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Introduction

Committing to a major is a fateful step in an undergradu-
ate education. Major selection influences academic persis-
tence (Leppel, 2001), postcollegiate income (Bleemer & 
Mehta, 2020), and job satisfaction (Wolniak & Pascarella, 
2005). Majors also are outcomes of chains of prior deci-
sions. Under elective curriculums common in the United 
States, students often declare majors only after a significant 
portion of coursework has been completed. Yet the iterative 
academic commitments that sum to majors have only rarely 
been observed systematically (Baker, 2018). Understanding 
how and when course selections signal major commitment 
has practical implications for students and schools. Once 
equipped with such knowledge, students might better recog-
nize how early course selections are related to downstream 
commitments, and school leaders might design course 
sequences and advising supports that make incremental aca-
demic decisions more informed and efficient.

Serial research has established that undergraduates often 
find the course-selection process cognitively daunting 
(Bailey et al., 2015; Baker, 2018; Chambliss & Takacs, 
2014; Chaturapruek et al., 2019; Page & Scott-Clayton, 
2016). Time-to-degree delays and major-switching are com-
mon phenomena that can be costly for students and schools 

(Fink et al., 2018; Liu et al., 2021; Witteveen & Attewell, 
2021). Providing students with a general sense of the rela-
tionship between initial course selections and eventual 
majors might lighten the cognitive task for students as well 
as enable more informed consideration of curricular options 
and their downstream consequences early in college. 
Academic advisors might use the same information to assist 
students in appreciating the cumulative implications of indi-
vidual course choices, while administrators might use it to 
predict future enrollments and guide their allocation of 
scarce instructional resources and student-support services.

In theory, academic transcripts detailing the course 
sequences of former students can be the source of insight to 
address these problems. Yet until recently, researchers lacked 
the computational capacity to leverage transcripts for such 
insight at scale. The work presented here combines newly 
commonplace computational tools with academic transcript 
data to forecast undergraduate majors on the basis of early 
college enrollments among 26,892 undergraduates who 
moved through a private university between 2000 and 2020. 
We offer this analysis as an existence proof and illustrative 
case study in how major forecasting might be carried out at 
virtually any school that maintains transcripts with course-
level academic selections.
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Our work makes three contributions. First, borrowing an 
analytic strategy developed by Pardos and Nam (2020), we 
use natural language-processing (NLP) techniques to fore-
cast the majors based on the sequenced course selections 
students make from the very beginning of their academic 
careers. Second, we illustrate how ablative analyses can be 
deployed to further specify which, and how many, courses 
are necessary to forecast a student’s terminal major with a 
specified degree of accuracy. Third, we illustrate how these 
analytic techniques reveal degrees of variance in academic 
pathways toward particular majors.

The work presented here uses course-enrollment data 
exclusively. We focus on course enrollments, exclusive of 
student grades and demographic characteristics, because 
enrollment information is an essential component of insti-
tutional records and is likely to be readily available to 
administrators and researchers elsewhere. Because virtu-
ally all schools retain and archive official enrollment 
records, the techniques we develop here are highly porta-
ble. Additionally, we offer the current work as an empirical 
and technical baseline for further study of major selection. 
Subsequent inquiries incorporating grades and demo-
graphic information will surface substantive questions 
about the sociology of academic pathways and important 
issues of algorithmic fairness and bias that are necessarily 
beyond the scope of the present study.

Background and Prior Work

An often-expressed ideal of a liberal-arts education is 
intellectual exploration and serendipitous discovery 
(Delbanco, 2014). Important expressions of this ideal are 
elective curricula in which students are allowed and even 
encouraged to sample a range of coursework before com-
mitting to a major. At least in principle, elective curricula 
make it possible for students to select from a wide variety of 
academic paths, especially at large research universities, 
where the range of subjects and potential course sequences 
are much more extensive than the typically smaller and 
more regimented academic programs of high schools 
(McFarland, 2006).

Prior research offers conflicting cues about the potential 
relationship between early course taking and college major. 
On the one hand, signals of major choice surface long before 
students arrive at college. Using data from an online-learn-
ing platform for middle-school students, researchers found 
that clickstream behavior data predicted whether students 
would major in a science, technology, engineering, and 
mathematics (STEM) field with 66% accuracy (San Pedro 
et al., 2014). Other work has shown that professed occupa-
tional plans in high school are predictive of a STEM major 
(Weeden et al., 2020), as are high school courses: For exam-
ple, enrollment in advanced placement calculus nearly dou-
bles the odds of a student committing to a STEM major in 

college (Gottfried & Bozick, 2016). Such findings suggest at 
least some continuity in how commitment to fields of study 
unfolds throughout young adulthood.

On the other hand, evidence suggests that exposure to, 
and experiences in, academic fields early in college can sub-
stantially influence undergraduate course trajectories. 
Research leveraging quasi-experimental assignment to 
courses has found that exposure to courses in disciplines 
outside students’ preferred majors increases the likelihood of 
majoring in those subjects (Fricke et al., 2018). Other work 
highlights that attribution bias and availability heuristics 
also inform major choice. For example, students assigned to 
early-morning courses are less likely to major in those 
courses’ subject domains (Haggag et al., 2021). Similarly, 
students who are randomly assigned to a course during the 
period in which they must declare a major are more likely to 
major in that course’s subject domain (Patterson et al., 2021). 
A carefully designed qualitative study of undergraduate 
pathways at a selective college has found that students would 
eliminate further investigation of entire fields of study on the 
basis of negative experiences in a single introductory course 
(Chambliss & Takacs, 2014).

Prior predictive-analytic work has focused on attrition 
from STEM fields. Chen and colleagues (2018) find that col-
lege admission scores, term-level grade point averages 
(GPAs), and student demographic information can be lever-
aged to forecast whether and when students will leave an 
already declared major. Other research indicates that perfor-
mance in gatekeeping courses, such as calculus, is strongly 
predictive of attrition from STEM majors (Aulck et al., 
2017).

Although empirically generative and conceptually prom-
ising, much of the prior predictive work focuses specifically 
on STEM pathways, to the exclusion of other academic 
fields. Yet navigating course choices and committing to 
majors are universal problems in U.S. undergraduate educa-
tion. For example, work by Aulck and West (2017) suggests 
that as many as 19% of all college students change majors at 
least once. Scientific progress on major prediction might 
yield insight into academic pathways across the entire ecol-
ogy of academic knowledge.

Our work builds upon that of Beaulac and Rosenthal 
(2019), who find that random-forest models featurized 
with subject-level course completions and subject-specific 
GPA can predict major with 47% accuracy on the basis of 
courses taken in the first year. Although compelling, their 
effort is constrained by limitations of data and analytic 
strategy. First, the authors are obliged to infer major based 
on the plurality of courses taken rather than the ground 
truth of degree issuance. Second, the authors model all 
courses within a subject as equivalent, when, in fact, par-
ticular courses may be especially powerful or weak predic-
tors of subsequent course-taking. Third, the random-forest 
approach makes it difficult for analysts to interpret why a 
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model predicts an outcome of a particular student—a limi-
tation on transparency that may be particularly problematic 
in academic settings. NLP techniques mitigate these con-
cerns, yielding better performance and more transparent 
interpretability.

Pardos and Nam (2020) have adapted techniques from 
NLP to describe and intervene in how students navigate col-
lege coursework. Their key contribution is the powerful idea 
that a sequence of courses in an academic career is analo-
gous to a sequence of words in a sentence. To the extent that 
this analogy holds, NLP methods can be used to reveal 
important structural features of a curriculum, such as prereq-
uisite relations and likely sequences of course-enrollment 
decisions (Jiang & Pardos, 2020). These researchers and 
others have used the same approach to generate course 
equivalencies that can inform articulation agreements 
between institutions (Pardos et al., 2019a). We extend that 
work here by applying NLP tools to forecast undergraduate 
major on the basis of course enrollments early in the aca-
demic career.

Conceptual Framework

We begin from the premise that elective curricula provide 
students with broad yet bounded contexts for pursuing their 
academic careers. Most schools require students to complete 
some number of core courses or distribution requirements 
and a major comprising specific courses or topics. Limits of 
course supply, time, attention, and tuition place additional 
constraints on what and how many selections students can 
make. These constraints facilitate conditions to forecast 
majors on the basis of early coursework: A large, but ulti-
mately limited, number of possible academic pathways is 
available to students within any given institution.

These conditions also mean that individual course selec-
tions are fateful and become more so as completed courses 
accumulate. Each course represents an investment that can-
not be made in another option. To the extent that the resources 
students and their families might allocate to degree comple-
tion are limited, each selection entails a trade-off 
(Chaturapruek et al., 2021). And because time, attention, and 
tuition invested in prior courses cannot be invested again, 
each passing academic term reduces the remaining resources 
available to consider alternate academic paths. This situation 
is why students, parents, administrators, and higher-educa-
tion researchers are wise to worry about the structure of 
undergraduate course offerings (Baker, 2018; Rosenbaum 
et al., 2007) and about how students consider and select 
courses (Chambliss & Takacs, 2014).

We conceptualize individual courses as the building 
blocks of academic careers for three reasons: (a) courses 
represent chunks of academic credit that accumulate to ful-
fill degree requirements, (b) undergraduate majors are 

defined as portfolios of courses or course categories, and (c) 
courses are convenient units of academic increment, leaving 
clear traces on transcripts. Under this broad conceptual 
umbrella, our empirical inquiry is focused on three ideas: 
major forecasting, data ablation, and the comparative com-
position of majors. We address each of these in turn below.

Major forecasting is the term we use to describe the use 
of artificial intelligence–based techniques to predict the like-
lihood of a major on the basis of some number and sequence 
of courses taken early in the undergraduate career. The con-
ceptual foundation of major forecasting is that the course-
taking patterns of prior students provide insight into how 
current students are likely to navigate their academic careers. 
Although we acknowledge that curricula grow and evolve 
over time, it is also likely that early course selections relate 
to subsequent major declaration to some empirically observ-
able extent. Thus, the mechanical requirements of majors 
and the course sequences of prior students should yield at 
least some valuable empirical insight about how current stu-
dents will navigate course selection.

Data ablation is a technical term describing the process 
by which analysts systematically vary the amount and kind 
of information they incorporate into a predictive model. 
Data ablation enables analysts to discern the relative predic-
tive power of different data representations. In our work, we 
systematically vary the number of completed courses used to 
forecast student major. Doing so enables us to better articu-
late the trade-offs of predictive accuracy versus timely infor-
mation. Moreover, by explicitly excluding or including 
certain pieces of information, such as course type (prerequi-
site status, for example), we can make credible claims about 
what kinds of data more and less optimally serve the task of 
major forecasting.

The comparative composition of majors is another key 
factor. We define an undergraduate major as the set of 
courses necessary and sufficient to receive a degree in a 
specified field (e.g., art history, biology, or chemistry). 
Within this broad definition, institutional documents speci-
fying major requirements make clear that not all majors are 
defined with the same level of specificity and stringency. 
Jurisdiction over major requirements typically rests at the 
department or program level (Abbott, 2010), and practitio-
ners of different fields structure majors in different ways. 
Such variation has consequences for major forecasting. For 
example, it is a different task to forecast a major comprising 
10 courses within a given subject domain, of which five are 
specified requirements, than to forecast a major comprising 
10 courses within a subject domain but with no specified 
requirements. The comparative composition of majors refers 
to the task of identifying what kinds of course sequences and 
course obligations a major entails.

With these goals established, we specify the following 
research questions.
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Research Questions

Each course selection represents a unit of investment of 
time, tuition, and opportunity costs. In light of this specifica-
tion, we posit that each course selection contains a bit of 
information about any given student’s academic predilec-
tions and preferences. Information accumulates by some 
observable factor in tandem with the accumulation of course 
selections. Our four research questions are designed to sur-
face this factor.

Prior research gives us reason to suspect that early course 
selections carry information about future majors. This may 
be the case because coursework in high school produces aca-
demic orientations that shape initial college preferences 
(Gottfried & Bozick, 2016; Weeden et al., 2020), because 
early course-taking in college creates path dependencies that 
influence subsequent selections (Chambliss & Takacs, 
2014), or because of some combination of these two pro-
cesses. A fortuitous feature of our data is that each individual 
course selection is time-stamped at the moment of registra-
tion. This feature enables us to order course selections not 
only by academic term but also within each term chronologi-
cally. We thus specify our first research question:

RQ 1: Is there a relationship between the first selected 
college course and terminal major?

Although answering this question with the observational 
data available from academic transcripts will not by itself 
enable us to specify causal chains, it can indicate whether 
early college coursework contains signals about a subse-
quent major. Particular courses have varying relationships to 
majors. Specifically, some courses serve as prerequisites for 
other courses in an academic domain. Prerequisite courses 
may be formally or functionally necessary to complete a 
major, or some combination of the two. By formally neces-
sary, we mean that academic regulations require majors to 
complete a course; by functionally necessary, we mean that 
subsequent coursework requires students to deploy knowl-
edge or skills taught in prerequisite courses. Either way, we 
suspect that prerequisite courses play a distinctive role in the 
unfolding of course sequences. They may ensure that stu-
dents are academically prepared to benefit from subsequent 
course-taking, they may serve to exclude certain students 
from pursuing or even considering particular majors, or they 
may do both, as is commonly observed in STEM fields (Slim 
et al., 2014).

By contrast, courses that are not prerequisites—we refer 
to these as non-prerequisites—may tell us more or less than 
prerequisites about subsequent course selections. On the one 
hand, because they require no prior coursework, these 
courses may carry more information about student prefer-
ences than prerequisites and thus contain more signals. On 
the other hand, because non-prerequisites are less tightly 

coupled with other courses in sequences leading to majors, 
they may contain relatively fewer signals. Thus, our second 
research question:

RQ 2: Are prerequisite courses a better forecasting 
resource than non-prequisite courses?

Having detailed administrative data is necessary but not 
sufficient to build useful predictive models. Transcript infor-
mation typically contains textual and numerical components 
(e.g., MATH 31, COMPUTER SCIENCE 101), but such 
data features are highly peculiar to particular schools and 
may not be applied consistently across departments and pro-
grams even within a given school. For these reasons, we dis-
regard course numbers and names in our models and instead 
focus on four distinct and potentially universal representa-
tions of courses:

•• One-Hot Encodings: Each course is represented as a 
binary/dummy variable.

•• Subject-Level Encodings: Each course is repre-
sented as a running count of how many times a stu-
dent completed a course in a particular subject 
listing in the course catalog (e.g., Math: 3, 
Economics: 1, History: 0).

•• Academic-Term Embeddings: Each course is repre-
sented by its co-occurrence with other courses in an 
academic term.

•• Academic-Career Embeddings: Each course is repre-
sented by its co-occurrence within a student’s under-
graduate academic career.

We suspect that embedded representations will outper-
form one-hot encodings. Embedded representations may 
capture similarities between related courses and might also 
generate abstract representations of course histories that are 
more compatible with machine-learning architectures (Erhan 
et al., 2010; Pardos et al., 2019b). We also suspect that 
embedded representations at different time windows (e.g., a 
single academic term vs. academic career) may provide var-
ied utilities for distinct tasks (Caselles-Dupré et al., 2018). 
Academic-term embeddings may be more beneficial for 
tasks in which a course history is to be used for term-specific 
decisions—for example, to suggest a course that comple-
ments others being taken (Pardos & Jiang, 2019) or to esti-
mate a student’s academic workload during a specific term 
(Chockkalingam et al., 2021). By contrast, career embed-
dings may be more useful for forecasting majors because 
major completion requires the accumulation of many spe-
cific courses over academic time. Data-ablation techniques 
enable us to train our models with different kinds of courses 
to gain empirical insight on these matters. Thus, our third 
research question:
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RQ 3: Do different representations of courses affect the 
predictive validity of major forecasts?

We suspect that the relationship between course selec-
tions and terminal major will change as selections accumu-
late. Accumulating courses represent a journey in degree 
progress and can indicate the likelihood of changing or com-
pleting paths at different points in academic careers. 
Researchers, academic advisors, and administrators would 
benefit from knowing how the forecasting signals carried by 
course selections change over academic time. Thus, our 
fourth research question:

RQ 4: How do accumulating course selections affect 
major forecasts at critical points in the academic 
career?

To answer this question, we again use data-ablation tech-
niques to vary the number of courses in a sequence that our 
models can perceive. We choose the number of courses that 
roughly correspond to the first academic term (n = 5) and 
the first and second years of academic instruction (n = 15 
and n = 30, respectively).

Setting and Data

This is a case study of undergraduate students moving 
through a private research university in the United States. 
We refer to the school by the pseudonym Western University 
(or “Western” for short). Western has selective admissions 
and an elective curriculum. It traditionally has strong pro-
grams in the applied sciences and attracts many students 
interested in these fields. Nevertheless, students are admit-
ted to the university as a whole—not to particular programs 
or schools—and are explicitly encouraged to sample a range 
of academic coursework before committing to a major near 
the end of their second year. Western’s academic calendar is 
organized on a quarter system, and undergraduates are 
expected to be enrolled full-time during each academic 
year’s fall, winter, and spring terms. Courses are offered by 
administrative units that are either disciplinary departments 
(e.g., sociology) or interdisciplinary programs (e.g., urban 
studies). For this analysis, these administrative units are 
interchangeable, and thus we use the term department/pro-
gram to refer to the offering unit.

Majors at Western vary in scope and intensity, ranging 
from some that consist of fewer than 60 credit units to others 
that have complex prerequisite structures and comprise well 
over 100 credit units. The scope and content of major 
requirements are set at the department/program level, with 
only minimal regulation by the higher administrative units. 
During their first 2 years, students navigate the elective cur-
riculum with the help of several online course-exploration 
tools as well as human advisors. Once students officially 

declare a major, human advising shifts from a general set of 
advisors to staff dedicated to specific programs of study. 
Especially in programs with very large enrollments (e.g., 
computer science), students with declared majors may be 
given preferential access to particular courses.

In contrast with universities that use GPA and other 
requirements to limit access to particular academic programs 
(Bleemer & Mehta, 2021), Western places very few condi-
tions or strictures on undergraduate major declarations. 
Advising websites and other supporting documents consis-
tently encourage students to engage in wide academic explo-
ration across the curriculum.

Major declaration is a strong but imperfect signal of 
major issuance at the case school. Completing required 
courses is a necessary but not sufficient criterion to receive a 
degree in a particular major: Students must also select and 
declare this major. Our data indicate that for approximately 
every five majors declared, only four degrees listing that 
major are issued—indicating the proportion of majors that 
are dropped or changed subsequent to declaration. The 
median student declares their major exactly 2 years after ini-
tial enrollment, at the start of the third year. Approximately 
25% of students do not declare a major until the end of the 
third year.

Our data set contains the enrollment histories of under-
graduates at Western from 2000 to 2020. In the following 
subsections, we specify additional data features as well as 
how we configured the overall corpus to represent courses, 
enrollments, and majors. It includes all the courses com-
pleted by each student, specified by term of enrollment, and 
eventual issued major. Students are identified in the data set 
only by an anonymous hash code. We limit our analysis to 
all undergraduate students who enrolled and graduated with 
an undergraduate degree during the 2-decade observation 
window, yielding an analytic sample of 26,892 students.1

Courses

Students at Western have an “open-enrollment” period in 
which they can enroll in any class. During this period, at the 
beginning of each term, students can enroll in the over-
whelming majority of available courses with minimal 
restrictions. The only courses that typically have binding 
enrollment caps are in a first-year writing program, athletics 
and wellness courses, studio-art courses, and foreign-lan-
guage courses.

Our data include information on the relational structure 
among all selected courses. Leveraging information from 
Western’s registrar and its official course catalog, we iden-
tify how courses relate to one another via prerequisites and 
course requirements. For example, if Mathematics 101 is a 
prerequisite—a specified requirement for students seeking 
to enroll in Mathematics 202 or Economics 101—then the 
dependent courses may be considered postrequisites. These 
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courses share ties of dependency that may influence efforts 
to forecast majors on the basis of early enrollments. Of the 
more than 21,694 distinct courses in which students in our 
analytic sample enrolled, 2,271 have explicitly specified 
prerequisite relations. Courses that are specified prerequi-
sites represent a disproportionate share of overall enroll-
ments (see Table 1). Although approximately 10% of courses 
serve as prerequisites, they compose nearly 37% of 
enrollments.

We identified 2,879 prerequisite relations among the 
2,271 prerequisite courses. This means that specific courses 
may require a student to take more than one prerequisite. For 
instance, machine-learning courses may require students to 
take an introductory programming class as well as linear 
algebra. Additionally, certain courses may have more than 
one postrequisite. Introductory computer science and intro-
ductory statistics have more than 100 unique course postreq-
uisites, indicating that particular courses may have 
disproportionate importance on curricular pathways. Many 
of these relations cross department lines, with a course 
offered in one department (e.g., economics) serving as a pre-
requisite for a course offered by a different department or 
program (e.g., public policy).

We aggregated all courses serving as prerequisites and 
collapsed each department/program domain into a super-
node (see Figure 1). Each label corresponds to a depart-
ment/program offering courses. The number in parentheses 
indicates how many external departments/programs 
require students to take courses in that department. 
Perhaps reflecting its legacy strengths in applied-science 
fields, computer science (CS) and mathematics (math) are 
at the center of Western’s prerequisite network: More than 
20 departments require students to take at least one CS or 
math course.

Course enrollments tend to follow a fat-tailed distribu-
tion: Many courses have sparse enrollments. In Figure 2, we 
plot the proportion of students enrolled in each course by 
rank. Courses in linear algebra, introductory computer pro-
gramming, and introductory statistics had the highest enroll-
ments at Western during the study period. The most enrolled 

course that did not have a prerequisite relation is a writing 
seminar required of all undergraduates as part of first-year 
general-education requirements. Generally, prerequisite 
courses receive larger enrollment shares than nonrequisite 
courses.

TABLE 1
Course enrollment statistics at Western University, by prerequisite 
status (2000–2020)

Course type Courses Enrollments Share

Prerequisites  2,271 522,327 37.6%
Non-prerequisites 19,423 37.6% 62.4%
All 21,694 1,390,971 100%

Note. Course corresponds to the number of unique course offerings during 
the period. Enrollment corresponds to the number of student enrollments 
during the period. Share is a student enrollment weighted share between 
the two course types.

FIGURE 1. Course requirements, by department.
Note. Each subject area is colored by discipline. The number associated 
with each subject area corresponds to the out degree of that subject, mean-
ing how many departments outside the subject area have required courses in 
that subject area. Arrows indicate the direction of the prerequisite relation. 
See the online article for the color version of this figure.

FIGURE 2. Enrollment share, by course type (2000–2020).
Note. Courses correspond to the rank-ordered enrollment frequency by each 
course type. See the online article for the color version of this figure.
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Enrollments

We present summary enrollment data in Table 2. Students 
typically complete between 47 and 56 courses during their 
academic careers at Western, enrolling in three to five 
courses per academic term and remaining matriculated for 
12 terms over 4 academic years.

Majors

The 26,892 students in our data set exhibited 81 unique 
majors. The most frequent major is a program in human 
biology, with 2,758 students; the least frequent is an inde-
pendently designed English major, with one student. To sim-
plify analysis and to minimize computational problems from 
including many very small cells, we condensed these 81 
majors into 26 categories, based on their frequency (see 
Table 3). The first 25 categories are the most highly enrolled 
majors during the study period, together representing 86% 
of all students. The 26th category comprises the remaining 
56 majors, representing 14% of all degrees awarded during 
the study period.

We group the 25 most highly enrolled majors into four 
academic domains:

•• Engineering: chemical engineering (CHEME), com-
puter science (CS), electrical engineering (EE), engi-
neering (ENGR), mathematical and computational 
sciences (MATSC), mechanical engineering (ME), 
management science and engineering (MGTSC), and 
symbolic systems and information sciences (SYMBO)

•• Natural sciences: biology (BIO), biological sciences 
(BIOL), chemistry (CHEM), earth systems (EASYS), 
human biology (HUMBI), mathematics (MATH), and 
physics (PHYS)

•• Social Sciences: economics (ECON), international 
relations (INTLR), political science (POLSC), psy-
chology (PSYCH), and public policy (PUBPO)

•• Arts and Humanities: communications (COMMU), 
English (ENGL), history (HIST), science technology 
and society (STS), and American studies (AMSTU)

We designate the academic domains of all other declared 
majors as “Other.”

Methods

Course Embeddings

One of the challenges of analyzing student enrollments at 
the course level is that many schools, including Western, 
have thousands or even tens of thousands of courses listed in 

TABLE 2
Enrollment statistics (2000–2020)

Measure Courses Courses per quarter Quarters

P25 47.00 3.83 12.00
mean 51.72 4.23 12.28
median 51.00 4.17 12.00
P75 56.00 4.57 13.00
sd  8.35 0.58  1.51
n 26,892 26,892 26,892

Note. Measures correspond to the first quartile, mean, median, third quar-
tile, standard deviation (sd), and observation count (n). Course corresponds 
to the number of courses a student takes in their entire academic career. 
Courses per quarter correspond to the number of courses a student takes 
per academic term. Quarter corresponds to the number of academic terms 
that a student remains enrolled during their time at Western University.

TABLE 3
Distribution of majors

Degree Discipline Share (%) Students

CHEME Engineering 1.4 373
CS Engineering 9.4 2,518
EE Engineering 2.8 740
ENGR Engineering 5.2 1,400
MATCS Engineering 1.5 402
ME Engineering 3.9 1,038
MGTSC Engineering 3.7 1,000
SYMBO Engineering 2.4 640
Subtotal Engineering 30.2 8,111
BIO Natural Science 3.5 948
BIOL Natural Science 2.9 772
CHEM Natural Science 1.0 278
EASYS Natural Science 1.8 496
HUMBI Natural Science 10.3 2,758
MATH Natural Science 1.9 510
PHYS Natural Science 1.3 350
Subtotal Natural Science 22.7 6,112
ECON Social Science 6.6 1,765
INTLR Social Science 4.6 1,241
POLSC Social Science 3.9 1,059
PSYCH Social Science 4.2 1,121
PUBPO Social Science 1.4 367
Subtotal Social Science 20.6 5,553
AMSTU Arts & Humanities 1.0 278
COMMU Arts & Humanities 1.7 454
ENGL Arts & Humanities 3.5 939
HSTRY Arts & Humanities 3.0 811
STS Arts & Humanities 3.2 865
Subtotal Arts & Humanities 12.4 3,347
Other 14.0 3,769
Total 100.0 26,892

Note. Each row corresponds to the number of students graduating in a par-
ticular major during the 2000–2020 period at Western University. Share 
corresponds to the fraction of majors as a share of all students during the 
period.
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their catalogs over a 20-year period. Many courses may 
enroll only a handful of students. Given this sparsity, it is 
difficult to understand the extent to which small-enrollment 
courses are associated with major selection. Concurrently, 
we have strong reason to believe that many courses exhibit 
similarities in terms of subject matter, content, and impor-
tance in regard to major completion. Alternative representa-
tions of students’ transcripts that aggregate these individually 
sparse signals may enhance predictive validity. Course 
embeddings offer an approach to capturing some of this 
commonality while reducing the dimensionality problem.

Following Pardos and Nam (2020), we define course 
embedding as a high-dimensional vector representation of 
courses, analogous to word vectors in NLP. Analogizing 
course catalog numbers and codes as words (e.g., ECON1, 
ENGLISH10), we posit that the sequences of course enroll-
ments represented in college transcripts are amenable to the 
same analytic strategies that enable computational “reading” 
of word sequences in linguistic texts. We describe the con-
struction of these embeddings in Appendix A.

These embedded representations perform well not only 
on such tasks as word analogy (Mikolov et al., 2013a) but 
also in a wide variety of contexts, from genetics to the pro-
duction of recommendations (Barkan & Koenigstein, 2016; 
Zou et al., 2019). These techniques have been used exten-
sively in academic domains by Pardos and colleagues on a 
host of tasks ranging from course recommendation to course 
articulation to degree planning (Pardos & Jiang, 2019; 
Pardos et al., 2019a; Shao et al., 2021).

A common way to validate embeddings is by assessing 
their efficacy at these analogy tasks (Arthurs & Alvero, 
2020). The analogies can be syntactic or semantic. Examples 
of syntactic analogy tasks in academic contexts include 
whether one course is an honors version of a similar course 
or whether a course is a component of a sequence. Examples 
of semantic analogy tasks are whether courses are combina-
tions of domains (e.g., biology + information sciences = 
bioinformatics; Pardos & Nam, 2020).

We focus on a prerequisite identification task to select 
embeddings for our forecasting exercise. Our goal is to con-
struct a vector space in which courses with a prerequisite 

relationship are close to each other. What we are building is 
akin to a search engine for prerequisite relations. For exam-
ple, assume that single-variable calculus (MATH 19) is a 
prerequisite for multivariable calculus (MATH 20). Ideally, 
if we typed MATH 20 into our search engine, MATH 19 
would be near the top of the list, and unrelated courses (e.g., 
art history) would be toward the bottom of the list.

Our procedure for constructing an embedding appropri-
ate for prerequisite discovery is as follows: We take our true 
postrequisite course for each of our 2,849 prerequisite rela-
tions and generate all (2,271) possible candidate pairs of 
courses in the prerequisite course network. We then compute 
cosine similarity for each pair of courses. We sort the candi-
date pairs by cosine similarity and examine the correspond-
ing rank of the true relation. For this task, we suspect that 
institutional knowledge of the university can inform how to 
train vector representations. Specifically, we suspect that 
students are not likely to take a prerequisite and its associ-
ated postrequisite in the same academic term. To test this 
intuition, we consider two distinct window types for course-
enrollment sequences. The first type we refer to as aca-
demic-term embeddings. These are embeddings trained only 
on courses that co-occur in the same academic term (see 
Figure 3). We also consider embeddings that can contain 
courses from a student’s initial enrollment to their final 
course as an undergraduate at Western. We describe these 
latter embeddings as academic-career embeddings. We have 
chosen this prerequisite task because we believe that it high-
lights the relative affordances of the two representations. We 
anticipate that students typically will not take a prerequisite 
course and its postrequisite within the same term. This antic-
ipated result will be reflected in term embeddings exhibiting 
relatively poor performance.

Our focal metric is the mean reciprocal rank (MRR), a 
standard metric in information retrieval and search tasks. In 
this case, Q  corresponds to the number of prerequisite rela-
tions, as specified by the equation below:

       MRR
rank

=
1

| |

1
.

=1

| |

Q i

Q

i
Σ  (1).

FIGURE 3. Visualization of a term and academic-career embedding.
Note. The black bracket corresponds to an academic-term embedding, which only incorporates data from a given academic term. The red bracket corresponds 
to an academic-career embedding, which is trained on a student’s entire course history. See the online article for the color version of this figure.
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We explored a variety of embedding dimensions 
{32,64,128,256,512} and window sizes {3,5,10,20,40,•∞} 
for each embedding type. We found that an embedded repre-
sentation of 256 dimensions worked best for term and aca-
demic-career embeddings. In both cases, we found that an 
infinite window, a model that could potentially retain all of a 
student’s prior and subsequent history, generated the best 
performance for our prerequisite detection task. Academic-
career embeddings performed substantially better at the pre-
requisite detection task. The MRR of the academic-career 
embeddings is 0.163 (mean rank 6.14) (see Table 4), sug-
gesting that the cosine similarity with academic-career 
embeddings between two courses can identify a course’s 
true relation within the first six or seven courses.

In contrast, academic-term embedding has a reciprocal rank 
of 0.031 and takes 31.80 courses on average to identify the true 
course-prerequisite pair. To put this information in a more 
familiar context, if we used this approach as a search engine 
for course dependencies, academic-career embeddings would 
generally return the right answer on the first page, while aca-
demic-term embeddings would return the right answer on the 
fourth page. Alternative measures, such as the median recipro-
cal rank, present a qualitatively similar picture.

Forecasting Major

We use a shallow-learning algorithm such that incremen-
tal changes in course selections can be readily associated 
with changes in the probability of a particular major issu-
ance. At the same time, we wish to minimize the complexity 
associated with potentially keeping track of tens of thou-
sands of possible enrollments. We use the following tech-
nique to forecast a student’s terminal major by using 
course-enrollment history. The specific method is a multino-
mial logistic Least Absolute Shrinkage and Selection 
Operator (LASSO) with the following loss function:

− + −
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In this equation, xi  corresponds to a vector of course-
enrollment data for a given student. The β  parameter corre-
sponds to a vector of coefficients for each course 

representation. The term K  corresponds to the number of 
majors. The term λ  corresponds to the regularization param-
eter that we tune as a hyperparameter. One affordance of a 
LASSO model compared to other regression-based 
approaches is that it shrinks coefficients toward zero, leav-
ing a relatively small number of parameters for investigation 
while preserving predictive validity (Tibshirani, 1996). To 
ensure that our reported model performance is accurate and 
generalizable, we split the data into three sets. The first is a 
training set, which allows researchers to freely generate and 
test various machine-learning models and assess their pre-
dictive power. The second is the dev set, which comprises 
data excluded from model training and is used to better 
understand how the model performs on sample data to 
inform hyperparameter selection. Last is the testing set, 
which is used to provide a measure of model performance on 
data that neither the machine-learning model nor the 
researcher has examined. We allocated our individual-level 
student data into an 80/10/10 train-dev-test split. All prepro-
cessing steps, including construction of the embeddings, 
were completed by using only the training set. We trained 
models by using student course data from the training set, 
chose hyperparameters based on the dev set, and reported 
errors from the test set for all analyses. In what follows, we 
report only performance on the test set.

These data splits were generated by random sampling 
over the 20-year observation period. We provide analysis 
in Appendix B on the performance of this modeling 
approach when our train and test sets come from distinct 
time periods. We also report supplementary results follow-
ing our shuffling of the order of course enrollments within 
an academic term.

We trained major forecasting models after a student had taken 
n  courses, where n∈{1,2,3,4,5,10,15,20,30,40,50,60}. 
For embedded representation of courses, we represented course 
history by computing the mean of the vector embeddings.

Results

Our findings indicate that course enrollment can forecast 
a student’s major with reasonable accuracy early in the 
undergraduate career. We present the results of our analyses 
for each of the research questions below in turn.

TABLE 4
Embedding performance at prerequisite detection task

Representation Embedding size Window MRR Mean rank Median reciprocal rank Median rank

Academic career 256 ∞ 0.163  6.14 0.034  29.00
Academic term 256 ∞ 0.031 31.80 0.0024 423.00

Note. Each row corresponds to the best model from hyperparameter search results for each embedding type. MRR corresponds to the mean reciprocal rank 
at the prerequisite detection task.
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RQ1: Using First Enrolled Course to Forecast Major

We trained models with one-hot representations, subject-
level representations, and embedding representations to pre-
dict major solely on the basis of the first course. We identified 
the first course by the transaction time in the enrollment 
database. Accuracy for each major’s performance in the test 
set is displayed in Table 5. The third column corresponds to 
a model that used the one-hot encoded representation of 
courses. The fourth column corresponds to subject represen-
tations. The fifth and sixth columns correspond to model 
accuracy for the academic-term-embedded and academic-
career-embedded representation of courses, respectively. 
The seventh column shows the corresponding accuracy rates 
of a stratified random model that guesses each major 

randomly according to its frequency in the test set. The 
eighth column corresponds to the individual counts of stu-
dents by major in the test set.

Our findings indicate that the first enrolled course carries 
signals of a student’s predilection toward a field of study. 
Using only that first course to forecast subsequent major 
increases the accuracy of our model more than 30 times over 
random guessing (0.59%). A one-hot encoding model identi-
fies a major with more than 18% accuracy. Using our aca-
demic-career-embedded representation increases accuracy 
while also making the forecasts become more diverse: The 
one-hot encoding and subject model selects fewer than half 
of 26 categories in the test set, while the academic-career-
embedded representation selects 18 of the 26 categories. 
These findings suggest that embeddings can aid performance 

TABLE 5
Major classification accuracy at the time of first course

Major Discipline One-hot (%) Subject (%) Term (%) Academic-Term (%) Guesser (%) n

CHEME Engineering 0.00 0.00 5.88 5.88 0.02 34
CS Engineering 24.71 43.97 45.49 45.10 0.90 255
EE Engineering 5.63 12.00 5.63 7.04 0.07 71
ENGR Engineering 0.00 0.00 0.00 0.00 0.26 138
MATCS Engineering 0.00 0.00 0.00 0.00 0.02 41
ME Engineering 0.94 6.00 6.60 9.43 0.16 106
MGTSC Engineering 0.00 0.00 0.00 0.00 0.13 96
SYMBO Engineering 0.00 0.00 0.00 0.00 0.07 69
subtotal Engineering 8.40 15.68 15.93 16.30 0.38 810
BIO Natural science 0.00 0.00 4.12 1.03 0.13 97
BIOL Natural science 0.00 0.00 3.49 5.81 0.10 86
CHEM Natural science 0.00 0.00 0.00 0.00 0.01 32
EASYS Natural science 0.00 2.13 2.63 2.63 0.02 38
HUMBI Natural science 15.35 23.63 40.25 43.57 0.80 241
MATH Natural science 30.77 0.00 30.77 30.77 0.04 52
PHYS Natural science 25.00 24.32 41.67 41.67 0.02 36
subtotal Natural science 10.65 11.43 23.37 24.57 0.38 582
ECON Social science 4.26 6.82 9.57 7.98 0.49 188
INTLR Social science 0.00 0.87 2.96 5.93 0.25 135
POLSC Social science 0.00 7.58 1.11 7.78 0.11 90
PSYCH Social science 0.00 12.07 8.41 9.35 0.16 107
PUBPO Social science 0.00 0.00 0.00 0.00 0.02 38
subtotal Social science 1.43 6.04 5.73 7.17 0.28 558
AMSTU Arts and humanities 0.00 0.00 0.00 0.00 0.01 32
COMMU Arts and humanities 0.00 0.00 0.00 0.00 0.03 43
ENGL Arts and humanities 0.00 8.33 0.00 0.98 0.14 102
HSTRY Arts and humanities 0.00 0.00 0.00 3.57 0.10 84
STS Arts and humanities 5.06 0.00 3.80 7.59 0.09 79
subtotal Arts and humanities 1.18 2.50 0.88 2.94 0.09 340
Other Other 86.72 64.23 54.39 49.62 2.20 399
Total 18.15 18.30 19.23 19.45 0.59 2689

Note. Each row corresponds to forecasting accuracy for each major by using just the first course a student enrolled in. This table only corresponds to perfor-
mance on the out-of-sample test set.
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on a major-forecasting task, even when using only a single 
course.

RQ2: Comparing the Predictive Power of Prerequisite and 
Non-prerequisite Courses

Results are displayed in Figure 4 for models trained with 
prerequisite courses, non-prerequisite courses, and all 
courses.2 Prerequisites outperform non-prequisite courses at 
all points in the academic career after the first course. The 
performance difference ranges from –0.1% to 10.7%. 
Notably, prerequisite courses outperform models trained 
with all courses later in the academic career.

RQ3: Representation Matters

Our third research question addresses the relative utility 
of different course representations for the task of major fore-
casting. We explore model performance with respect to dif-
ferent representations of the data via one-hot encoding, 
subject dummies, term embedding, and academic-career 
embedding in Figure 5. The x-axis plots the number of 
courses that each student took before the model was trained 
and analyzed. The y-axis plots overall forecast accuracy 
aggregated across all categories. The dashed line plots the 
performance by random guessing. Model performance is 
consistent with our contention that academic-career embed-
ding would outperform term embedding and one-hot encod-
ing. One-hot encoding performs substantially worse than an 
embedded representation of courses, at best generating just 
under 48% accuracy for 40 courses. One-hot encoding also 
exhibits decreasing performance as the number of courses 
increases beyond 40, indicating—however counterintui-
tively—that using more course history to forecast majors 

does not necessarily improve model accuracy. We do not see 
this same phenomenon with either the embedded representa-
tions or subject dummies.

Academic-career embeddings have between 6% and 90% 
greater accuracy than one-hot encoding. The gains from 
switching from term to academic-career embedding are less 
dramatic, with academic-career embedding improving accu-
racy by 1% to 10% relative to term embedding. Although 
comparably small, these differences become statistically sig-
nificant by the time students have taken their fifth course. 
Using an exact-binomial paired test between academic-
career and academic-term embeddings at the fifth course, we 
find an associated p-value of 0.046.

The simplest approach, using subject dummies, performs 
somewhere in the middle between these two extremes. 
Subject dummies perform somewhat more poorly than 
embedded representation early in the academic career but 
reach parity with embedded representation once the model 
learns approximately 40 courses.

We also explore how model performance varies across 
academic domains. Are these forecasting techniques more 
and less accurate in engineering, the natural sciences, the 
social sciences, and arts/humanities? To investigate this 
question, we plot the performance of term- and academic-
career embeddings in Figure 6. We find that engineering and 
natural sciences are much easier to classify early in aca-
demic careers relative to social sciences and arts/humanities. 
Academic-career embeddings are the strongest performers 
across all four domains. Striking is that career embedding 
seems to exhibit the strongest relative gains for arts/

FIGURE 4. Model accuracy, by course type.
Note. Each line corresponds to models trained by using one-hot encodings and 
a subset of courses based on prerequisite type. Accuracy metrics are computed 
solely on the test set. See the online article for the color version of this figure.

FIGURE 5. Model accuracy, by representation type.
Note. Each line corresponds to models trained by using distinct strategies of 
representing course history. Accuracy metrics are computed solely on the 
test set. See the online article for the color version of this figure. 
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humanities majors, for whom progressing through a major is 
typically thought to be less structured or linear. The gains of 
career-embedded representation for this category range from 
2 to more than 30 percentage points. These findings lend 
credence to the notion that choice of representation can have 
a substantial cumulative effect on the major forecasting task.

We speculate that career embeddings outperform at this 
task for arts/humanities majors because many students take 
courses in this domain to satisfy general-education require-
ments. Arts/humanities courses have high co-occurrence 
with many other courses across disciplines, particularly 
early in academic careers. By measuring co-occurrence on a 
longer time horizon, career embeddings are likely better able 
to distinguish course taking for general-education require-
ments from course taking for major completion.

Subject dummies tend to perform more poorly than career 
embeddings across the four academic domains. One-hot 
encoded representation performed the worst in arts/humani-
ties, where it had an accuracy rate of zero for many of the 
points we evaluated in academic time.

RQ4: Model Accuracy Across Academic Time

To assess the performance of models at different points of 
significance in a student’s academic career, we present accu-
racy rates for the 26 major categories of our test set, based on 
models trained with our academic-career embeddings (see 
Table 6). We chose points roughly corresponding to the end 
of the first academic term (five courses), the end of the first 
academic year (15 courses), and the end of the second aca-
demic year, when majors are typically declared (30 courses). 
We see in our test set that by the end of the first term, only 
three majors perform at or below levels of a stratified ran-
dom guesser. Each of these majors (American studies, math-
ematical and computational sciences, and public policy) has 
an interdisciplinary focus and comprises at most 2.5% of the 
overall student population at our case school. At the end of 
the first year, models for all majors strongly outperform the 
random-guessing baseline.

In fact, we see an interesting pattern across academic 
domains: Predicting majors that straddle conceptual areas 
proves most challenging. The majors mathematics and 
computation science (MATCS), symbolic systems 
(SYMBO), public policy (PUBPO), and American studies 
(AMSTU) are poorly predicted on the basis of courses 
completed in the first term. It may be that those students 
who end up in “hybrid” majors spanning multiple aca-
demic domains take required and introductory-level 
courses in more stochastic sequences across their aca-
demic careers.

Error Analysis: Variation in the Similarity of Courses 
Within Majors

Our work thus far has demonstrated that NLP techniques 
can be powerful tools for forecasting undergraduate major 
on the basis of courses taken early in the academic career. In 
a manner analogous to computational “reading” of word 
sequences in linguistic utterances, NLP models trained on 
the course sequences of prior students can be used to fore-
cast the ultimate majors of subsequent students. Yet it also is 
the case that course sequences leading to majors vary across 
academic domains. To extend the analogy with language, we 
might imagine that majors may have different “grammars” 
or required sequence structures. For example, some majors 
may oblige students to complete sequences of specific 
courses, while other majors may instead require selections 
from menus of course offerings. For this reason, efforts to 
forecast majors would be well served by observing for varia-
tion in the composition (or “grammar”) of majors within a 
given institution.

To do this for our case school, we use the one-hot encoded 
representation of courses and compute Jaccardian similarity 
between students’ course histories. Jaccardian similarity is a 
measure of the intersection over the union of two sets. As  

FIGURE 6. Major classification accuracy, by academic domain.
Note. Each pane corresponds to an academic domain/discipline. Each line 
corresponds to models trained by using distinct strategies of representing 
course history. Accuracy metrics are computed solely on the test set. See 
the online article for the color version of this figure. 
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a toy example, consider two students who each took three 
courses. Student A  took { 1, 106 , 51}ECON CS A MATH . 
Student B  took { 101, 10, 51}ENGLISH PHYSICS MATH . 

In total, these two course schedules comprise five distinct 
courses and share one course in common. In this example, 
Jaccardian similarity is

              
| |

| |
=

|{ 51}|

|{ 1, 106 , 51, 101,

A B

A B

MATH

ECON CS A MATH ENGLISH PHYS

∩
∪ IICS10}|

=
1

5  (3)

We deploy this technique across our entire data corpus, 
computing pairwise Jaccardian similarity between all stu-
dents’ course histories and then averaging them within and 
across major by academic domain. Findings indicate that, on 
average, students in the same major experience relatively 
little of the same academic curriculum (see Figure 7). 
Chemical-engineering majors exhibit the most similarity, on 
average having an overlap of approximately one in four 
courses with other students in that major on their final aca-
demic transcripts. In arts/humanities, history exhibits the 
least self-similarity: On average, a student who graduates 
with a history major has at most one or two courses in com-
mon with others pursuing history majors during the same 
20-year period.

Several mechanisms might account for why Western’s 
students exhibit such low course similarity within majors. 
First, this university has a very large course catalog, which 
means that many courses may satisfy the major require-
ments. Second, courses may be renamed or reclassified over 
time, such that comparing students across a 20-year period 
may erode forecasting accuracy. Third, our findings are con-
sistent with the notion that majors at Western may have few 
explicitly required courses in comparison with other schools. 
Students may have substantial discretion in course selection 
generally, even while the extent of this discretion varies 
across majors.

To inform the understanding of the relatively high perfor-
mance of embedded representation of courses, we plot the 
T-SNE representation of career-embedded academic history 
upon a student’s graduation (see Figure 8). T-SNE is a 
dimension-reduction algorithm that preserves physical 
closeness between points (Van der Maaten & Hinton, 2008). 
Each point in the plot corresponds to a student and their aca-
demic history. Although the x- and y-axes should not be 
interpreted, points that are close in space on the reduced plot 
can be considered close in space in the higher dimensional 
space. In each facet, we plot each student’s academic career 
embedding as represented by the T-SNE algorithm. Through 
this representation, we see well-defined clusters of majors, 
as instrumented by their shared course enrollments. Courses 
cluster into clear domains of engineering, social sciences, 
natural sciences, and arts/humanities. We also observe that 
conceptually similar topics are found where boundaries are 
ambiguous. For example, political science and international 
relations are entangled. Perhaps the most surprising finding 

is that students who have identical or near-identical embed-
ded representations can have different majors. For example, 
a political-science major and an international-relations 
major may have very similar course histories but select dif-
ferent degrees. Such a representation broadly comports with 
the common imagery of a university as a “city of intellect” 
(Brint, 2002; Kerr, 2001; Pardos & Nam, 2020), with differ-
ent precincts of scholars and students sharing common con-
cerns and activities that overlap at the borders between 
precincts.

These error analyses complement our earlier inquiries: 
They suggest that part of the reason one-hot encoding is a 
weaker technique for forecasting majors is that it cannot 
capture variability in the courses that might compose majors. 
Few majors at our case school do not offer multiple sequences 
through even their most commonly enrolled courses. The 
high dimensionality of this search space, together with the 
large number of infrequently enrolled courses, make hyper-
parameter tuning difficult. Although we used the same sets 
of hyperparameters in our embedded and one-hot encoded 
results, additional hyperparameter tuning could close only 
some of the gap between the different representations of 
course history.

Discussion and Future Work

Elective curricula offer the benefit of choice and flexibil-
ity, but these benefits come with potentially costly uncer-
tainty for students, advisors, and administrators. The work 
presented here illustrates that newly ubiquitous computa-
tional techniques can be used to produce insight about cur-
rent students’ academic pathways through concise 
observation of the course selections of prior students. 
Borrowing tools honed to observe patterns of sequences of 
words in large corpora of linguistic texts, we found that early 
course selections can be powerful tools for forecasting sub-
sequent major issuances. Even a single course—specifically, 
the very first course a student selects for registration—car-
ries signals about eventual major issuance, while courses 
taken in the first academic term can be leveraged to forecast 
eventual major with 32.0% percent accuracy.

There are at least two potential explanatory mechanisms 
for these findings. The first is that students’ academic prefer-
ences are substantially set by the time they arrive at college. 
The second is that early college courses initiate path 
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dependencies that substantially influence major choice. 
These explanations are not exclusive; indeed, prior work on 
academic pathways suggests some combination of these 
processes (Chambliss & Takacs, 2014; Page & Scott-
Clayton, 2016; San Pedro et al., 2014). Regardless of the 
mechanism, our findings suggest that students, advisors, and 
academic administrators working in schools with elective 
curricula should take students’ initial course selections very 
seriously. Whether the concern is the extent to which stu-
dents “funnel” toward a small number of popular majors 
(Binder et al., 2016) or the best allocation of scarce instruc-
tional resources 1 or 2 years down the line, early course 
selections are informative data points.

An important empirical limitation of our work—and, 
indeed, any inquiries relying solely on administrative data—
is that it cannot capture how students make sense of the tasks 
of considering, choosing, and sequencing courses and decid-
ing on major fields of study. An ideal next step would be to 
link information derived from transcripts with qualitative 
methods (interviews, open-ended surveys, or focus groups, 
for example) designed to capture how students think about 
their course and major selections in situ, over time. We are 
happy to report that work in this vein is already underway 
(Harrison et al., 2022).

Although the work presented here is a case study of stu-
dents in a single school, it provides compelling evidence that 

TABLE 6
Major accuracy over time

Major Domain 1st term (%) 1st year (%) 2nd year (%) Guesser (%) n

CHEME Engineering 11.8 52.9 85.3 0.02 34
CS Engineering 62.4 72.5 90.2 0.90 255
EE Engineering 18.3 63.4 90.1 0.07 71
ENGR Engineering 5.8 25.4 57.2 0.26 138
MATCS Engineering 0.0 17.1 41.5 0.02 41
ME Engineering 30.2 52.8 84.9 0.16 106
MGTSC Engineering 8.3 43.8 89.6 0.13 96
SYMBO Engineering 1.4 30.4 76.8 0.07 69
Subtotal Engineering 27.8 50.5 80.0 0.38 810
BIO Natural science 18.6 40.2 76.3 0.13 97
BIOL Natural science 39.5 67.4 86.0 0.10 86
CHEM Natural science 3.1 25.0 81.2 0.01 32
EASYS Natural science 18.4 42.1 81.6 0.02 38
HUMBI Natural science 55.2 69.3 93.8 0.80 241
MATH Natural science 40.4 44.2 67.3 0.04 52
PHYS Natural science 50.0 58.3 77.8 0.02 36
Subtotal Natural science 39.9 57.0 84.9 0.38 582
ECON Social science 46.8 63.3 87.8 0.49 188
INTLR Social science 17.0 40.0 74.8 0.25 135
POLSC Social science 18.9 36.7 75.6 0.11 90
PSYCH Social science 12.1 38.3 80.4 0.16 107
PUBPO Social science 0.0 15.8 65.8 0.02 38
Subtotal Social science 25.3 45.3 79.7 0.28 558
AMSTU Arts and humanities 0.0 9.4 62.5 0.01 32
COMMU Arts and humanities 7.0 41.9 81.4 0.03 43
ENGL Arts and humanities 10.8 44.1 82.4 0.14 102
HSTRY Arts and humanities 14.3 39.3 78.6 0.10 84
STS Arts and humanities 25.3 31.6 59.5 0.09 79
Subtotal Arts and humanities 13.5 36.5 74.1 0.09 340
Other 54.1 59.1 73.7 2.20 399
Total 32.0 50.4 79.3 0.59 2689

Note. Each row corresponds to forecasting accuracy for each major by using just the career-embedded representation and a number of courses that correspond 
roughly to the end of the first academic term (five courses), the end of the first academic year (15 courses), and the end of the second academic year (30 
courses). Guesser corresponds to a stratified random-guessing strategy. This table only corresponds to performance on the test set.
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academic transcripts can yield useful insights for students, 
academic advisors, and administrators. Students may have 
little understanding of the path dependencies they might be 
setting in motion when selecting courses early in their aca-
demic careers. Students may not appropriately weigh the 
signals or appreciate that sparsely offered courses and pre-
requisite-laden majors can exclude entire academic paths 
(Slim et al., 2014; Thompson, 2021). Software applications 
deploying data and analytic techniques such as those pre-
sented here could help students see the potential conse-
quences of early course choices and encourage them to be 

more purposeful in their consideration of each course. 
Academic advisors might use this information to caution 
students about the potential narrowing or foreclosing of aca-
demic options as their selections accumulate. Administrators 
might use these same forecasts to inform the allocation of 
scarce instructional resources across programs.

As these technologies are incorporated into administra-
tive practices in higher education, several practical and ethi-
cal considerations should be noted. First, it will be important 
to understand the extent to which algorithms such as those 
developed here perform relative to human advisors, who 
almost surely rely on their own experiences and local heuris-
tics to make predictions about trajectories into majors. 
Second, we have presented models that have varying levels 
of interpretability and scrutability. The extent to which stu-
dents and administrators trust each type of model warrants 
future study (Kizilcec, 2016). Finally, to the extent that aca-
demic exploration and discovery are fundamentally human 
endeavors, it is worth considering how novel computational 
technologies can augment—not replace—the work of human 
advisors in guiding students on their academic paths (Snyder 
et al., 2022).

We recognize that our case school is, in many ways, an 
outlier in the national postsecondary ecology. It is a residen-
tial campus with a very high graduation rate, and most of its 
students remain continuously enrolled full-time from entry 
to graduation. These students are presented a plethora of 
courses to choose from and have very few constraints on 
their choices. At the same time, Western’s peculiarities make 
it a good site for an initial case study of major forecasting: 
The complexity of Western’s curriculum, coupled with the 
relative similarity in how its students transit from entry to 
graduation, makes it amenable to assessing the general via-
bility of this approach to modeling academic paths to majors. 
We encourage replication of our general analytic strategy 
across a variety of schools with different curricular struc-
tures and characteristic undergraduate careers.

Our study of the comparative composition of majors also 
raises interesting questions about the character and meaning 
of the declared major itself as a representation of course his-
tory. Similarity analyses indicate—at least at our case 
school—that a declared major provides relatively little 
information about any given student’s specific course his-
tory. Even in majors exhibiting the most similar course com-
positions, students have less than a quarter of their courses in 
common. Further, the great extent to which students with 
similar course histories can commit to different majors sug-
gests that course choices and major choices may be decou-
pled—that is, students may choose majors for reasons other 
than the portfolios of coursework they imply. In any case, we 
hope that our finding spurs more research on major compo-
sition across institutions and over time. Given sufficiently 
granular transcript data, researchers might potentially 
decompose the earning power of a degree between its 

FIGURE 7. Jaccardian similarity of majors, by domain.
Note. Each cell in the figure computes the Jaccardian similarity across all 
possible pairs of students within each corresponding major. The right-most 
cell of each row corresponds to the average similarity of each student within 
its own major. See the online article for the color version of this figure.
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signaling value and its human-capital contributions (Arteaga, 
2018; Spence, 1973). Historical analysis of course-transcript 
data might provide additional insight into the college-wage 
premium and skill-biased technological change over the past 
several decades (Goldin & Katz, 2007).

We have pursued this work as a first step toward develop-
ing a portfolio of computational tools for modeling under-
graduate academic careers. Although illuminating, the 
methods we have used here cannot capture the temporal 
character of student decision-making. An important next 

step in this work would be to augment our machine-learning 
algorithm with some form of sequential modeling, such as 
recurrent neural networks. Such techniques would enable 
researchers to incorporate additional features of undergradu-
ate careers, such as major-switching. Future work should 
also incorporate student demographic data and course grades 
to better capture the complexity of student decision-making 
(Carrell et al., 2010; Harrison et al., 2022; Owen, 2010).

Finally, we see great promise in using NLP and neural-
network models in tandem with other technical methods to 
describe academic pathways. Others have found valuable 
affordances with network analysis to describe the relation-
ships between major requirements (Baker & Huntington-
Klein, 2018; Slim et al., 2014) and between students via 
co-enrollments (Weeden & Cornwell, 2020). Developing a 
comparative applied science of undergraduate academic 
careers may enable researchers and academic advisors to 
formulate alternative representations of curricula that are 
more navigable, reducing the cognitive load of course selec-
tion and perhaps also time to degree (Alkaoud & Pardos, 
2019). Given the wage premiums associated with college 
completion, pressures to reduce college costs, and a growing 
interest in alternatives to college, ongoing efforts to leverage 
insight from ubiquitous academic data are work worth doing.
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Notes

1. Data from 2020 overwhelmingly contain course selections 
made before the case university made administrative responses to 
the COVID-19 pandemic in March of that year.

2. In examining the differences of prediction power from using 
prerequisite versus unrelated courses, we worry that the use of 
an embedded representation may unintentionally leak data about 
students’ course history across prerequisite and non-prerequisite 
course sets. As such, we use one-hot encoding for this analysis.

FIGURE 8. T-SNE plot of majors, by domain.
Note. Each point corresponds to the embedded representation of a student’s 
academic history at the end of their academic career. Each point is colored 
to correspond to the student’s terminal major. See the online article for the 
color version of this figure.
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