with an alternative and visual perspective, which may help increase their understanding” (Pierson et 
al., 1998). Unfortunately, as Törley mentioned it is “easy to make visualizations with it, but the system 
does not support the interactivity” (Törley, 2013). 

6. Summary 

As we have seen, it is possible to present and teach data structures in many ways. In each case, we 
tried to provide as many examples as possible, which thus simplifies its usage in education. In 
conclusion through simple examples, virtually any data structure can appear in IT classes at an early 
stage, thus facilitating subsequent educational tasks and giving colour to the entire programming 
teaching process. Another result to be mentioned is that we should rely as much as possible on the 
students' work and creativity, as this will ultimately help them understand how they can use these 
algorithms/data structures in solving specific tasks. 

References 

Bhagate, S., Nuli, U. (2016). Innovative Methods for Teaching Data Structures and Algorithms. 
Journal of Engineering Education Transformations. 



60 Imre BENDE 

 
Acta Didactica Napocensia, ISSN 2065-1430 

Futschek, G., Moschitz, J. (2010). Developing Algorithmic Thinking by Inventing and Playing Algo-
rithms. Constructionist approaches to creative learning, thinking and education. Bratislava: Library 
and Publishing Centre, Facutly of Mathematics, Physics and Informatics, Comenius University. 

Galles, D. (2011). Data Structure Visualizations. Retrieved November 8, 2022 from 
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html. 

Halim, S. (2011). VisuAlgo. Retrieved November 8, 2022 from https://visualgo.net/en/sorting. 

Hundhausen, C., Douglas, S. A. (2000). Using visualizations to learn algorithms: Should students con-
struct their own, or view an expert's? Proceedings 2000 IEEE International Symposium on Visual Lan-
guages, 21-28. https://doi.org/10.1109/VL.2000.874346 

Ishizue, R., Sakamoto, K., Washizaki, H., Fukazawa, Y. (2018). PVC: Visualizing C Programs on 
Web Browsers for Novices. SIGCSE '18: Proceedings of the 49th ACM Technical Symposium on 
Computer Science Education, 245-250. https://doi.org/10.1145/3159450.3159566 

Kovásznai, G., Kusper, G. (2011). Artificial Intelligence and its Teaching. Eger: Eszterházy Károly 
Főiskola. 

Menyhárt, L. G. (2018). Sor típus. Budapest: Eötvös Loránd Tudományegyetem. 

Moreno, A., Myller, N., Sutinen, E., Ben-Ari, M. (2004). Visualizing programs with Jeliot 3. AVI '04: 
Proceedings of the working conference on Advanced visual interfaces, 373-376. 
https://doi.org/10.1145/989863.989928 

Naps, L., Rössling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, 
L., McNally, M., Rodger, S., Velázquez-Iturbide, J. Á. (2003). Exploring the role of visualization and 
engagement in computer science education. ACM SIGCSE Bulletin, Volume 35, Issue 2, 131–152. 
https://doi.org/10.1145/782941.782998 

Nathasya, R. A., Karnalim, O., Ayub, M. (2019). Integrating program and algorithm visualisation for 
learning data structure implementation. Egyptian Informatics Journal, vol. 20, no. 3, 193–204. 
https://doi.org/10.1016/j.eij.2019.05.001 

Osztián, P. R., Kátai, Z. (2013). AlgoRythmics: Tánctól a Kódig (AlgoRythmics: From Dance to 
Code). INFODIDACT 2013, Budapest: Webdidaktika alapítvány. 

Pierson, W. C., Rodger, S. H. (1998). Web-based animation of data structures using JAWAA. 
SIGCSE '98: Proceedings of the twenty-ninth SIGCSE technical symposium on Computer science 
education, 267–271. https://doi.org/10.1145/273133.274310 

Törley, G. (2013). Vizualizáció a Programozástanításban (Visualization in Programming Teaching). 
Budapest: Eötvös Loránd Tudományegyetem. 

Végh, L. (2017). A Programozás Tanulásának és Tanításának Támogatása Elektronikus Tananyagba 
beépíthető Interaktív Animációs Modellekkel (Support for Learning and Teaching Programming with 
Interactive Animation Models that can be integrated into Electronic Curriculum), Budapest: Eötvös 
Loránd Tudományegyetem. 

Zapponi, C. (2014). SORTING - Visualizing sorting algorithms. Retrieved November 8, 2022 from 
https://sorting.at/. 

Authors 

Imre Bende, Eötvös Loránd University, Budapest (Hungary). E-mail: beiraai@inf.elte.hu 


