
Informatics in Education, 2022, Vol. 21, No. 3, 425–463
© 2022 Vilnius University, ETH Zürich
DOI: 10.15388/infedu.2022.17

425

Assessment of Computational Thinking –
A Croatian Evidence-Centered Design Model

Nikolina BUBICA1, Ivica BOLJAT2

1Moko ica Middle School, Dubrovnik, Croatia
2Faculty of Science, University of Split, Split, Croatia
e-mail: nikolina.bubica@skole.hr, boljat@pmfst.hr

Received: February 2021

Abstract. The new Croatian Informatics curriculum, which introduces computational thinking
concepts into learning outcomes has been put into practice. A computational thinking assessment
model reflecting the learning outcomes of the Croatian curriculum was created using an evidence-
centered design approach. The possibility of assessing the computational thinking concepts, ab-
straction, decomposition, and algorithmic thinking, in an actual classroom situation and examples
of such assessment is increasingly coming to the forefront of computer science educational re-
search. Precisely for that purpose, the research was conducted. Research data are collected through
the test and questionnaire of 407 pupils (10 middle schools, age 12), analysed by exploratory
factor analysis and non-parametric tests. Results showed that the presented model was suitable to
assess the understanding of the concepts of abstraction and algorithmic thinking, independently
of the previous experience with programming languages and pupil’s gender, while assessment of
decomposition needs more work and improvement, some recommendations are provided. Also,
it received positive feedback from pupils and teachers what implicated that such an assessment
model could help teachers in building a real-time measurement instrument.

Keywords: educational testing, computational thinking, curriculum-based assessment, item anal-
ysis, programming, factor analysis.

1. Introduction

From the autumn of 2018, we have been witnessing the application of a new informat-
ics/computer science (CS) curriculum which is part of a major educational reform in
the Republic of Croatia. The reform represents a change in the teaching and learning
process and introduces new concepts, such as computational thinking (CT), into K-12
computer science education (CSE). The evaluation of CT then becomes a challenge
in CSE, demanding a systematic approach. Technology is ubiquitous in our lives, and
regardless of pupils’ future occupations, their age, or the type of technology they use,
they are increasingly expected to possess some generic CT competencies, such as the

N. Bubica, I. Boljat426

ability to solve problems in everyday life, disaggregating complex problems into sim-
pler ones and generalizing solutions; increasingly, these generic competencies will in
practice be technology mediated. Appropriate pedagogical practices which emphasize
the constructivist approach to learning and put pupils at the heart of the learning pro-
cess should develop competencies such as independence, self-confidence, responsibil-
ity, and entrepreneurship (Ben-Ari, 1998; Moon, Do, Lee, and Choi, 2020). From this
perspective, learning experiences should be based on the belief that pupils are best
taught by helping them participate actively, that they are ready to make great efforts
and apply their creativity, and that teamwork and collaboration are a powerful motiva-
tion for learning (Leron and Hazzan, 1998; Ambrosio and Almeida, 2014; Dagienė and
Futschek, 2019).

A fundamental question today is how to respond to such challenges. Leaders in com-
puter science education increasingly emphasize the need to modify existing computer
science curricula to include the development of specific CT concepts such as abstraction
and decomposition (Csizmadia, et al., 2015; Yadav, Aman; Stephenson, Chris; Hong,
Hai, April 2017).

In what follows, an ECD (Evidence-centered design) model for creating quality tasks
for assessing CT concepts aligned with the new Croatian informatics curriculum will be
presented. During the spring of 2018, the research was conducted in ten Croatian middle
schools to examine the appropriateness of using online tool, consisted of tasks created
according to a given model, in a real class situation. The standard statistical characteris-
tics of the applied tool as well as its ability to really measure the adoption of CT concepts
(abstraction, algorithmic thinking, decomposition) were examined. As there were dif-
ferent programming languages used in the teaching process, it was important to explore
how well the applied tool managed to avoid the influence of the specific programming
language used during the teaching process and put emphasis on the CT concepts instead
on the syntax of the programming language.

2. Theoretical Background

2.1. About CT

In research literature, computational thinking, along with mathematics, engineering,
and reading literacy, is often seen as one of the standard types of literacy for pupils in
general today (Wing, 2006); it can be understood as “the process of formulating prob-
lems and their solutions, but in ways that solutions are presented in a form that enables
them to perform effectively with some information processing agent” (Wing, 2010,
p. 1). The idea of computational thinking reaches back to Papert’s work on Logo pro-
gramming and children’s usage of computers, in which he emphasized the value of pro-
gramming for the development of procedural thinking (Papert, 1980). Papert believed
that by using technology and programming to create “micro-worlds”, pupils would
develop skills that they could then transfer to a non-programming context outside of
the teaching environment. A little later, and to this day, the constructivist approach to

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 427

teaching became prominent; under this approach, the pupils are expected to create their
own sustainable constructs of knowledge (Ben-Ari, 1998), and in programming specifi-
cally, this construction is linked to the ability to predict and understand what is going
on when some computer program is executed.

There is still considerable confusion over definition of computational thinking, and
a whole series of questions and challenges that need to be addressed. For some, the
term refers to a universal competence of every child, which together with analytical
skills serves as the basis for each child’s school learning (Wing, 2006). Some point
out that computational thinking concepts are used in disciplines other than computer
science, for example in problem-solving tasks (Bundy, 2007). Denning (2009) dis-
cusses whether computational thinking is exclusive to the field of computer science
and claims that “CT is one of the key practices of computer science … not unique
to computing and is not adequate to portray the whole of the field” emphasizing that
although computational thinking should be consider an important part of computer
science, computer science is a much broader term. Also, computational thinking has
its place in some other areas, outside of computer science. Guzdial (2008) consid-
ers computational thinking to be a 21st-century form of literacy that is necessary for
a whole series of academic fields; using computational thinking concepts like abstrac-
tion, for instance, pupils can learn how to lower complexity by reducing some details
of the observed phenomena or problem and still preserve the basic meaning (Yadav,
Stephenson, and Hong, 2017).

In discussions of computational thinking, it is important to define and describe its
connection to algorithmic thinking; Denning points out that “computational thinking
means interpreting the problem as an information process for which we are then trying
to find an algorithmic solution” (Denning, 2010). To create an operational definition of
computational thinking, the ISTE (International Society for Technology in Education)
and CSTA (Computer Science Teachers Association) analysed feedback from about 700
surveyed computer science teachers and researchers. The result was formulated in an op-
erational definition of computational thinking for K-12 education as a “problem-solving
process that includes:

Formulating problems in a way that enables us to use a computer and other tools ●
to help solve them.
Logically organizing and analysing data. ●
Representing data through abstractions such as models and simulations. ●
Automating solutions through algorithmic thinking (a series of ordered steps). ●
Identifying, analysing, and implementing possible solutions with the goal of ●
achieving the most efficient and effective combination of steps and resources.
Generalizing and transferring the problem-solving process to a variety of prob- ●
lems” (ISTE and CSTA, 2011).

When talking about teaching and learning of computational thinking, perhaps the
most interesting aspect is the role of programming. Programming knowledge includes
the ability to read and write in a specific programming language and to think computa-
tionally (Roman-Gonzales, 2014). Computational thinking and programming are not the
same concepts, but they are strongly related. Programming can help foster computational

N. Bubica, I. Boljat428

thinking (Lye and Koh, 2014), but computational thinking can also be applied to differ-
ent types of problems that do not directly involve programming tasks (Wing, 2008).

It is questionable how much actual programming, if any, is needed to acquire com-
putational thinking. There is no universally accepted answer yet, but practice indicates
different ways of programming involvement across contexts in learning and teaching of
computational thinking. Some define computational thinking as a fundamental, ubiqui-
tous problem-solving tool and suggest several activities and projects to address it from
this perspective (Astrachan, Hambrusch, and Peckham, 2009). Most approaches sug-
gest various ways of incorporating programming into teaching and learning of compu-
tational thinking, from those in which programming is the fundamental computational
thinking skill to those that integrate computational thinking in and through various
general education courses.

2.2. CT Evaluation

Since there is still no formal consensus definition of CT, it can be imagined that its evalu-
ation remains even more in question. Mostly, to evaluate CT, it is necessary to find evi-
dence of a deeper understanding of a CT-relevant problem solved by a pupil, that is, to
find evidence of understanding how the pupil created their coded solution. For example,
if we consider abstraction, we must find ways to evaluate how pupils apply it in their
solutions while trying to solve a problem (ISTE and CSTA, 2011). Despite a lack of con-
sensus thus far, a few relatively widespread approaches for evaluating the development
of CT have emerged. They can serve as a foundation for a general approach. One such
CT evaluation method combines different methods of collecting feedback: analysing
project portfolios, analysing interviews, and developing project design scenarios, in pa-
per or digital form (Brennan and Resnick, 2012); it assesses the fluency of computer-
based practices of testing and debugging, experimenting and repetition, abstraction and
modulation, and reusing and remixing/scaling at three levels: low, medium and high.
Dorling and Walker studied the practice of teaching CT in the classroom and proposed
a framework for evaluating the “computing progression pathway”, which recognizes the
major areas of CS and outlines specific levels of adoption (Dorling and Walker, 2014).
Dr. Scratch presents an example of automatic online CT evaluation of Scratch proj-
ects, that is, creations made in the Scratch graphical programming environment, which
can involve music, animation, art, games, and simulations (Moreno-León, Robles, and
Román-González, 2015). At this point, this online tool is working with Scratch 1.4, 2.0
i 3.0 files. The system assigns a CT score automatically and detects bad programming
habits and errors to help learners develop their CT skills (Dr Scratch, 2021).

Another interesting approach to CT evaluation applicable in formative and sum-
mative evaluation is the Bebras challenge. It is an international initiative promoting
computational thinking in pupils of all ages, performed at school using computers or
mobile devices, integrated into regular classes, or in the form of a special competition.
Bebras tasks are puzzling stories that incorporate a puzzle or task relying on some key
CT concept, designed to promote computational thinking in pupils of all ages. There is

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 429

certainly evidence that Bebras tasks are an effective tool in promoting problem-solving
and computer thinking concepts (Dagienė and Stupurienė, 2016; Araujo, Santos and
Andrade, 2017; Curran, 2019). However, evaluating computational thinking through
Bebras tasks is demanding (Dagienė and Stupurienė, 2016), and it is debatable whether
CT concepts can be effectively evaluated using Bebras challenges tasks (Araujo et al.,
2017), especially since various aspects of developing good Bebras tasks still lack ad-
equate research.

Today, it is possible to find several other published computer-based or paper-pencil
CT tests usable in different contexts; however, effectiveness of those approaches is still
being investigated (Werner, Denner, and Campe, 2012; Román-González, 2015). An
interesting approach to CT assessment combines tasks from specific CT assessment
(CTt) and Bebras challenge assessments (Wiebe, et al., 2019). By combining the two
assessments, a subset of tasks was selected to create a promising assessment that could
be applicable in a reasonable time, but also be suitable for pupils with no previous
programming experience. The results showed that the use of this instrument in pre- and
post-testing can reveal the effectiveness of such assessment. Also, the instrument can
collect quality information on the development of pupils’ computational thinking dur-
ing the teaching process. The authors emphasize the need for further research on the
issue of validity and further work on the selection of an appropriate subset of tasks
(Wiebe, et al., 2019).

The research presented in this paper was strongly influenced by the ECD approach
to assessment. Evidence-centered assessment design is an approach to constructing
educational assessments in terms of evidentiary arguments (Almond, Steinberg, and
Mislevy, 2002; Mislevy, Almond, and Lukas, 2003; Mislevy and Haertel, 2006; Bubica
and Boljat, 2018; Grover, 2020). It focuses on the evidence of competencies as a foun-
dation for the construction of excellent assessment tasks. ECD could be described with
layers: Domain Analysis, Modelling, Conceptual Assessment Framework, Assessment
Implementation and Delivery, which incorporate actions like analysing assessment do-
main, selection and administration of the tasks, interaction with pupils to present or
capture work products, evaluation of the responses from the task and accumulation of
the evidence across them. This approach highlights knowledge and skills complexity
and other features and behaviours that should be valued, such as basic ICT knowledge,
possible working products (written/digital product or a spoken answer in which pupils
might produce evidence) and observations, and variable features connected to assess-
ment (Mislevy and Riconscente, 2005). The creation of assessment that can better re-
flect and measure what is happening in the classroom and getting results of assessments
that are heavily supported by evidentiary arguments are highlighted as possible advan-
tages of this approach (Hendrickson, Ewing, Kaliski, and Huff, 2013).

The work conducted within the PACT (Principled Assessment of Computational
Thinking) project, also incorporated evidence-centered design (ECD) to represent gen-
eral CS practice through design patterns, especially to create a structured description
of the domain (in which learning is occurring), evidence (for use in a task), and argu-
ment (that emerges from the evidence). Such patterns should emphasize application and
review of design skills while solving computational problems, rather than evaluating

N. Bubica, I. Boljat430

the knowledge of the concepts necessary to apply such skills. The SRI International
Education group through the PACT project proposed application modes for every layer
to create a comprehensive practice of CT assessment (Bienkowski, Snow, and Rutstein
2015). They presented design patterns for major computational thinking practices and
developed templates for assessment task development for computational thinking prac-
tices in the context of ECS (Exploring Computer Science).

The principled assessment design methodology as well as ECD was also applied in
the “VELA assessment” (Grover, 2020), where an instrument was developed to measure
the adoption of introductory programming concepts (grades 6 to 8). Assessment design
patterns as well as the measurement instrument have been created to measure the un-
derstanding of concepts such as variables, expressions, loops, conditions, and abstrac-
tions. These concepts represent the basic concepts of most introductory programming
courses, regardless of the applied programming language or environment. Besides these
concepts, the VELA assessment also included tasks with Scratch script which, in addi-
tion to the concepts mentioned above, were used to assess the understanding of concepts
such as events. Supporting rubrics and design patterns have been developed that can
also serve other teachers as good templates for developing their own assessments and
ensure broad use of the instrument. Creating quality assessments is extremely important
for pupils and teachers. Well planned assessment and quality teachers’ feedback can
improve the acquisition of competencies and enables pupils to gauge their own progress
(Pellegrino, 2020).

Recognizing the importance of computational thinking and its introduction in K-12
education, CS teachers are faced with the challenge of incorporating these concepts into
their teaching in primary and secondary school (Csizmadia et al., 2015). There is an in-
creasing awareness of the fact that teacher-training programs should include discussions
of computational thinking and provide recommendations and examples of best practices
for incorporating CT concepts into the teaching process (Yadav, Stephenson, and Hong,
2017). There is a need for better cooperation between teacher educators and computer
science teachers to enhance the education of CS teachers in this regard (Yadav, Gretter,
and Good, 2017).

2.3. Research Questions

In this work, the results of the conducted research regarding created model of CT assess-
ment will be presented and discussed. Specific research questions regarding CT concepts
(algorithmic thinking, abstraction, and decomposition) were:

Is the proposed CT assessment independent from specific programming language ●
and approach?
Is the proposed CT assessment suitable for measuring computational thinking ●
concepts, abstraction, algorithmic thinking, and decomposition?
Is the proposed CT assessment tool better aligned with the Croatian informatics ●
curriculum than the selected tasks of the Bebras challenge and is it thus more suit-
able for use in educational practice in the Republic of Croatia?

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 431

3. Methods

3.1. Informatics Education in Croatia

The teaching of Informatics in primary education in the Republic of Croatia has been
present since 1990, in the form of an elective subject for pupils from fifth to eighth grade.
In secondary schools, informatics was introduced ten years earlier in the form of a regu-
lar subject through one, two, three or four years of schooling, depending on the type of
secondary school. In some secondary schools, the subject is called Computer Science.

It must be emphasized that with the development of new technologies and thus an
increasing number of applications that support the use of technology in everyday life,
informatics/computer science teaching has increasingly become a service for learning
about information and communication technology, while basic, often demanding con-
tent such as programming lose the battle with easily accessible, less demanding, and
often more fun content such as text processing, editing pictures and videos, making
presentations, etc. Those Informatics/CS curriculums were defined by specific content
that should be included in teaching, which, due to rapid IT progress, makes it very fast
outdated and inadequate background for teachers to organize and plan their work. Even
so, all earlier versions of the Informatics/CS curriculum included, in various forms, the
content of programming.

In March 2018, the Croatian Ministry of Education published a new CS curriculum
for K-12 education (Ministry of Education, 2018). The curriculum was a hopeful pros-
pect for CS teachers, since most of them felt restrained by the old, outdated curriculum.
It was created according to learning outcomes instead of prescribed content, enabling
the realization of learning and teaching directed at each individual pupil and the devel-
opment of their potential. For example, instead of teaching pupils how to shape specific
document features in Microsoft Word, such as header, number of pages, styles, etc.,
a learning outcome associated with a realistic task is released, such as creating digital
content on a given topic, without defining the application to be used. Thus, the focus
shifts from content to learning outcomes that are realized with specially designed activi-
ties. This approach provides flexibility and freedom to teachers in designing the learning
and teaching process.

Moreover, this Informatics/CS curriculum finally incorporated computational think-
ing as an important part of informatics education in general in the Republic of Croatia.
The role of CT and programming in the curriculum includes involving pupils in logical
thinking, modelling, abstracting, and problem-solving, under the principle that solid ICT
(Information-communication technology) education, based on computational thinking
and creativity, should prepare pupils for understanding the changes in the world around
us (Brođanac et al., 2016).

As mentioned earlier, although programming was included in all earlier versions of
informatics curriculum, the situation in on-site schooling showed diversity in content
being thought, programming languages being used and even in the duration of teach-
ing programming. In addition to these differences, the common thing was that while

N. Bubica, I. Boljat432

teaching programming content, great emphasis was on the application of appropriate
programming language commands, and less on problem-solving skills, data handling,
modelling, abstraction, and similar difficult-to-measure concepts such are computational
thinking concepts.

In the new Croatian curriculum, learning outcomes were developed according to
several documents, but mostly the Croatian National Educational Standards (Ministry
of Education, 2006), CSTA Computer Science Standards (CSTA, 2016), and CS cur-
riculum (Ministry of Education, 2018). The National Educational Standards define the
way in which computer science is involved in Croatian primary, secondary, and higher
education. The CS Curriculum and CSTA Computer Science Standards define CS learn-
ing outcomes for each degree of adoption or acquisition of the skills at each educational
level. Learning outcomes are expressed in detail within the Bloom taxonomy (Anderson,
Krathwohl, and Bloom, 2001) at different adoption levels: satisfactory, good, very good,
and exceptional (Ministry of Education, 2018; Brođanac, et al., 2016).

The curriculum is still briefly and insufficiently in use to assess its quality and evalu-
ate the success of its application. Nevertheless, a survey conducted among informat-
ics/computer science teachers at the very beginning of the new curriculum application
revealed some interesting information and indicated areas that need to be further re-
searched and supported (Table 1).

Among 817 teachers (72% primary teachers, 28% secondary teachers) who partici-
pated in the survey, the vast majority confirmed that they teach programming in their
work although most of them consider it to be very demanding content for pupils. Most
teachers confirmed that they were already familiar with the concept of computational
thinking and that they use it in their work.

Still, the analysis of terms which they mostly connected with the term of computa-
tional thinking (Fig. 1) showed that in their work there was higher emphasis on develop-
ing programming skills than adopting computational thinking concepts like abstraction
or decomposition.

Furthermore, in the discussions on the definition, concepts, teaching approaches and
evaluation of computational thinking, evaluation stood out as a topic that teachers know
the least and needed better support (43%) (Ministry of Education, 2018). These results
point to the fact that there is still some dilemma and some misunderstanding among
teachers about the very concept of computational thinking and that in the years to come
it will be better shown how successfully the new curriculum has responded to the chal-
lenges that informatics teachers face daily.

Table 1
Teachers’ opinions: What is CT? (Ministry of Education, 2018)

Teachers’ basic opinions about CT N = 817

I teach programming as a regular part of curriculum. 91%
I think programming is demanding content for pupils. 82%
I am familiar with the meaning of computational thinking. 93%
I already involved computational thinking in my teaching process. 91%

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 433

The creation of new informatics/computer science curriculum was part of a com-
prehensive educational reform which, in addition to the development of new subjects’
curricula, also developed cross-curricular topics that connect topics of universal human
values and competencies for life in the 21st century. In this way, these topics are daily
present in a special way in the educational work of the entire educational vertical. One
of the cross-curricula topics was the Use of Information and Communication technology
which included efficient, appropriate, timely, responsible, and creative use of informa-
tion and communication technology in all subjects, areas and at all levels of education.
Quality application of the ICT cross-curricula topic in the years to come could free in-
formatics education from the main role in the development of digital literacy and enable
greater concentration on topics such as computational thinking.

3.2. Model of CT Assessment – Croatian ECD Model

The proposal for a computational thinking assessment approach presented in the next
paragraphs uses ECD as an orientation towards multiple activities necessary to create
useful documentation: domain analysis, domain modelling, construction of a framework
(pupil model, task model, evidence, and measurement model of evidence), and assess-
ment implementation and delivery. Unlike the SRI PACT strategy, which assess com-
putational thinking using an interdisciplinary STEM approach, this model is aligned
with the Croatian Informatics’/CS curriculum and proposes a method of assessment that
is applicable in the real classroom environment. Furthermore, while some assessment
approaches rely on the programming language or environment used during teaching
process, e.g. Scratch programming environment (Grover, 2020), this model advocates
independence of the programming language and offers the development of tasks that
are equally appropriate / understandable to pupils who have met different programming
languages e.g. Scratch and Python. Such an approach is desirable because the new Infor-
matics’/CS Curriculum doesn’t define programming language or environment to be used
in teaching process, so in real educational practice teachers use different languages like
Scratch, Python, Logo, C, Kodu (Microsoft Research, 2009).

Fig. 1. Terms mostly connected with CT (Ministry of Education, 2018).

N. Bubica, I. Boljat434

3.2.1. Domain Analysis and Modelling
The basic goal of the domain analysis under the ECD approach is to find and explore all
relevant materials concerning target learning outcomes as defined in the new Croatian
CS curriculum. These learning outcomes were the basis for the assessment process of
computational thinking and programming domain learning in pupils aged 11–12 (5th–6th
grade) which will be looked at in this research (see Table 2).

In the ECD approach, domain modelling is the process meant to identify elements
that describe the domain under assessment and is represented through five categories:
fundamental and additional knowledge, skills and features, possible working products,
variable features, and possible observations. Is it necessary to conduct computational
thinking assessment using some programming tool or environment, or can it be done ge-
nerically and abstractly? The question of the connection between computational think-
ing and programming must be defined in relation to the specific context of the assess-
ment. There are different approaches to incorporating programming into the processes
of teaching and resulting computational thinking assessment. We differentiate these ap-
proaches according to the role that programming and computational thinking fulfil in
the course curriculum (Astrachan et al., 2009). In this research, computational thinking
assessment was achieved through an approach independent of a particular programming
tool or environment, which served for assessing the adopted learning outcomes in real
classroom situations in middle school education. Independence of assessment tool of

Table 2
CT and programming learning outcomes for pupils aged 11–12 (5th–6th grade)

(Ministry of Education, 2018)

Satisfactory level Good level Very good level Excellent level

 C
om

pu
ta

tio
na

l t
hi

nk
in

g
an

d
pr

og
ra

m
m

in
g

do
m

ai
n

(B
)

 P

up
ils

’ a
ge

 1
1

 (
5th

 g
ra

de
)

B.5.1. 1 use a programming language to design programs using input and output values and
repetition
The pupil states how to
run the software (prog-
ramming) tool, recog-
nizes the parts of the
interface and blocks
(commands) of the
software tool that can
execute an instruction.
Composes a simple set
of instructions using
blocks / commands.

The pupil recognizes the
basic segments of program
development: input – pro-
cessing – output. He builds
a simple set of instruc-
tions that represent a solu-
tion to a problem using
input and output values
and assignment statement.

The pupil, with the
help of the teacher, de-
velops a solution to a
problem using an ite-
ration structure with
the determined number
of iterations

The pupil independently
develops a solution to
the problem using an
iteration structure with
the determined number
of iterations.

B.5.2. create an algorithm for solving simple tasks, check the validity of the algorithm, detect and
correct mistakes.
The pupil describes the
concept of an algorithm
and recognizes the
basic steps for solving
a problem.

The pupil analyses the
problem and devises and
shows the steps to solve
the given problem (gra-
phically, orally or by
text).

The pupil critically
checks the correctness
of his algorithm using
default input values.

The pupil re-examines
and rearranges his algo-
rithm until the algorithm
represents an exact so-
lution to the given prob-
lem.

Continued on next page

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 435

the programming languages used in education must ensure that pupils who have learned
a particular programming language will not therefore achieve better results in this as-
sessment. More precisely, the independence of the programming tool or environment
enables wider application of the assessment tool and highlights computational thinking
concepts rather than the syntax of a given programming tool or environmental affor-
dances/constraints.

Although, such a tool could be used with pupils that have no programming back-
ground, it is primarily intended to fairly assess pupils’ CT competencies independent of
the programming language. Is it necessary to require the independence of the assessment
tool of the programming language? Isn’t it natural to expect that the basic programming
skills should be independent of the programming language itself? Research related to
working with novice programmers has shown that novices often approach programming
‘line by line’ instead of using meaningful programming structures. They have difficul-
ties in various issues related to the construction of algorithms or computational solutions
because, although they know the syntax and semantics of individual commands, they

Table 2 – continued from previous page

Satisfactory level Good level Very good level Excellent level

 C
om

pu
ta

tio
na

l t
hi

nk
in

g
an

d
pr

og
ra

m
m

in
g

do
m

ai
n

(B
)

 P
up

ils
’ a

ge
 1

2

 (

6th
 g

ra
de

)

B.6.1. design, [code-] trace, and adjust programs which contain selection and conditional
repetition structures; anticipate the behaviour of simple algorithms which can be displayed in the
form of a diagram, words of natural language, or a programming language
The pupil creates track
and rearranges programs
that contain branching
and conditional iteration
structures and predicts
the behaviour of simple
algorithms that can be
represented by a diagram,
spoken language or
programming language

The pupil independently
or with the help of the
teacher analyses the given
problem and suggests
which algorithmic solu-
tion. He presents the solu-
tion of the problem in
spoken language words,
diagrams, or commands of
the programming language,
and independently plans
and arranges a series of
instructions as a solution
to the problem by applying
algorithmic structures of
sequence and branching.

The pupil independent-
ly proposes a program/
algorithm as a solution
to the problem, pre-
dicts the behaviour
of the algorithm and
checks the correctness
of the algorithm by
monitoring its behavi-
our or by executing the
program with given
examples. On his own
or with the help of a
teacher, he puts toge-
ther a series of inst-
ructions for solving a
problem using condi-
tional repetition.

The pupil independently
creates a program /
algorithm as a solution to
a problem that includes
a series of instructions
(commands) using all
algorithmic structures,
provides appropriate
input (test) examples
and critically checks
the correctness of the
solution and rearranges
its solution if necessary.

B.6.2. explore and solve more complex problems by dividing them into smaller subproblems
The pupil describes the
problem and recognizes
some steps/parts in
solving the problem

The pupil, with the help
of the teacher, develops
a plan for solving
problems and recognizes
sub-problems in it, minor
problems that he has
already encountered, or
problems that he knows
how to solve.

The pupil analyses the
possibility of includ-
ing the solution of sub-
problems in the solut-
ion of a more complex
problem, analyses and
suggests possible cha-
nges / adjustments to
the solution of sub-
problems.

The pupil independently
finds and creates a so-
lution to a complex
problem with the help
of subproblems and cri-
tically evaluates and re-
arranges the solution if
necessary.

N. Bubica, I. Boljat436

do not know how to combine them into valid algorithms or computational solutions
(Fincher, 1999). Due to all the above, when assessing programming, teachers usually put
more emphasis on the application of commands or certain algorithmic structures in the
selected programming language. When assessing computational thinking, it is crucial to
make a qualitative departure from the assessment of programming skills, and to put in
the foreground the assessment of problem-solving methods, data management, applica-
tion of abstraction, etc.

Under the ECD approach, we had to explore and define activities such as applying
algorithmic structures of sequence and iteration in a computational solution, operating
with input and output values in computational solutions, etc. Further, we had to recog-
nize what additional knowledge and features had to be considered (manipulating files/
folders, searching the internet, downloading files, signing in/signing out), as well as
variable features (computational solution difficulty level, presentation of computational
solution, whether the pupil has come up with a solution, evaluated the solution, or com-
pared multiple solutions, etc). As per the ECD model the proposed assessment frame-
work can serve as a reference to assist assessment designers in designing and validating
their task models. Every assessment designer should validate their work with questions
regarding assessment instrument relevance, specificity, and scalability and questions re-
lated to item statistics and item complexity.

This domain analysis identified key documents and recognized computational think-
ing as the fundamental approach that develops ability to solve problems and ability to
program:

“…The emphasis is on the process of creation of the application, from
the initial idea to the final product, and not exclusively on the adoption
of the syntax and semantics of the programming language. Activities
and contents of outcomes from the Computational thinking and pro-
gramming domain develop innovation, creativity and entrepreneur-
ship and provide valuable knowledge that can be incorporated into
future professional life.” (Ministry of Education, 2018)

Modelling of the assessment domain represents the foundations for the development
of a future assessment tool and describes its main features (Table 3).

In what follows, we will present this assessment framework with information about
the evidence, pupil, and task models, observable characteristics, measurement models,
and test specifications.

3.2.2. Assessment Framework
Pupil model
Although programming was a part of the informatics curriculum in Croatian middle
schools, there were differences in the programming languages used in the teaching pro-
cess as well as in the length of the teaching of programming content.

This research was conducted in 2018 (March/April) when Informatics was an elec-
tive subject for pupils from the fifth to the eighth class of middle school. Informatics

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 437

has become an obligatory subject for fifth and sixth-grade pupils with the beginning of
the following school year (2018/2019) with the application of the new informatics cur-
riculum.

The result showed that in the everyday process of learning programming pupils were
engaged in programming tasks, mostly in Scratch, Python or Logo, with diversity in the
length of teaching those content, from 12 to 25 hours (of 70 per school year) (Table 4).

As there were differences in concepts included in the teaching process it was im-
portant to offer an assessment model that will be appropriate for teachers regardless of
which programming language, they use in the teaching process. An assessment’s inde-
pendence should emphasize computational thinking concepts rather than the ability to
work with a specific tool or environment. For that reason, this research was conducted
among pupils who already, to some extent, learned programming with different pro-
gramming languages, mostly Python, Logo, and Scratch.

Table 3
Modelling of the assessment domain

Basic knowledge, skills,
and characteristics

Understanding that a computational solution can be designed for multiple purposes.
Ability to create solutions by combining smaller parts that lead to solving the initial
(bigger, more complex) problem.
Ability to subsequently edit the design of a computational solution.
Ability to encode a complete solution.
Ability to use algorithmic structures (sequence, branching and repetition) in the
solution.

Additional knowledge,
skills, and characteris-
tics

Knowledge of a particular programming language (not required).
Ability to login to the web pages with personal user data (login with an AAI
account).
Basic web browsing skills (opening a default web page, basic navigation within
a given web site).

Possible working
products

Computational solution.
Comparison of multiple computational solutions or strategies.
Description or explanation of the computational solution.
Predicting the results of executing a computational solution.

Characteristic features Presentation of a computational solution with graphical representations and an
algorithmic solution written in a language like a spoken language that resembles
a pseudocode in structure.
Each evaluation task has a common context, i.e., a puzzle that develops from the initial
to the final task according to the principle from the easiest to the most difficult).
In each evaluation task, the main character of the puzzle encounters a problem that
needs to be solved to successfully pass through the maze. Tasks describe, check,
correct existing and create new ways of navigating the maze.

Variable features Computational solution levels.
Representation of a computational solution.
Did the pupil come up with a solution, did he evaluate the solution, or compare
computational solutions?

Possible observations The degree to which a computational solution addresses a problem.
The level of complexity of the computational solution.
Correctness of the computational solution.
Appropriateness of using algorithmic structures in the solution.
The degree to which the debugging process finds and / or corrects errors.

N. Bubica, I. Boljat438

Task model
In the process of developing an assessment framework, identifying possible working
products (artifacts) and observations is very important. Doing so should answer some
basic questions regarding assessment, such as:

Should pupils’ working product be computational solutions, comparison of mul- ●
tiple solutions, or even description/explanation of existing solutions?
Should we consider problem complexity or computational solution correctness ●
and effectiveness?
Should we look for appropriate use of algorithmic structures in the solution? ●
Should we observe the degree to which the solution addresses the problem and/or ●
the degree to which the pupil finds and corrects the errors?

Answers to these questions depend on the pupil’s age, learning outcomes included
in the assessment, the assessment domain and purpose, and the real classroom situation
in which the assessment is applied; in turn, these answers provide the basis for the cre-
ation of future assessment tasks. In this research, pupil assessment tasks were created
for novice programmers, that is, pupils who studied programming for a total of 12 to 40
hours over two years. During this period, they got acquainted with the basic (low-level)
programming content (algorithmic structures, working with input / output, basic code
tracking skills, editing and creating an algorithmic solution). It can also be seen from the
previous section that not all pupils were familiar with the same teaching content.

To help improve pupil motivation and ability to understand the task, each task repre-
sents a puzzle where the pupil helps a main character solve a problem (Lee and Ko, 2011).
Puzzles are meant to assess one or more computational thinking concepts concealed in
the puzzles and selected and aligned with the expected learning outcomes (see Table 2)
and domain modelling (Table 3). CT practice and concepts which express abstraction,
algorithmic thinking, and decomposition used in this research are presented in Fig. 2.
This classification describes the way in which abstraction, algorithmic thinking, and
decomposition are used in assessment. It represents authors’ personal view influenced by
the requirements of the Croatian informatics curriculum (Ministry of Education, 2018),

Table 4
Concepts included in teaching process

Concepts included in teaching process
(12–25/70 hours per year)

Pupils
involved

Simple branching and working with output values 80.61%
Drawing commands in turtle graphics 78.18%
Loops with a defined number of repetitions 70.91%
Algorithm 71.21%
Complex branching and working with input values 56.67%
Editing a block diagram of an algorithm 42.12%
Got acquainted with the concept of nested branching 34.85%
Concept of subprogram 28.79%
Conditional repetition loops 23.33%

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 439

authors’ attitudes and experience as well as other relevant literature (Bienkowski, Snow,
Rutstein, and Grover, 2015, December; Brennan and Resnick, 2012; ISTE and CSTA,
2011; Grover, 2020). This classification is the basis for creating design patterns (Table 5)
and the structure of the assessment tool (Table 6).

This assessment model aims to create an approach which will create enough space
to evaluate computational thinking concepts per se. All the tasks of the measuring in-
strument are interconnected by a common context: the same story, in which the main
character, Maja, tries to find a flower in the Action Labyrinth. The assessment tool is
implemented in the form of an online test (10 questions/tasks) in which the option to re-
turn to previously solved tasks is turned off to prevent finding the solution to the current
task in any of the following tasks. Tasks are arranged by difficulty, from easiest to most
difficult while maintaining the same context, throughout the assessment tool. The types
of questions used in the assessment tool were:

Multiple choice questions: mostly used for identification of fundamental miscon- ●
ceptions or an unsustainable mental model (misunderstanding of a variable as
a changeable value, misunderstanding how an algorithmic structure works (for
example if/if..else../if…elif..), misunderstanding how a iteration structure works,
misinterpretation of a given logical expression,….).
Short answer questions. ●
Essay question used to gather pupils’ algorithmic solutions: mostly for upgrading ●
the given algorithmic solution or creating new algorithmic solution (part of the
solution).

Modelling the assessment area also describes the design patterns that will be used in
the assessment (Table 5). Design patterns contain all or only some constructs (knowl-
edge, skills, practice) that we want to assess and can be used as evidence (knowledge,
practice) or serve as a basis for making evidence. Patterns can also be used as activities
or tasks that aim to encourage the demonstration of certain competencies. They are
general enough that they can direct assessment regardless of how it is implemented
(computer assessment, traditional paper-pencil assessment, simulation assessment,
game assessment, etc.).

• Understanding the problem
• Identifying key features (constraints)

of the problem
• Working with logic

• Thinking on a different level of
abstraction

• Working with variables and output

Abstraction

• Analyzing and tracking algorithm
• Working with sequencing, branching,

iteration
• Predicting algorithm behavior

• Implementing branching structures
• Editing and upgrading algorithmic

solution
• Creating new solutions based on the

familiar problem

Algorithmic
thinking

• Disaggregating problems to less
complex already familiar problems

• Creating new solutions based on the
familiar problem

Decomposition

Fig. 2. Practices and concepts: abstraction, algorithmic thinking, and decomposition,
respectively used in the assessment.

N. Bubica, I. Boljat440

Table 6 presents the assessment tool structure with the target and underlying CT
concepts and practice included in each task. First column represents the order of tasks
in the tool and second column type of the question used. Third column shows the
target and underlying CT concepts used in a particular task of the tool. It is almost
impossible to consider that when solving a task represented by an algorithmic solu-
tion, we don’t expect the analysis and tracking of the algorithm in action. However,
just as in mathematics, for example, when evaluating the solution of a linear equation
with an unknown, we also rely on the skill of computing with basic mathematical
operations, so when assessing computational thinking we will have to recognize the
concepts and practices of computational thinking that are primarily assessed by the
chosen task (target CT concepts and practices) as well as which concepts and practices
are present in the background in the same task (underling CT concepts and skills).
Those CT concepts and practices are chosen according to the descriptions of abstrac-
tion, algorithmic thinking and decomposition (Fig. 2), and design patterns of the task
model (Table 5). Last column describes each task with design patterns used in the task
(target and underlying).

 Feedback for multiple choice and short answer questions was formulated automati-
cally, while essay questions were manually evaluated by the researcher and an indepen-
dent teacher specialist. One of the most important phases in developing a task model
is an analysis of the evidence of the existence of CT concepts which we are looking
for in pupils’ solutions. Here, prior to each assessment, the teacher must think about
the intended outcome of the assessment that they plan to develop, and which concepts,

Table 5
Design patterns used in the assessment tool

Concept Design patterns

Abstraction (A1) describe the basic features of the problem
(A2) identify the limitations of the given problem
(A3) evaluate logical expressions
(A4) use logical operators
(A5) create a logical expression for a given condition (problem)
(A6) distinguish between constant and variable quantities in the algorithm/solution
(A7) apply a variable in the algorithm to monitor the variable characteristics of the problem
(A8) define and/or monitor the change in the value of the variable in the algorithm/solution

Algorithmic
thinking

(AL1) monitor and predict the execution of an algorithm solution that does not contain loops
(AL2) predict the execution of an algorithmic solution containing loops
(AL3) recognize/identify the basic feature of the loop (repetition) and how to stop the loop
(AL4) identify/identify parts of the algorithm that contain decisions
(AL5) recognize/describe/distinguish how a simple and complex branching structure works
(AL6) create a new algorithm
(AL7) upgrade the algorithm due to an observed error or fulfilment of a given problem

requirement

Decomposition (D1) Identify parts of a given problem that are easier to solve, or we already know the solution
to that part

(D2) distinguish the sub-units of the algorithmic solution
(D3) present the subprogram as the sub-whole of the algorithmic solution

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 441

skills, and practices are relevant to that chosen outcome. In this process, the expected
evidence of the pupil’s partial or complete knowledge to be included in the model will
be recognized.

Through one task example, we will demonstrate our process of discovery of evi-
dence of pupils’ knowledge and present our assessment of that evidence. It is important
to emphasize that every well-planned assessment could reveal the existence of nonvalid
pupil mental models (mental representations of the observed concept that contain some

Table 6
Structure of the measurement tool

Task
number

Type of
question

Concepts: Abstraction (A); Algorithmic thinking (AL_T);
Decomposition (D)

Design patterns
Included in the task

Target CT Underlying CT Target/Underlying

Task 1 Short
answer
question

Understanding the problem
(A)

Analysing and tracking algorithm
(AL_T)
Working with sequencing, branch-
ing, iteration (AL_T)

A1+A3
(AL2+AL3+AL4)*

Task 2 Multiple
choice
question

Identifying key features
(constraints) of the problem
(A)

Predicting algorithm behaviour
(AL_T)

A2+A3
(AL2+AL3)*

Task 3 Essay
question

Working with logic (A) Implementing branching structu-
res (AL_T)

A3+A5
(AL2+AL3+AL4+
AL5+AL7)*

Task 4 Multiple
choice
question

Thinking on a different level
of abstraction (A)

Understanding the problem (A) A1+A2
(AL2+AL3+AL4)*

Task 5 Multiple
choice
question

Working with branching
(AL_T)

Analysing and tracking algorithm
(AL_T)

AL4+AL5
(AL1)*

Task 6 Multiple
choice
question

Predicting program
behaviour (AL_T)

Analysing and tracking algorithm
(AL_T)

AL2
(AL3)*

Task 7 Essay
question

Editing and upgrading algo-
rithmic solution (AL_T)
Understanding of the prob-
lem (A)

Analysing and tracking algorithm
(AL_T)
Working with variables and output
(A)

A2+AL7
(A6+A7+AL2+
AL3)*

Task 8 Multiple
choice
question

Disaggregating problems to
less complex already familiar
problems (D)

Analysing and tracking algorithm
(AL_T)

D1
(AL2)*

Task 9 Essay
question

Creating new solutions based
on the familiar problem
(AL_T, D)

Thinking on a different level of
abstraction (A)
Working with variables and output
(A)

D3
(A1+A3+A7)*

Task 10 Short
answer
question

Predicting program behavi-
our (AL_T)
Working with variables and
output (A)

Analysing and tracking algorithm
(AL_T) A2+A8+AL2

(AL3)*

N. Bubica, I. Boljat442

error or misconception that makes it difficult or impossible to upgrade the mental model
and build/upgrade new knowledge about the observed concept). Such information is of
great importance for the teacher as well as the pupil. For the teacher, it points out the
topics in their teaching to which they should give greater emphasis in the future. For
the pupil, it points to the problems in their understanding, and to which concepts they
possess but need to change and correct in further work. Fig. 3 represents one task from
the assessment tool, which will be used to demonstrate the gathering of evidence and
measurement model.
Model of evidence and measurement
Design and application of high-quality assessment is very demanding and time con-
suming. In the ECD approach teachers themselves create assumptions or hypotheses
about the pupils’ knowledge that will demonstrated through assessment. Algorithmic
solutions are always difficult to evaluate. In the process of creating a model of evi-
dence, it is crucial to explore all possible evidence of a pupil’s knowledge without
losing sight of the different ways in which it could be expressed within the context and
the requirements of the task itself. Also, a coherent and precisely formulated model of
evidence is a prerequisite for drawing valid conclusions regarding results (Kane, 2013).
Table 7 presents evidence of different ways pupils’ learning could be expressed while
solving the task from Fig. 3.

 The evidence varies from a situation where the pupil does not even try to do any-
thing through several partial solutions and finally to a fully correct solution. The scoring

Fig. 3. Task example (Task 7).

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 443

or measurement model is presented in the same table. While creating an evidence model,
it is very important to focus on evidence of knowledge connected to the task; thus, we
avoid evaluation of any displayed knowledge in the task solution that does not have any
link to the task itself.

When creating a task and planning its assessment, it is important to determine which
educational outcomes should be included in the task, and, accordingly, which evidence
of pupil knowledge should be recognized and assessed. Table 7 presents such evidence,
identifying for each type of evidence the recognized problem in the pupil’s understand-
ing or mental model. For example, let us consider a task where Maja can move through
the labyrinth according to a predefined movement rule defined by the Labyrinth Action
and the Walk Action. The pupil needs to upgrade the existing solution so that the total
number of steps that Maja makes can be recorded. If the pupil makes no change in the
initial (presented) solution, they probably do not know where or how to make the expect-
ed changes to the program. That is, this seems to be a case of complete incomprehension
or misunderstanding of the problems and thus obviously a problem with algorithmic
thinking ability with this particular task and set of rules. Further, if the pupil did make
a change in the number of steps, defining it as a constant value rather than changing
the number of steps with the help of a variable that at some point increments by one,
it was assumed that the pupil did not recognize variables as the abstract concept which
could track Maja’s movement through the labyrinth (indicating problems in working
with variables, or abstraction generally). Nevertheless, in such a case, the pupil obvi-
ously understood that some change regarding movement through the labyrinth had to be
made (partial understanding of the problem).

Next table (Table 8) demonstrates mental models recognized from pupils’ answers.
This task proved to be one the most difficult for pupils (difficulty index 89.74), but with
great strength to distinguish those who have adopted very well the observed concepts
from those who expressed difficulties in understanding the problem, algorithmic think-
ing skills, and working with variables (discriminant index 0.41).

Table 7
Task evidence and measurement example (task 7)

Evidence Detected pupils’ problems Score

No change was made in the Action Walk•	 No understanding of the problem, •	
problems in algorithmic thinking

0

There was some change made in the Action •	 Walk which
included change in the number of steps (go 4 steps, go 3
steps…), but the change didn’t include counting the total
number of steps made while walking

Problems in working with variables •	
(abstraction), partial understanding of
the problem

0

Incrementing the counter by 1 was done, but in the •	
wrong place in the algorithm (for example in the Action
Labyrinth)

Problems in algorithmic thinking (code •	
tracing), partial understanding of the
problem

1

Incrementing the counter by 1 was done, but not in all the •	
necessary places in the algorithm (for example only while
going right or while going up)

Partial understanding of the problem, •	
problems in algorithmic thinking (code
tracing)

2

Correct and necessary changes for incrementing the counter •	
were made in all expected places in the algorithm.

No problem detected•	 3

N. Bubica, I. Boljat444

This kind of analysis of evidence helps us in the creation of an evidence model for
similar tasks. We could create several task examples where it is necessary to create im-
provements in character movement, adding some new possibilities like skipping steps,
rotating, and so on. While analysing pupils’ answers, it is crucial to know in which
computational concepts we can expect to find appropriate evidence of acquisition of
target concepts. For example, one task’s goal could be to reveal the pupil’s algorithmic
thinking level by comparing two computational solutions or by creating a standalone
computational solution in detail. Another task’s goal could be to look for the pupil’s
ability to analyse and understand the problem or to decompose it into less complex parts.
Both tasks are trying to find out whether the pupil is familiar with and can manipulate
different levels of abstraction.

3.3. Assessment Implementation/Delivery

In our model, as noted, the background of each task is a problem situation involving
Maja’s search for a flower in the labyrinth. Task context must be preserved throughout
the assessment to facilitate understanding, and easier tasks come at the beginning of
the tool. To facilitate understanding of the moving instructions all algorithmic solutions
used in the tasks must be written in a language very similar to a spoken language with
the structure that resembles a pseudo language. In addition, the solution to a given task,
or part of it, may be incorporated into later tasks. For that reason, the model excludes the
possibility of returning to previously solved tasks for reconsideration or re-solving, as
the solutions of earlier tasks are incorporated into later tasks (Fig. 4).

This model of assessment was first tested in exploratory research during the 2016/2017
school year with an online assessment adapted for the Python programming language.
Further, pilot research was conducted during the 2017/2018 school year, in which imple-
mentation of this CT assessment model was enabled by using online testing within the
Loomen LMS (Learning Management System). Pupils’ access to Loomen is based on

Table 8
Mental models recognized by analysis of pupils’ solutions – task 7

Mental model Number of pupils

The pupil does not know where or how to upgrade the program. 284 80.7%

The pupil does not recognize the variables as values by which the movement of the
Maya through the labyrinth can be traced, He understands that some change needs to
be made in addition to the movement itself.

The pupil recognizes the need to use the variable to track Maya’s movement through
the labyrinth but does not recognize the appropriate place in the program for such
a change.

 40 11.4%

The pupil recognizes the need to use the variable and successfully applies it in some
of the expected places.

 11 3.1%

The pupil successfully applies the variables in a specific problem. 17 4.8%

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 445

their unique user data, provided to every middle and secondary pupil in the Republic of
Croatia, so that the authenticity of the research participants’ data was preserved. Thus,
Loomen was also used in the main study. Pupils were invited to join the assessment
through an email invitation from their CS teacher, who agreed to participate.

Since the study material was in accordance with the current CS Curriculum in Croa-
tia, it is in line with the requirements of “in situ” research, so no special consent from
participants was necessary.

4. Results

4.1. Statistical Characteristics of the Assessment

Basic features of this assessment model were initially tested through introductory re-
search, as noted, with a measuring instrument adapted to the Python programming lan-
guage. The promising results of this initial assessment encouraged the creation of the
new tool- and environment-independent assessment model and a valid CT assessment
model based on the ECD approach (Bubica and Boljat, 2018).

Research using the final version of the assessment tool (March/June 2018) was con-
ducted among 407 pupils from ten middle schools in eight cities. After analysis of the
assessment results, 27 pupils who submitted no solutions were excluded from the re-
search. In addition, 28 pupils were excluded as they spent less than 10 minutes finish-
ing their assessment and most of the tasks were unanswered. It was assumed that these
pupils did not take the assessment seriously as they did not submit their solutions at all
or they completed the assessment in less than ten minutes, which wasn’t even enough
for the first reading and understanding of assessment tasks. Thus, the analysed results
refer to 352 pupils (193 males, 159 female). Research data concerning basic test sta-
tistics such as difficulty and discrimination index were explored. This assessment tool
showed a satisfactory degree of internal reliability (α = 0.630). In terms of Cohen, Man-
ion and Morrison (Cohen et al., 2000) in general seven tasks had acceptable difficulty

Fig. 4. Delivery of assessment tool.

N. Bubica, I. Boljat446

(33.00–67.00), one task was probably too easy (28.12) and three tasks seemed to be very
difficult (85.72–93.90) (see Table 9).

The initial assumption of this research is that this assessment tool should highlight
three basic concepts: algorithmic thinking, abstraction, and decomposition. The degree
of task intercorrelation was explored in order to find out whether there was a way to group
these tasks by the relationships among them, based on some common term in the back-
ground. The main characteristics of the research, the number of respondents (N = 352)
and the number of tasks (10), met the basic prerequisites of factor analysis (35:1 > 30:1)
(Hair, Black, and Babin, 2014). Factor analysis was applied to detect possible interrela-
tionships between tasks (Cohen et al., 2000), using the Kaiser-Meyer-Olkin measure of
sampling adequacy parameter (0.756 > 0.5) and Bartlett’s test of sphericity (p ≤ 0.001).
The results showed that tasks were sufficiently related (determinant = .406 > 0.00001,
p ≤ 0.001) but not excessively interdependent (intercorrelation < 0.8).

Overall, values for eight tasks mostly satisfied the criterion of good task association
(that is, ~0.2–~0.8, p < 0.05). Two tasks (task 4, task 10) showed a greater correlation
with other tasks than most tasks did, but at an insufficiently significant level (p > 0.05).
It should also be noted that these tasks had the lowest index of discrimination (< 0.16).

Results of the factor analysis confirmed the initial assumption of three components
in which assessment tasks could be grouped what will be addressed further in the discus-
sion section.

To reinforce the reliability of the evaluation tool, an additional grader was introduced
for essay assignments, which were not evaluated automatically. The additional grader
was an experienced teacher, who independently evaluated essay tasks (task 3, task 7,
task 9) according to the presented model of evidence and measurement. Comparison of
the researchers’ and the additional grader’s grading showed a very high degree of match-
ing in all three tasks (task 3: 96%; task 7: 97%; task 9: 97%).

4.2. Influence of Some Factors (Gender, Academic Achievement,
Programming Experience) on Assessment Results

It has been researched whether there is a correlation of factors such as gender, math
and general academic achievement with the success in this assessment given that such

Table 9
Test statistics regarding difficulty and discrimination index

Task Difficulty index Discrimination index Task Difficulty index Discrimination index

1 59.42 0.32 6 57.10 0.29
2 28.12* 0.29 7 89.74** 0.41
3 44.03 0.38 8 51.19 0.36
4 59.42 0.11 9 85.72** 0.45
5 46.68 0.27 10 93.90** 0.16

* probably very easy task; ** probably very difficult task

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 447

factors have shown correlation with success in programming in some studies (Wilson
and Shrock, 2001; Bubica and Boljat, Predictors of Nvices Programmers’ Performance,
2014). Pupils’ data concerning their general academic and math achievement showed
that this research sample did not represent a normal distribution, so a nonparametric test
was used to explore correlations among data (one-sample Kolmogorov-Smirnov test
p = .001). Results regarding general academic achievement showed very strong positive
correlation with math achievement (Spearman’s r = 0.803, p ≤ 0.001). Factors like math
and general academic achievement had medium positive correlations with achievement
on this CT assessment (Spearman’s r = 0.425, r = 0.429, p ≤ 0.001).

One of the important features of an assessment is to determine whether there are dif-
ferences between the results on the given assessment achieved by the boys and girls. The
research results showed that there was no correlation between the variables pupil’s gen-
der and their success in CT assessment (Spearman’s ρ = -0.051, p = 0.337 > 0.05). Such
a result is consistent with existing research (Authors, 2014; Pillay and Jugoo, 2005) and
speaks in favour of the claim that the created assessment tool might be equally suitable
for boys or girls. At the time when there is a significant debate about the lack of women
in informatics and their lack of interest in STEM in general, it is important to find ways
to increase girls’ interest in informatics during education, for example, at least by cre-
ating equal learning environments in both, teaching and assessment process (Writers,
2021).

Further analysis was done to explore the (in)sensitivity of the proposed CT tool
regarding previous programming language knowledge. A normality test of pupils’ as-
sessment results showed that there was not a normal distribution of data (Kolmogorov-
Smirnov, skewness = 0.388, kurtosis = -0.041, p ≤ 0.001), so nonparametric methods
were used. Given that some of the pupils had their first programming encounter through
the Scratch graphical programming environment and continued their work in Python or
Logo, we examined the difference between the results with respondents placed in one
of four groups depending on the programming language or combination of the program-
ming languages they used while learning CT concepts (Table 10). The Kruskal-Wallis
method showed that there was no significant difference between the scores achieved by
pupils depending on the programming language or combination used.

This is consistent with the results of earlier research, and it also confirmed the initial
criteria that the tool is independent of the observed programming languages (Allert,
2004; Byrne and Lyons, 2001; Pillay and Jugoo, 2005). Further grouping of data investi-
gated the impact of learning an individual programming language on the pupils’ success.

Table 10
Difference between the scores depending on the programming languages used (Kruskal-Wallis)

Grouping of pupils according to the
programming language learned

“first Scratch
then Python”

“first Scratch then
Logo,”

“only Logo” “only Python”

mean rank 176.42 203.21 171.35 175.14

χ2(2) = 2.458,
p = 0.483

N. Bubica, I. Boljat448

The results showed no statistically significant difference between Scratch (Mann-Whit-
ney 7581.500, p = 0.240), Logo (Mann-Whitney 14692, p = 0.788), and Python (Mann-
Whitney 14692, p = 0.788) groups meaning that it is not expected that pupils who have
learned particular programming language will therefore achieve better or worse
results in this assessment.

4.3. Construct Validity of the Assessment Tool:
Comparison to the Selected Set of Bebras Challenge Tasks

In previous sections, the correlation between the learning outcomes of the new CS Croa-
tian curriculum and CT assessment was described. Given that the Bebras challenge was
already present in schools in the Republic of Croatia, it was appropriate to determine
if there was correlation between the two CT assessments and if possible, determine
which of the two assessments is better aligned with the subject curriculum. In this way,
the construct validity of the developed assessment tool was also examined. In a Bebras
task there is the same main character, a beaver (dabar in Croatian), who is trying to
solve a different presented problem/puzzle in a different context (story) each time. Every
year, computer science education specialists prepare and distribute tasks for the Bebras
challenge, keeping in mind that each task must contain CT appropriate to the pupils’
age. In Croatia, the Bebras initiative was conducted as an online competition (15 ques-
tions) through the Loomen LMS (November 2016) distributed in middle and secondary
schools (N = 1892). Table 11 compares the results of the observed assessments. As the
observed concepts had to be aligned with the CS curriculum, an appropriate subset of
Bebras challenge tasks which most closely coincided with the proposed CT assessment
and Croatian CS curriculum was selected and the relationship between the two assess-
ments was explored.

 The Bebras challenge assessment consisted of fifteen tasks but only six of them were
in line with the selected learning outcomes involved in this assessment (see Table 2).
Concepts/skills such as decomposition, working with different levels of abstraction,
creating new algorithmic solutions, and upgrading existing algorithmic solutions were
not included in Bebras evaluation tasks. The selected Bebras challenge tasks showed
moderate correlation with CT assessment (r = 0.495, p = 0.001), which speaks in favor

Table 11
Basic statistical features of Bebras and CT evaluations for the pupil samples

Bebras
assessment

CT
assessment

Results of pupils who participated
in both assessments
Bebras CT

Pupil sample N = 1892 N = 358 N = 49 N = 49
Reliability (Cronbach’s alpha) α = 0,48 α = 0,63 α = 0,325 α = 0,722

Correlation (Spearman’s r) 0,495
(p = 0.01)

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 449

of the construct validity of the proposed CT assessment. Low values of the reliability
coefficient (N = 1892, α = 0.48; N = 49, α = 0.325) indicated that the selected set of Be-
bras challenge tasks cannot be considered a reliable way of assessing CT concepts. Still,
for more serious conclusions regarding the assessment of computational thinking with
Bebras challenge tasks and their connection with the created assessment tool, research
should be conducted on a larger subset of Bebras challenge tasks from several years as
well as with greater sample of pupils involved.

5. Discussion

The main goal of this research was to assess acquisition of concepts of computational
thinking: abstraction, algorithmic thinking, and decomposition, among pupils in middle
school. According to the developed assessment model, based on the ECD approach,
the appropriate tasks of the assessment tool were created. The assessment tasks were
also aligned with the 6th-grade learning outcomes of the new informatics curriculum.
Basic assessment statistics considering task structure and context (Table 11) showed that
analysing and understanding algorithms, anticipating algorithm behaviour, and upgrad-
ing existing algorithms or creating completely new algorithms represented the greatest
challenge for pupils. Further, those tasks, including concepts of algorithmic thinking
and decomposition, also showed the highest degree of discrimination, that is, the great
power of separating successful from less successful pupils, which is very important in
any assessment.

Factor analysis was conducted to explore the possibility that the assessment tool
could measure acquisition of CT concepts: abstraction, algorithmic thinking, and de-
composition; the strength of the correlation of each task with each factor indicated by
factor analysis was investigated. The obtained results were in accordance with the pro-
posed model of the assessment tool (Table 6), which distinguishes target and underlying
CT knowledge and practice. The results of factor analysis clearly distinguished fac-
tors from one another based on which type of practice and knowledge of algorithmic
thinking prevailed (editing and upgrading algorithmic solutions, creating new solutions
based on a familiar problem, predicting program behaviour). Target CT knowledge and
practice correlated to these factors were grouped according to factor loadings (stronger,
moderate, weaker), where according to sample size, factor loadings equal to or greater
than 0.3 are considered significant (Hair et al., 2014) (see Table 12).

According to the results of the factor analysis, the strongest connection with the first
factor showed skills of algorithmic thinking, but also decomposition. The less power-
ful yet still significant correlation to the first factor demonstrated some skills that are
related to abstraction (working with variables and output, understanding the problem,
identifying key features of the problem). The correlation with the second factor showed
skills and knowledge that are related to abstraction (understanding the problem, work-
ing with logic); the smaller but still significant correlation to the second factor showed
the relevance of the skill of working with branching structure (algorithmic thinking).
Although the factor analysis pointed out the existence of a third factor, due to the insuf-

N. Bubica, I. Boljat450

ficient number of tasks related to this factor (task 4), it is not appropriate to consider
it a separate factor in this analysis. The ungrouped task (task 4) highlighted skills of
working with branching structures (simple and complex). This is a surprising result,
since these skills could be expected to have a strong connection with the first factor, in
which the skills and knowledge related to algorithmic thinking prevail. Since this task
(task 4) already showed extremely bad discrimination, it is questionable how much the
results influenced the odd deployment of the highlighted skill – working with branching
structures – given the prominent effects of the factors. The third CT concept consid-
ered, decomposition, was not highlighted as an individual factor in this analysis, but
we can nevertheless strongly associate it with the concept of algorithmic thinking and
the concept of abstraction. One reason could be the fact that decomposition was high-
lighted by only two of the total ten questions; another could be that a basic premise for
successfully solving these two tasks (disaggregating problems to less complex already
familiar problems) was that the pupil had to be skilled with certain algorithmic think-
ing abilities (creating new solutions based on familiar problems, editing and upgrading
algorithmic solutions) as well as with skills and knowledge connected to abstraction
(understanding of the problem, thinking at different levels of abstraction, working with
variables). Given the above results, we can conclude that the concepts of algorithmic
thinking and abstraction were clearly highlighted in this assessment, while the concept
of decomposition was not clearly recognized as a separate factor.

Table 12
Grouping tasks according to factor analysis results

Factor loading Factor 1: Abstraction Factor 2: Algorithmic thinking Ungrouped task*

Stronger factor
loading (> 0.62)

Editing and upgrading •	
algorithmic solution
(Algorithmic thinking, task 7)
Creating new solutions based •	
on the familiar problem
(Algorithmic thinking,
decomposition, task 9)
Understanding the problem •	
(Abstraction, task 7)

Understanding of the problem •	
(Abstraction, task 1)
Working with logic •	
(Abstraction, task 3)

Working with •	
branching structure
(Algorithmic
thinking, task 4)

Moderate
factor loading
(0.52 <…< 0.62)

Predicting program behaviour •	
(Algorithmic thinking, task 6)
Disaggregating problems to •	
less complex already familiar
problems (Decomposition,
task 8)
Working with variables and •	
output (Abstraction, task 10)
Understanding the problem •	
(Abstraction, task 7)

Working with a branching •	
structure
(Algorithmic thinking, task 5)

Lower factor
loading
(0.3<…<0.52)

Identifying key features •	
(constraints) of the problem
(Abstraction, task 2)

* ungrouped task because of insufficient number of tasks within factor

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 451

One of the goals of this research was to investigate and establish the assessment
tool’s independence of the programming language used by the pupils. Considering that
several different programming languages are included in the teaching process in Croatia,
it is of utmost importance that the created model be compatible with all these languages.
When creating test tasks, it was understood that the way of writing should avoid mak-
ing task language and images dependent on the specific syntax and structure of some
programming language. At the same time, the task had to be intuitive and to not distract
pupils’ attention from solving the problem. Since research participants were familiar
with different programming languages, results which indicated no significant difference
in the scores achieved by pupils regardless of the programming languages they had
learned were of great importance. These results are consistent with the relevant research
(Bubica and Boljat, 2014; Pillay and Jugoo, 2005). The fact that the tasks were written
in a language that is very similar to the spoken language of the pupils certainly made it
easier to understand the tasks better. Further, since the tool is intended for real teaching
practice, it is very important that gender was not highlighted as a factor that can signifi-
cantly affect this CT assessment. The achieved results are in line with previous relevant
research (Bubica and Boljat, 2014; Wilson and Shrock, 2001).

In further quality analysis of the created CT assessment, it is important to consider
the question of its reliability (how dependably or consistently a test measures a charac-
teristic). As mentioned earlier this assessment tool showed a satisfactory degree of in-
ternal reliability (α = 0.630). It is generally accepted that values of reliability coefficient
(Cronbach’s alpha) between 0.7 and 0.6 are considered acceptable (Cohen, Manion, and
Morrison, 2007; Nunnally, 1978; Pallant, 2005; Pallant, 2011) and above 0.6 (Taber,
2017) barely acceptable (satisfactory). The higher the observed coefficient is, the more
likely it is that the same results will be repeated when re-applying the assessment tool.
The value of the Cronbach’s alpha coefficient depends on the number of tasks in the
given instrument; a low value, for example 0.5, is not uncommon for instruments up to
10 tasks. In such situations, it is common to analyse the corrected correlations among
test tasks; for two tasks in the present study (task 4, r = 0.104; task 10, r = 0.150), it can
be concluded that they do not measure the same thing as the rest of the instrument, as
their correlation values deviate from the optimal values among the (other) tasks (Briggs
and Cheek, 1986). Further, if these tasks were removed from the instrument, the value of
the Cronbach alpha coefficient respectively would not change at all (task 10) or would
increase slightly (task 4). As one of these items (task 4) showed extremely poor discrimi-
nation value (0.1052), removal or significant improvement of it should be a serious con-
sideration. Also, adding more tasks to the assessment, for example addressing the con-
cept of decomposition, should be considered, since more tasks improve test reliability.

Finally, the possible difficulties or weaknesses of the proposed model should certain-
ly be pointed out. In the modelling phase, design patterns were presented as the founda-
tion for the development of each assessment task. The patterns are the result of personal
authors’ attitudes / thoughts / experiences as well of analysis of relevant literature. In
further work, greater emphasis will be placed on the study of the presented patterns and
their possible upgrading and refinement. The most demanding and sensitive part of the
model is certainly recognizing and separating targeted and underlying CT concepts and

N. Bubica, I. Boljat452

skills while creating a task due to their big interconnections. This could make the process
of creating tasks for teachers quite difficult and challenging.

Furthermore, the assessment model suggests its online application. This could be
considered as an advantage of the model because it offers an easy approach and appli-
cation of assessment. At the same time, an online assessment excludes the possibility
of returning to previously solved tasks for reconciliation and resolving. This limitation
makes it impossible to easily transfer the online assessment tasks to a paper-pencil form
of assessment which could be considered its disadvantage.

 6. Future work

In the presented work, the emphasis was on summative assessment. Further work will
mainly focus on the analysis of other data that were collected during the research like
feedback from the teachers and pupils. The possibility of applying the described assess-
ment model for formative purposes will be explored, primarily by analysing collected
evidence of pupil knowledge. This assessment used evidence of pupil’s knowledge,
which was identified through their responses and associated them with mental models
of the observed CT concept. For that reason, it is possible to conduct a deeper analysis
of mental models adopted by pupils as well as of difficulties that need more emphasis in
further learning. The concept abstraction will be analysed through the way pupils deal
with different levels of abstraction (understanding the problem), also in how pupils use
variables and logical values; the concept algorithmic thinking will be analysed through
pupils’ ability to track and analyse algorithmic solutions and well as through their ability
to apply different kinds of branching structures. Formative assessment of the CT con-
cepts will be presented in the form of a tree-scale rubric (need much work, partially suc-
cessful, successful). Such formative feedback seeks to point out pupils’ most common
mistakes and difficulties – information of great importance for teachers when planning
instruction as well as for pupils when provided as timely feedback during the learning
process.

Collected qualitative data regarding the clarity of the questions, the presentation and
structure of the tool, and other matters that emerge will be explored.

In addition to the already mentioned activities, there will be certainly more work in
the future on improving the domain modelling, especially regarding design patterns as
they represent important part of the proposed assessment model.

7. Conclusions

The beginning of educational reform in the Republic of Croatia started a process of
creating new subject curricula and applying new teaching strategies and evaluations.
The new K-12 CS curriculum, taking a learning outcome-based approach, emphasizes
the importance of knowing concepts such as programming, algorithms, and data struc-
tures and introduces the development of computational thinking with the primary goal

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 453

of encouraging pupils’ creativity instead of only teaching them how to use information
and communication technology. Introducing computational thinking in subject curricula
entails the introduction of new teaching methods and materials and presents teachers
with the challenge of evaluating the outcomes. There is still not enough research on CT
evaluation to provide teachers with enough support in the field. Due to the increasing
emphasis on formative evaluation in everyday teaching practice, it is especially im-
portant to explore the potential of assessment tools to be applied in different forms of
assessment (such as assessment for learning or assessment as learning), for example by
identifying valid and invalid mental models of observed concepts.

This study offers a model of CT assessment consistent with the new Croatian K-12 CS
curriculum. To answer the research questions, the research tried to find out how suitable
the proposed ECD model of CT assessment is for educational practice. Due to the diversi-
ty of programming languages used in Croatian schools, it is extremely important that the
success that pupils achieve in this assessment not be dependent on the programming lan-
guage through which they have learned basic CT concepts. Our approach is independent
of programming language (already present in school) and equally appropriate for boys
and girls. The presented CT assessment model showed an acceptable reliability index;
the coincidence of the results of grading by the researcher and the additional independent
grader speaks for the reliability of the tool and ease of the use in the classroom.

To investigate the construct validity of the proposed tool, the results for the selected
set of pupils were compared with their success on the Bebras challenge tasks. Although
the proposed assessment instrument showed better characteristics (coefficient of reli-
ability, consistency with the outcomes of the Croatian CS curriculum, interconnection of
tool tasks, etc.) than assessing CT with selected set of Bebras challenge tasks; for more
reliable conclusions research with a larger pupil sample should be conducted. Further-
more, such a result may also have been influenced by the choice of Bebras challenge
tasks that were applied in the Republic of Croatia in that period. Some other tasks that
did not reach the pupils at all might discover some other interrelationship of the two
observed types of tasks.

The results of this research showed that although creating an ECD approach assess-
ment is a time consuming and demanding job, it allows us to create assessments that are
strongly related to the subject curriculum and offer evidence argument for difficult-to-
measure concepts.

Conflict of interest
The authors declare that there is no conflict of interest regarding the publication of
this paper.

Acknowledgments

Special thanks to the teachers and experts for their outstanding help and participation in
the research. An earlier version of this research was presented as a conference paper, and

N. Bubica, I. Boljat454

the abstract was published in Proceedings of the International Conference on Computa-
tional Thinking Education 2018 (Hong Kong: The Education University of Hong Kong)
(Bubica and Boljat, 2018).

References

Allert, J. (2004). Learning Style and Factors Contributing to Success in an Introductory Computer Science
Course,”. Proceedings of the IEEE International Conference on Advanced Learning Technologies –
(ICALT’04, 2004.

Almond, R.G., Steinberg, L.S., Mislevy, RJ. (2002, Volume 1, Number 5). Enhancing the Design and Delivery
of Assessment Systems: A Four Process Architecture. The Journal of Technology, Learning, and Assess-
ment.

Ambrosio, A.P., Almeida, L. d. (2014). Exploring Core Cognitive Skills of Computational Thinking. Psychol-
ogy of Programming Interest Group Annual Conference 2014 (pp. 25–34). Brighton, UK: PPIG, University
of Sussex, 2014.

Anderson, L.W., Krathwohl, D.R., Bloom, B.S. (2001). A Taxonomy for Learning, Teaching, and Assessing :
A Revision of Bloom’s Taxonomy of Educational Objectives / editors, Lorin W. Anderson, David Krathwohl
; contributors, Peter W. Airasian ... [et al.]. New York : Complete ed. New York: Longman, 2001. Print.

Araujo, A.L., Santos, J.S., Andrade, W.L., Guerrero, D.D., Dagienė, V. (2017). Exploring computational think-
ing assessment in introductory programming courses. 2017 IEEE Frontiers in Education Conference (FIE),
(pp. 1–9). Indianapolis, IN, 2017: pp. 1–9.

Astrachan, O., Hambrusch, S., Peckham, J., Settle, A. (2009). The present and the Future of Computational
Thinking. ACM 978-1-60558-183-5/09/03, pp. 549–550. Chattanooga, Tennessee, USA.

Ben-Ari, M. (1998). Constructivism in Computer Science Education. SIGCSE’98. Atlanta, GA, USA.
Bienkowski, M., Snow, E., Rutstein, D., Grover, S. (2015, December). Assessment Design Patterns for Com-

putational Thinking Practices in Secondary Computer Science: A First Look. Menlo Park, CA: SRI Educa-
tion.

Brennan, K., Resnick, M. (2012). .New Frameworks for Studying and Assessing the Development of Compu-
tational Thinking.

Briggs, S.R., Cheek, J.M. (1986). The role of factor analysis in the development and evaluation of personality
scales. Journal of Personality, 54, pp. 106–148.

Brođanac, P., Bubica, N., Kralj, L., Markučić, Z., Mirković, M., Rubić, M., Sudarević, D. (2016, February).
Computer Science National Curriculum – proposal. Retrieved from kurikulum.hr: http://www.kurikulum.
hr/wp-content/uploads/2016/03/Informatika.pdf

Bubica, N., Boljat, I. (2014). Predictors of Nvices Programmers’ Performance. ICERI2014 Proceedings, pp.
1536–1545. Seville, Spain.

Bubica, N., Boljat, I. (2018). Assessment of Computational Thinking. CTE2018. Hong Kong.
Bundy, A. (2007). Computational thinking is pervasive. Journal of Scientific and Practical Computing, 1(2),

67–69.
Byrne, P., Lyons, G. (2001). “The Effect of Student Attributes on Success in Programming,”. ITiCSE 2001.

6101 Canterbury, UK.
Cohen, L., Manion, L., Morrison, K. (2000). Research Methods in Education, 5th Edition. London: Routledge

Falmer.
Cohen, L., Manion, L., Morrison, K. (2007). Reearch Methods in Education, sixth edition. New York, USA:

Routledge.
Csizmadia, A., Curzon, P.P., Dorling, M., Humphreys, S., Ng, T., Selby, D.C., Woollard, D.J. (2015). Compu-

tational Thinking – a Guide for Teachers. Computing At School.
CSTA. (2016). CSTA K–12 CS Standards. Retrieved from CSTA:

https://www.csteachers.org/page/standards

Curran, J. R. (2019). Coding and Computational Thinking – What is the evidence? (report) . NSW Department
of Education.

Dagienė, V., Futschek, G. (2019). On the way to constructionist learning of computational thinking in regular
school settings. Constructivist Foundations 14(3), 231–233.

Dagienė, V., Stupurienė, G. (2016). Bebras – a Sustainable Community Building Model for the Concept Based
Learning of Informatics and Computational Thinking. Vilnius University , 25–44.

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 455

Denning, P.J. (2009, June). The Profesion of IT – Beyond Computational Thinking. Communications of the
ACM, 52(6), 28–30.

Denning, P.J. (2010). The Great Principles of Computing. American Scientist, 98, 369–372.
Dorling, M., Walker, ,. M. (2014). Computing Progression Pathways. Retrieved from http://community.com-

putingatschool.org.uk/resources/1692
Dr Scratch. (2021, 4 17). Retrieved from Dr. Scratch – Analyze your Scratch prorams here:

http://www.drscratch.org/

Fincher, S. (1999). What are We Doing When We Teach Programming? 29th ASEE/IEEE Frontiers in Educa-
tion Conference. San Juan, Puerto Rico.

Grover, S. (2020). Designing an Assessment for Introductory Programming Concepts in Middle School Com-
puter Science. SIGCSE ‘20,. Portland, OR, USA: ACM 978-1-4503-6793-6/20/03.

Guzdial, M. (2008, August). Paving the way for the Computational Thinking. Communications of the ACM,
51(8), 25–27.

Hair, J.J., Black, W.C., Babin, B.J., Anderson, R.E. (2014). Multivariate Data Analysis, seventh edition. Eng-
land; Harlow: Pearson Education Limited.

Hendrickson, A., Ewing, M., Kaliski, P., Huff, K. (2013). Evidence – Centered Design: Recommendations
for Implementation and Practice. Journal of Applied Testing Technology, JATT, volume 14, Association of
Test Publishers.

ISTE, CSTA. (2011). CSTeachers. Retrieved from Computational Thinking resources:
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/CompThinkingFlyer.pdf

Kane, M. (2013). The Argument-Based Approach to Validation. School Psychology Review,, pp. 448–457.
Lee, M.J., Ko, A.J. (2011). Personifying Programming Tool Feedback Improves Novice Programmersʼ Learn-

ing u. ICER’11. ProvidenceRI, USA.
Leron, U., Hazzan, O. (1998). Computers and applied constructivism. In: J. D.-T. Tinsley D., Information and

Communications Technologies in School Mathematics (pp. 195–203). Boston, MA: IFIP – The Interna-
tional Federation for Information Processing. Springer,
https://doi.org/10.1007/978-0-387-35287-9_23.

Lye, S., Koh, J. (2014). Review on teaching and learning of computational thinking through programming:
what is next for K-12? Computers in Human Behaviour, 41, 51–61.

Microsoft Research (2009). Kodu Game Lab – 3D game programming for kids. Retrieved from Kodu Game
Lab: http://www.kodugamelab.com/

Ministry of Education. (2018). Informatics subject curriculum. Retrieved from Nacionalni kurikulum:
https://mzo.hr/hr/rubrike/predmetni-kurikulumi

Ministry of Education. (2006). Curriculum program for elementary school . Retrieved from Ministry of Edu-
cation – elementary education: https://mzo.hr/sites/default/files/dokumenti/2017/06/nas-
tavni-plan-i-program-za-os_2006.pdf

Ministry of Education. (2018, 2 17). Computational thinking and Programming. Retrieved from Ministry of
Education: https://loomen.carnet.hr/mod/feedback/view.php?id=302617

Mislevy, R.J., Haertel, G. (2006). Implications for evidence-centered design for educational assessment. Edu-
cational Measurement: Issues and Practice, 25, 6–20.

Mislevy, R.J., Almond, R.G., Lukas, J.F. (July, 2003). A Brief Introduction to Evidence-centered Design. NJ
08541: Research & Development Division Princeton.

Mislevy, R.J., Riconscente, M.M. (2005). Evidence-Centered Assessment Design: Layers, Structures, and Ter-
minology. SRI International.

Moon, J., Do, J., Lee, D., Choi, G.W. (2020, February 13). A conceptual framework for teaching computational
thinking in personalized OERs. Smart Learning Environments, SpringerOpen.

Moreno-León, J., Robles, G., Román-González, M. (2015, Sep 15). Dr. Scratch: Automatic Analysis of Scratch
Projects to Assess and Foster Computational Thinking. RED-Revista de Educación a Distancia.Número 46,
pp. 1–23.

Nunnally, J.C. (1978). Psychometric Theory (2nd ed.). New York: McGraw-Hill.
Pallant, J. (2005). SPSS Survival Guide: A Step by Step Guide to Data Analysis Using SPSS for Windows 3rd

Edition. New York: Open University Press.
Pallant, J. (2011). SPSS Survival Manual: A Step by Step Guide to Data Analysis Using the SPSS Program. 4th

Edition . Berkshire: Allen & Unwin.
Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New Year: ACM. 0-465-04627-4.
Pellegrino, J. W. (2020). Important Considerations for Assessment to Function in the Service of Education.

Educational Measurement: Issues and Practice, Vol. 00, No. 0, pp. 1–5.
Pillay, N., Jugoo, V.R. (2005). An Investigation into Student Characteristics Affecting Novice Programming

N. Bubica, I. Boljat456

Performance. inroads – The SIGCSE Bulletin, 37(4), 107–110.
Roman-Gonzales, M. (2014). Aprender a programar ‘apps’ como enriquecimiento curricular en alumnado de

alta capacidad. Bordon, Revista de Pedagogia, 66(4), 135–155.
Román-González, M. (2015). Computational Thinking Test: Design Guidelines and Content Validation. Pro-

ceedings of the 7th Annual International Conference on Education and New Learning Technologies (EDU-
LEARN 2015), pp. 2436–2444. Barcelona, Spain.

Taber, K.S. (2017). The Use of Cronbach’s AlphaWhen Developing and Reporting Research Instruments in
Science Education. Research in Science Education.

Werner, L., Denner, J., Campe, S. (2012). The Fairy Performance Assessment: Measuring Computational
Thinking in Middle School. SIGCSE’12. Raleigh, North Carolina, USA: Copyright 2012 ACM.

Wiebe, E., London, J., Aksit, O., Mott, B.W., Boyer, K.E., Lester, J.C. (2019). Development of a Lean Compu-
tational Thinking Abilities Assessment for Middle Grades Students. SIGCSE ‘19. Minneapolis, MN, USA:
ACM ISBN 978-1-4503-5890-3/19/0.

Wilson, B.C., Shrock, S. (2001). Contributing to Success in an Introductory Computer Science Course: A
Study of Twelve Factors. SIGCSE. Charlotte, NC, USA.

Wing, J.M. (2006, March). Computational thinking. Communication of the ACM, 49(3), 33–35.
Wing, J.M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the

Royal Society A: Mathematical, Physical and Engineering Sciences, 366 (1881).
Wing, J.M. (2010, November 17). Retrieved from

www.cs.cmu.edu: https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

Writers, S. (2021, May 5). Women in Computer Science: Getting Involved in STEM . Retrieved from Computer
Science org: https://www.computerscience.org/resources/women-in-computer-science/

Yadav, A., Gretter, S., Jon Good, McLean, T. (2017). Computational Thinking in Teacher Education. Emerging
Research, Practice, and Policy on Computational Thinking, Educational Communications and Technol-
ogy: Issues and Innovations, pp. 205–219.

Yadav, A., Stephenson, C., Hong, H. (April 2017). Computational Thinking for Teacher Education. Communi-
cations of the ACM 55, 60(4), 55–62.

N. Bubica (Mokosica Middle School, Dubrovnik, Croatia) received her doctorate in
educational sciences from the Faculty of Science in Split, Croatia in 2022 – CS and Math
Teacher graduated at University of Split, Faculty of Science. Engaged by the Ministry of
Science and Education to work with the Expert working groups for the creation and later
introduction of new CS curricula in the K12 education. Student at the postgraduate doc-
toral study at the University of Split, Faculty of Science: Education Research in Natural
and Technical Science. Author and co-author of several scientific papers and textbooks
related to the topic of research in education and teaching of informatics in K12 educa-
tion. Member of the CS research working group.

I. Boljat (Faculty of Science, University of Split, Croatia) received his doctorate in
pedagogy – didactics from the Faculty of Pedagogy in Rijeka, Croatia in 1996. Author
of numerous scientific papers, Member of ACM SIGCSE. As one of the initiators of
the study of Informatics, he participated in the development of curricula for several
informatics courses. As a member of the working group for drafting the postgraduate
doctoral study program in Education in the natural and technical sciences, he defined the
several course curricula. He is the leader of the informatics working group in the project
HR.3.1.15-0032.

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 457

APPENDIX I
Created CT assessment tool

Task 1

Task 2

N. Bubica, I. Boljat458

Task 3

Task 4

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 459

Task 5

N. Bubica, I. Boljat460

Task 6

Task 7

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 461

Task 8

N. Bubica, I. Boljat462

Task 9

Task 10

Assessment of Computational Thinking – A Croatian Evidence-Centered Design Model 463

