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Introduction
The worldwide spread of the coronavirus disease of 2019 (COVID-19) in the year 2020 
brought changes to the way societies live, work and study. The institutions affected by 
COVID-19 responded by moving from physical, human-to-human interaction to virtual and 
online platforms. During 2020, South African schools were shut down for two and a half 
months before Grade 7 and Grade 12 pupils were permitted to return to school. During 
the  shutdown, learning continued virtually and online for some schools, particularly the 
relatively well-resourced schools (Mohohlwane, Taylor, & Shepherd, 2020). In response to 
the closure of schools, and in a bid to ensure that learning was taking place especially for 
the candidate classes, the Department of Basic Education (DBE) issued guidelines with 
recommendations for children to take advantage of online learning resources to continue 
with schooling from home. To facilitate learning from home, some websites were zero-rated 
in partnership with mobile phone companies (DBE, 2020b).

Online learning resources include resources such as online video lessons on YouTube, 
digital textbooks (DT), and study guides. These resources can be accessed by learners 
working from home on a computer or on a smartphone connected to the internet. 
In this study, we focus on only one online resource, namely the DT used by Grade 
12 mathematics learners and teachers in South Africa.

Due to the closure of schools in 2020 due the prevalence of COVID-19, we did not 
conduct classroom-based study involving the Grade 12 learners. We noticed that this 
online textbook was being heavily used by both Grade 12 teachers and learners and decided 
to investigate the teachers’ rating of learning tasks in the probability and counting chapter of 
the  book. We were able to carry out an online survey with the Grade 12 mathematics 
teachers who are involved in teaching probability and counting principles (PCP). 

This case study carried out during the 2020 coronavirus disease of 2019 (COVID-19)  
lockdown used online data collection means to investigate the distribution of cognitive 
demand levels of probability and counting principles (PCP) learning tasks in a popular 
online Grade 12 mathematics textbook, based on the PCP teachers’ rating. The teachers’ 
cognitive demand ratings were categorised following Stein’s mathematical task framework. 
Five mathematics teachers from four secondary schools in two provinces in South Africa 
participated in the study by filling in an online questionnaire. We developed a rating 
framework named the mean cognitive demand rating (MCDR) to help us interpret the 
teachers’ perception of the tasks in terms of cognitive demand to the learners. Data from 
the teachers’ ratings revealed nearly 65% of the PCP learning tasks in the online textbook 
were rated as high. Analysis of secondary data from Department of Basic Education 
diagnostic reports from 2014 to 2020, however, suggests no association between teachers’ 
rating of learning tasks and learner performance. 

Contribution: This study draws attention to a long-standing underperformance in 
the topic of probability and suggests classroom-based study that focuses on the learners’ 
rating of the learning tasks themselves to understand clearly how best to support them.

Keywords: probability and counting principles; mean cognitive demand rating; mathematical 
competencies; mathematical task framework; descriptive statistical analysis; digital textbook; 
multiple representations; Grade 12.
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Digital textbook
The DT approved by the DBE is freely downloadable on 
any mobile device such as tablets and mobile phones. 
The DT comprises 9 mathematics topics (sequences and 
series, functions, finance, trigonometry, polynomials, analytical 
geometry, Euclidean geometry, statistics, and probability) 
that are taught at Grade 12. The 9 topics are each written 
following the same format; thus, each topic begins with the 
revision of related concepts, followed by the content notes, a 
couple of worked out examples, and exercises at the end. The 
exercises have answers to enable learners to cross-check their 
solutions. In this article, we only discuss the topic of PCP.

Probability and counting principles
Probability theory is a mathematical modelling (Blum et al., 
2007, p. 4) of the phenomenon of chance or randomness. 
Randomness has a specific meaning in probability and 
statistics (Batanero et al., 1997; Batanero & Sanchez, 2013). 
Suppose T is a finite probability space. We assume that the 
physical characteristics of an experiment in T are such that the 
various outcomes of the experiment have equal chance of 
occurring. Such a probability space, where each point is 
assigned the same chance of outcome, is called a finite 
equiprobable space (Moore, Notz, & Fligner, 2013, p. 262; 
Spiegel, Schiller, & Srinivasan, 2013). However, events in T are 
far from being random. For example, a coin does not generate 
random numbers because a tossed coin obeys the laws of 
physics depending on the force used, angle of toss, and surface 
of the coin. So, why then do the results of tossing a coin look 
random? It is because the outcomes are extremely sensitive to 
the inputs, so that very small changes in the forces one applies 
when tossing a coin do change the outcomes, say from heads 
to tails and back again (Moore et al., 2013, p. 262).

Regarding counting principles, these are techniques for 
determining without direct enumeration, the number 
of possible outcomes of a particular experiment (May, 
Masson, & Hunter, 1990, p. 189). For example, if T defined 
as above, has k elements, then each point in T is assigned 
the probability 

k
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k
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We note that the formula for P(B) only applies to an 
equiprobable space T and not to a general space.

Multiple representations
By multiple representations, we mean techniques of 
teaching PCP that include various objects such as graphs, 
diagrams, texts, and 3D visualisations to facilitate learners’ 
grasping of the underlying meaning of the concepts.

Context 
Probability and fundamental counting principles are relatively 
new topics in the South African mathematics syllabus 

(Zondo, Zewot & North, 2020), having been introduced for 
the first time in Grade 10 in 2012, and in Grade 11 in the 
following year. The topic was first examined in Grade 12 in 
2014. Since their inclusion as compulsory topics in the South 
African mathematics syllabus, these principles have remained 
a challenge to many learners, with performance remaining 
generally poor over the years  (DBE, 2015, 2016, 2017, 2018, 
2019, 2020, 2021). For example, in 2013, the average score in 
the national examination was 30% (DBE, 2014). Although 
every year diagnostic reports are published stating specific 
concepts in PCP that learners show weakness in so that 
educators in schools can support them in overcoming such 
identified weaknesses, from 2014 to 2019, diagnostic reports 
strongly suggest that the same challenges faced by learners 
keep coming up in subsequent years.

There is also a lack of research to inform the teaching and 
learning of PCP at the school level. For example, a database 
search by the first author of articles in Pythagoras from 
2016 to 2020 with probability as the keyword turned up 
only two outcomes, which were also not linked to the 
information on probability we were looking for. One 
article (Murray, 2017) sought to understand how the 
grades obtained at school for English and Mathematics 
affect the ‘probability’ of graduation at a university. 
Clearly, the context of said study was different from the 
current one. The second article (Prince & Frith, 2017) 
discussed quantitative literacy of South African school 
leavers who qualify for higher education. Again, this study 
is not related to PCP. These examples clearly confirm our 
assertion of little research in the topic of PCP at the 
secondary level. This study contributes to understanding 
mathematics teachers’ rating of the PCP learning tasks at 
Grade 12 in terms of the tasks’ cognitive demand levels. It 
may be that the underperformance in PCP at the national 
certificate is contributed to by the learning tasks that 
learners are prepared for on for the national examinations.

One of the proposals from the education authorities to try 
and reverse the poor performance at Grade 12 is the 
suggestion that the teaching and learning of PCP should 
incorporate multiple representations of tasks. Based on the 
mathematical task theoretical framework (Stein & Smith, 
1998), we associate tasks with high cognitive demands with 
better prospects to enable learners to master PCP concepts, 
whereas tasks with low cognitive demand are associated 
with less chance of offering learners the opportunity to 
master PCP concepts. The objective is to understand the 
distribution of the cognitive demand levels of PCP learning 
tasks that are in the DT introduced earlier in the previous 
section of this study.

The Curriculum Assessment Policy Statements (CAPS) 
diagnostic reports (DBE, 2018, 2020) also recommend 
multiple representations of concepts as a strategy for teaching 
PCP at Grade 12. The effective learning of PCP at Grade 
12 requires many resources. Teachers certainly play a vital 
role in supporting learners (Fennema & Franke, 1992).
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Focus 
This case study investigated the Grade 12 mathematics 
teachers’ rating of learning tasks in a PCP chapter in a 
popular Grade 12 mathematics online textbook. Teacher 
ratings were interpreted following Stein and Smith’s (1998) 
cognitive demand levels of learning tasks. Two research 
questions guided the study: (1) What is Grade 12 mathematics 
teachers’ rating of the PCP learning tasks in one popular 
Grade 12 mathematics online textbook? (2) From the teachers’ 
rating of learning tasks, and from the secondary data 
available on Grade 12 learners’ performance in PCP over the 
years, what can be said about the two pieces of data – might 
there be a link between the achievement in probability at the 
national level by Grade 12 learners, and mean cognitive 
demand level of the learning tasks that the learners popularly 
use to prepare for the national examinations?

Probability knowledge for teaching 
The idea of probability is empirical. That is, probability 
describes what happens in very many trials, and we must 
observe many trials to pin down a probability. In this article, 
we use the definition based on the notion of proportion or 
relative frequency. Relative frequency of a score is obtained 
by dividing the frequency of that score by the total number of 
scores. Similarly, the probability of an experiment yielding a 
particular result (e.g. a coin toss yielding heads) can be 
defined as the number of equally likely and mutually 
exclusive outcomes, divided by the total number of possible, 
equally likely, and mutually exclusive outcomes. By equally 
likely, we mean that in the long run each of the possible 
outcomes will occur with approximately equal frequency 
(May et al., 1990, p. 179; Moore et al., 2013, p. 260).

Probability knowledge for teaching (PKT) includes content 
knowledge of probability, and various ways of presenting 
this content to the learners so that learning takes place 
(Batanero, Chernoff, Engel, Lee, & Sanchez, 2016). Like 
mathematical knowledge for teaching, PKT can be divided 
into probability content knowledge (PCK) and probability 
pedagogical content knowledge (PPCK). Probability content 
knowledge requires teachers to have specialised training in 
probability beyond the content covered in the high school.

Probability pedagogical content knowledge is knowledge 
about presenting the concepts to the learners so that learners 
easily understand them (Kazima & Adler, 2006; Hill et al., 
2008). For instance, how does a teacher present to the learners 
concepts such as variation and randomness, aware that many 
learners come into a probability class with deterministic 
(concrete) understanding of the world around them? Take, 
for example, a probability experiment such as tossing a coin. 
In such an experiment, the outcome is not predictable every 
time the coin is tossed. It is, thus, not a straightforward case 
to generalise the probability of events arising from the 
experiment unless the experiment is repeated very many 
times. Nevertheless, although an individual trial has an 
unpredictable outcome, there is a predictable pattern of 

outcomes that will be obtained over a long series of trials 
(Moore et al., 2013, p. 260). Hence, for a teacher who may be 
unaware of the foundation principles of probability, moving 
their learners from theoretical probability to the concrete 
results can result in misunderstanding by the learners.

Mathematical tasks 
In the mathematical task framework (MTF), a task is defined 
as a segment of classroom activity that is devoted to the 
development of a particular mathematical idea (Stein & 
Smith, 1998). A task can involve several related problems in 
each topic in mathematics, in this case PCP. Mathematical 
tasks used in the classroom, or used by learners in their 
homework, are the foundation for their learning (Doyle, 
1988; Stein & Smith, 1998). Stein and Smith (1998) distinguish 
three phases through which tasks pass: the first phase 
includes tasks that are found in the instructional materials 
such as study guides, printed textbooks, and DTs. The second 
phase includes tasks that are prepared by the teacher, and the 
third phase involves tasks that the students engage with in 
the classroom or at home, as reflected in Figure 1.

This article will limit the discussion to phase 1 of Stein and 
Smith (1998) with a focus on PCP learning tasks in a DT. 
Learning tasks for PCP were chosen for two reasons. First, as 
noted earlier, PCP is a topic that learners show poor grades in 
at the matric level (see DBE, 2019, 2020). Second, through 
interaction with some Grade 12 mathematics teachers, we 
learned that the DT is widely used by learners and teachers. 
So, we wanted to understand the cognitive demand level of 
PCP tasks in the DT. This study contributes to providing 
research-based information on PCP at the matric level. 

Mathematical task framework 
As shown in Figure 1, the three phases of mathematical tasks 
are: (1) curriculum tasks found in the learning materials such 
as textbooks, and other CAPS-compliant learning materials, 
(2) tasks that teachers select and use in their classroom 
teaching, and (3) tasks that students implement in their day-
to-day learning (Stein, Smith, Henningsen, & Silver, 2000). 
The three phases are interrelated.

Stein et al. (1998) use the MTF to classify tasks into four 
levels of cognitive demand, namely: (1) memorisation, (2) 
procedures without connections, (3) procedures with 
connections, and (4) doing mathematics (see Table 1). 
According to the authors, tasks that promote memorisation 

Source: Stein, M.K., & Smith, M.S. (1998). Mathematical tasks as a framework for reflection: 
From research to practice. Mathematics Council of Teachers and Mathematics, 3(4),  
268–275. https://doi.org/10.5951/MTMS.3.4.0268

FIGURE 1: The mathematics tasks framework.
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and procedures without connections do not present any 
challenge to the learners since they do not require deep 
reflection to solve. Tasks that involve procedures but 
require other information that is not obvious in the tasks 
are classified as procedures with connections. Finally, doing 
mathematics is a level at which tasks are highly cognitively 
demanding (Stein, Grover, & Henningsen, 1996). Based 
on Stein et al.’s (1996) classification, we associate high 
cognitive demand tasks with tasks that require multiple 
representations to solve. By ‘doing mathematics’, we mean 
engaging students with PCP tasks that give them the 
opportunity to develop their thinking and reasoning 
skills thus leading them to meaningful mathematical 
understanding (Stein & Smith, 1998, p. 13). 

Cognitive demands of tasks
The MTF is used to classify PCP tasks found in a DT in terms 
of either high or low cognitive demand levels. Tasks that are 
set at a high cognitive demand level require multiple 
strategies to solve (Stein et al., 1996). Low cognitive demand 
tasks occupy learners with reproducing known facts. Tasks 
promoting memorisation (level 1) and procedures without 

connections (level 2) require less reflection to solve and are 
categorised as low cognitive demand level (Stein et al., 1996). 
For example:

The probability that Jabu likes tea is 0.6 and the probability that 
Jabu likes coffee is 0.3. If the probability that Jabu likes tea, coffee 
or both is 0.7, determine the probability that Jabu likes tea 
and coffee.

This task does not demand much more than using a formula 
and substituting in the respective values, then solving for the 
unknown. Let T represent tea, and C represent coffee, P(T) is 
the probability that Jabu likes tea and P(C) is the probability 
that Jabu likes coffee. Then, P(T∪C) = P(T) + P(C) – P(T∩C). 

Tasks of high cognitive demand level require some thinking 
and reasoning to solve (Stein et al., 1996). Take an example 
adapted from Moore et al. (2013):

Government data in Country Z show that 10% of adults are  
full-time students and that 35% of the adults are age 50 years or 
older. Explain why we cannot conclude that because (0.10) 
(0.35) = 0.035, therefore about 3.5% of adults are college students 
aged 50 years or older.

One reason is that the two events are not necessarily 
independent, because not all 10% of adult full-time students 
are above 50 years of age. Moreover, it is reasonable to expect 
that younger adults are more likely than older adults to be 
college students. Hence, P(college student|over 50 years) 
< 0.10. This example fits in level 3 or level 4 of Stein et al.’s 
(1996) categorisation of learning tasks, namely procedures 
with connection, or doing mathematics.

Probability and counting tasks used in the study
The PCP tasks used in this article are obtained from a 
digital Grade 12 mathematics textbook. The textbook is 
endorsed by the DBE in South Africa. The book is freely 
available to South African users. Users are free to 
download and read the book on their mobile devices or 
print and read offline. The only restriction is for users to 
keep the book’s cover, title, contents, and short-codes 
unchanged.

We chose the digital book from among other books for three 
reasons. First, the book is used by many Grade 12 
mathematics teachers and learners in South Africa, so it is a 
popular learning resource. Second, the book is freely 
available. Third, the book covers all mathematics topics 
taught in Grade 12 in South Africa. In this article, we focus 
only on the topic of PCP.

The PCP section is divided into eight sub-topics. For the 
purposes of this article, we limited our discussion to only 
four sub-topics, namely: the fundamental counting 
principles, factorial notation, tasks involving the 
application of counting principles, and tasks involving 
application of probability. We picked a total of 48 different 
learning tasks and asked five senior mathematics teachers 
at Grade 12 to rate the tasks according to the four levels of 

TABLE 1: Cognitive demand levels used in mathematical task framework. 
Levels of demands of tasks

Memorisation
• Involves reproducing previously learned facts, rules, formulas, or definitions.
• Cannot be solved because a procedure does not exist.
• Involves the exact reproduction of previously seen material, and what is to be 

reproduced is clearly and directly stated.
• Tasks have no connection to the concepts that underlie them.
Procedures with no connections
• Algorithmic. Use of the procedure either is specifically called for or is evident 

from prior instruction.
• Require limited cognitive demand for successful completion. 
• Have no connection to the concepts or meaning that underlie the procedure 

being used.
• Are focused on producing correct answers rather than developing mathematical 

understanding.
• Require no explanations or, if any, explanations that focus solely on describing 

the procedure that was used.
Procedures with connections
• Focus learners’ attention on the use of procedures for the purpose of developing 

deeper levels of understanding of mathematical concepts and ideas.
• Suggest explicitly or implicitly pathways that are broad and have connections to 

the underlying conceptual ideas. 
• Can be represented in multiple ways, such as visual diagrams, symbols, and 

graphs that help develop meaning.
• General procedures may be applied, but the procedure cannot be fused 

mindlessly. Learners need to engage with conceptual ideas that underlie the 
procedures to complete the tasks. 

Doing mathematics 
• Require complex and non-algorithmic thinking.
• Pathways to solutions are not explicitly suggested by the task, or by the task instructions.
• Require learners to explore and understand the nature of mathematical concepts, 

processes, or relationships.
• Demand self-monitoring or self-regulation (Tanner & Jones, 2005) of one’s own 

cognitive processes.
• Require learners to access relevant knowledge and experiences and make 

appropriate use of them in working through the task.
• Require learners to analyse the task and actively examine task constraints that 

may limit possible solution strategies and solutions.
• Require considerable cognitive effort and may involve some level of anxiety for 

the learner because of the unpredictable nature of the solution process required.

Source: Stein, M.K., Smith, M.P., Henningsen, M., & Silver, E. (2000). Implementing standards-
based mathematics instruction: A casebook for professional development. New York,  
NY: Teachers College Press.
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cognitive demand developed by Stein et al. (1996). Details 
of the study design are contained in the methodology 
section. 

Methodology
Design
This study is a case study taking a descriptive statistical 
approach. This approach enables us to transform qualitative 
data into quantifiable form and use it to make sense of the 
cognitive demand levels of learning tasks in PCP. 

Participants
Participants in the study are five secondary mathematics 
and probability teachers, pseudo-named A, B, C, D, and E to 
ensure anonymity. Initially, seven secondary mathematics 
teachers (six male and one female) were contacted by email 
to take part in the study. A questionnaire with clear 
instructions was emailed to all the seven teachers to complete. 
However, only five teachers, all male, from four secondary 
schools in two provinces in South Africa (Gauteng and 
KwaZulu-Natal) returned the questionnaire. The five 
questionnaires were entered into a spreadsheet (Table 2) for 
analysis. 

Data gathering process
Table 2 has 48 rows and 8 columns. Each row represents 
one task taken from the DT. The first column provides 
the serial number of the task for identification during 
analysis. The second column gives the location of the task 
in the DT. An ‘exercise’ is a collection of tasks. For example, 
10.4 (1) represents task 1 found under exercise 10.4 in the 
DT. It can also be observed from Table 2 that exercise 10.4 
has a total of seven different tasks. The remaining 47 tasks 
are presented in a similar format. For instance, exercise 
10.5 has a total of three PCP tasks. The next five 
columns after column 2 are the five participant teachers 
who independently rated the 48 PCP tasks according to 
the four cognitive demand levels on a scale from 1 to 4 
for each task. The last column shows the mean rating for 
each task.

Consistency of measurements
The mean cognitive demand ratings (MCDR) by five senior 
PCP teachers from four schools in two provinces in South 
Africa were received by email by both authors of this 
article. Each teacher rated the 48 tasks independently of 
the other teachers. The first author entered the original 
data received from all teachers in Table 2 and the second 
author corroborated the entries with the original 
submissions. Table 2 was again cross-checked by the 
first author to ensure accuracy and consistency of 
measurements. In reporting the findings, we have rounded 
off the cognitive demand ratings of PCP tasks to the 
nearest digits.

Data analysis
Mean cognitive demand rating 
In this article, we have categorised MCDR 1 and 2 as low, and 
MCDR 3 and 4 as high (Stein et al., 1996). An MCDR is a 
value (corrected to the nearest whole number) obtained 
from the five independent ratings of a learning task, divided 
by the total number of ratings. For instance, the MCDR for 

TABLE 2: Cognitive demand rating of 48 probability and counting principles 
tasks in the digital textbook by five senior mathematics teachers. 
SN Exercise  

(Task #)
Task cognitive demand  

rating by teacher
Mean  
rating

Mean rating 
(to the 

nearest digit)A B C D E

1 10.4 (1) 2 1 1 2 1 1.4 1

2 10.4 (2) 1 2 2 2 1 1.6 2

3 10.4 (3) 1 2 2 2 2 1.8 2

4 10.4 (4) 3 4 3 3 2 3.0 3

5 10.4 (5) 2 1 3 3 3 2.4 3

6 10.4 (6) 4 3 3 3 3 3.2 3

7 10.4 (7) 2 2 4 3 4 3.0 3

8 10.5 (1) 2 1 1 1 1 1.2 1

9 10.5 (2) 2 2 1 1 1 1.4 1

10 10.5 (3) 2 4 2 1 2 2.2 2

11 10.6 (1) 1 1 2 1 1 1.2 1

12 10.6 (2) 2 1 3 1 1 1.6 2

13 10.6 (3) 1 1 3 1 2 1.6 2

14 10.6 (4) 3 2 3 2 2 2.4 2

15 10.6 (5) 3 1 3 3 3 2.6 3

16 10.6 (6) 2 2 3 3 3 2.6 3

17 10.6 (7) 2 3 3 3 3 2.8 3

18 10.6 (8) 3 2 3 3 4 3.0 3

19 10.6 (9) 3 2 3 3 4 3.0 3

20 10.6 (10) 4 2 4 3 4 3.4 3

21 10.6 (11) 4 2 4 3 4 3.4 3

22 10.7 (1) 3 3 2 3 2 2.6 3

23 10.7 (2) 3 3 3 3 2 2.8 3

24 10.7 (3) 3 3 3 3 3 3.0 3

25 10.7 (4) 3 2 3 3 3 2.8 3

26 10.7 (5) 3 3 3 3 3 3.0 3

27 10.7 (6) 3 3 3 3 3 3.0 3

28 10.8 (1) 4 3 3 3 2 3.0 3

29 10.8 (2) 3 2 3 3 2 2.6 3

30 10.8 (3) 3 2 3 3 3 2.8 3

31 10.8 (4) 3 3 3 3 3 3.0 3

32 10.8 (5) 4 2 4 3 4 3.4 3

33 10.8 (6) 4 3 4 3 4 3.6 4

34 10.8 (7) 4 3 4 3 4 3.6 4

35 10.8 (8) 4 4 4 3 4 3.8 4

36 10.9 (1) 4 4 3 3 3 3.4 3

37 10.9 (2) 4 3 3 3 3 3.2 3

38 10.9 (3) 3 3 3 3 3 3.0 3

39 10.9 (4) 3 2 3 3 3 2.8 3

40 10.9 (5) 4 3 3 3 3 3.2 3

41 10.9 (6) 3 2 3 3 3 2.8 3

42 10.9 (7) 3 3 3 3 4 4.0 4

43 10.9 (8) 3 3 4 3 4 3.4 3

44 10.9 (9) 2 4 4 3 4 3.4 3

45 10.9 (10) 3 2 4 3 4 4.0 4

46 10.9 (11) 4 3 4 3 4 3.6 4

47 10.9 (12) 3 3 4 3 4 3.4 3
48 10.9 (13) 3 4 4 3 4 3.6 4

1, Memorisation; 2, Procedure with no connection; 3, Procedure with connection; 4, Doing 
mathematics.
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task number 48 in Table 2, is ∑
≈=

x

n
4i i1

5

(corrected to the 

nearest unit), where xi is a rating of teacher i. Table 3 provides 
the frequency distribution of the MCDR scores obtained from 
Table 2 and Figure 2 is the corresponding chart.

Findings
From Table 3 and Figure 2, teachers’ rating of the PCP tasks 
in the popular online textbook tasks reveal that 8.3% 
(n = 4) of the total learning tasks sampled in this study 
comprise facts that only require memory to solve; 12.5% 
(n = 6) of the tasks are procedures without connection; 
64.5% (n = 31) are procedures with some connections; 
whereas 14.6% (n = 7) are learning tasks rated under doing 
mathematics, meaning, for example, tasks whose solutions 
are require learners to explore and understand the nature of 
mathematical concepts, processes, or relationships. Such 
tasks, according to Stein and Smith (1998) also demand 
self-monitoring or self-regulation of one’s own cognitive 
processes.

From Table 3, tasks requiring memorisation and procedures 
without connection together account for approximately 21% 
of the total number of PCP tasks sampled in this study. 
According to Stein et al.’s (1996) MTF, the above tasks are 
grouped under low cognitive demand level tasks which 
occupy learners with reproducing known facts. One hopes 
that these are not the kinds of task that take much of learners’ 
time when they prepare for PCP assessments at different 
school levels. However, until classroom-based studies are 
conducted, this remains an open question.

From Table 3, tasks that only need memorisation or 
procedures without connection are 6% more than tasks rated 
as doing mathematics. ‘Doing mathematics’ is conceptualised 
as engaging students in the learning tasks (Blumenfeld et al., 
1991) that give them the opportunity to develop their 
thinking and reasoning skills (Stein & Smith, 1998, p. 13). An 
example of such tasks is:

The code to a safe consists of 10 digits chosen from the digits 0 to 
9. Assuming that none of the digits is repeated, determine the 
probability of having a code with the first digit even and none of 
the first three digits is 0. 

Such a task includes procedures with connection, but it also 
requires some reasoning skills from the learner to solve. 
Table 3 and Figure 2 clearly show that the majority (64.6%, 
n = 31) of the PCP learning tasks in the DT comprise 
procedures with connections. Only about 13% of the learning 
tasks are rated at the highest cognitive demand level of 
doing mathematics. Nevertheless, if tasks under procedures 
with connection, and tasks under doing mathematics are 
combined, it can be concluded that, overall, 79% of the PCP 
learning tasks in the DT are high-level cognitive demand 
tasks, and 21% are low-level cognitive demand tasks.

Discussion
This case study focused on and investigated Grade 12 senior 
mathematics teachers’ rating of learning tasks in a PCP 
chapter of a popular Grade 12 online textbook. Teacher 
ratings of tasks were interpreted following Stein and 
Smith’s (1998) cognitive demand framework. Two research 
questions guided the study: (1) What is Grade 12 
mathematics teachers’ rating of the PCP learning tasks in 
one popular Grade 12 mathematics online textbook? (2) 
From the teachers’ rating, might there be a link between the 
achievement in probability at the national level by Grade 12 
learners, and mean cognitive demand level of the learning 
tasks that the learners popularly use to prepare for the 
national examinations?

On the first question, 65% of the learning tasks in the chapter 
on PCP were rated by the teachers in this sample as 
procedures, but with some connections to other concepts and 
representations, which supported learning. Characteristics of 
such tasks include use of procedures, but after obtaining the 
numerical solutions, learners are expected to interpret the 
solutions. Other examples include interpreting the concepts 
of probability that have been represented in a diagram such 
as a tree diagram. We argue concepts such as the ones in our 
example engage learners beyond the procedures and can 
help them to understand underlying concepts in the tasks 
(Stein et al., 2000).

However, findings in this study also revealed that teachers in 
this study rated 79% of the learning tasks in the DT as having 
high cognitive demand. Only 21% of tasks in the DT the 
teachers rated as having low cognitive demand. If the 
teachers’ seemingly favourable rating of the learning tasks is 
true, the question that remains unanswered is: what explains 

TABLE 3: Frequency table of the mean cognitive demand ratings of probability 
and counting principles learning tasks. 
Level Frequency Percentage Cumulative 

percentage

1 = Memorisation 4 8.3 8.3
2 = Procedures without connections 6 12.5 20.8
3 = Procedures with connections 31 64.6 85.4
4 = Doing mathematics 7 14.6 100
Total 48 100 -

FIGURE 2: Bar graph of the mean cognitive demand rating of probability and 
counting learning tasks in the digital textbook by probability and counting 
principles teachers.
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learners’ general underperformance in the PCP topic in the  
Grade 12 national examination?

Under the new CAPS syllabus (DBE, 2011), probability has 
been examined in Paper 1 at Grade 12 since 2014 and 
contributes about 18% of the total marks in Paper 1 (Mutara & 
Makonye, 2014). However, since 2014, learners have performed 
poorly in this topic in matric examinations (see DBE, 2020). 
In fact, the mean percentage pass in probability is 34.7% for 
a period of seven years, from 2014 to 2020, respectively. In 
2020 the percentage pass was 18% (see Table 4), the lowest 
since 2014 when the topic was first examined, and the pattern 
does not show signs of improvement.

This leads us to the second research question, which is: 
What are the implications of the teacher rating of the 
learning tasks in the online mathematics textbook on 
improved performance in PCP? Drawing on the secondary 
data from the CAPS document, and from our data from the 
teachers’ ratings of tasks, we can only offer two reflections 
on this question. First, the exceptionally low performance in 
probability in 2020 by Grade 12 learners partly speaks to the 
learning difficulty that learners could have faced during the 
COVID-19 closure of schools, but this observation has no 
direct link to our current data on teacher rating. The 
apparently favourable teacher rating of the online tasks is 
probably an indication of the confidence that teachers had 
(or still have) in the tasks. However, the learner performance 
as shown in Table 4 clearly shows that there is no link 
between the teacher ratings of tasks and learner performance. 
Looking at the teacher ratings and learner performance in 
PCP topic over the years, our study draws attention to the 
fact that there is a bigger problem in PCP that needs 
concerted effort to solve. The question of underperformance 
in PCP, our data have shown, cannot be fully explained by 
the hardships imposed on teaching during the COVID-19 
lockdown. The issue must be about how probability is 
taught, how much time is allocated to it, who teaches the 
topic and at what time of the curriculum calendar year it is 
taught as well as the resources available to both teachers 
and learners. All these questions remain to be followed up 
in future research studies. 

Limitations to the study
The study was carried out during the restrictions due 
to COVID-19, where physical contacts were restricted 

as recommended by the health authorities to keep 
individuals and the public safe from contracting the 
disease. Communication during the data gathering 
process depended mainly on email with an attached 
questionnaire for the teachers, and follow-up phone calls. 
We contacted seven PCP teachers, but in the end only five 
teachers returned the questionnaire. Although only five 
teachers responded, percentage wise, it still represented a 
reasonable percentage considering that our initial target 
was seven senior teachers of probability at Grade 12. We 
were not able to observe the teaching of PCP in the 
classrooms for the same reason explained above. Finally, 
this study focused only on the learning tasks that are 
available to learners in the online textbook, so we missed 
the teaching tasks and the nuances that the teachers 
incorporate in their actual lessons. Obviously, we also 
missed observing the tasks that learners implement in 
their learning in the classrooms (Stein et al., 1996). Future 
empirical studies should consider these uncovered areas 
with respect to PCP.

Conclusion and recommendations
The study opened our eyes to the challenges in the teaching 
of probability that we only have been hearing about but 
have not investigated for ourselves. This study suggests 
that teachers’ rating of tasks does not count until reflected 
in learner output in terms of learners’ performance in the 
tasks. It can also be argued that learners’ rating of learning 
tasks should precede the teachers’ rating. In other words, 
teachers should rely on, and respond to, the learners’ rating 
of learning tasks. One direct indicator is the learner scores 
in the tasks that are assigned to them. We recommend 
empirical classroom-based studies that support teachers 
with different ways of teaching PCP. One possibility is 
writing PCP teaching support materials that complement 
the online materials and the CAPS-recommended materials, 
focusing on the understanding of meanings in PCP, and 
their applications.
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