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The future workforce requires a new core set of skills 
because of today’s rapid changes in innovation and technol-
ogy. K–12 education should equip students to acquire these 
skills for the challenges they will face (National Research 
Council, 2010). One of these skills is computational thinking 
(CT). In recent years, multiple stakeholders have made 
efforts to integrate CT into K–12 education (e.g., science, 
technology, engineering, and mathematics plus computing; 
STEM+C program offered by National Science Foundation, 
2018). A report released by the National Science and 
Technology Council (2018) described the federal govern-
ment’s 5-year strategic plan for STEM education, which 
includes a clear focus on CT development. One of the docu-
ment’s key ideas is that CT should be an integral element of 
all educational activities, with the goal of building “a more 
STEM-literate public” (p. 24).

Considerable empirical research has examined the ways 
of bringing CT strategies to all educational activities. These 
inquiries into CT have been centered around (1) how to 
best prepare future educators in CT awareness (e.g., 
Uzumcu & Bay, 2021) and (2) the integration of CT across 
various specific content areas. For example, a taxonomy of 
CT competencies in math and science was implemented in 
high schools to enhance science learning (Weintrop et al., 
2016). An agent-based computer instructional tool was 

designed with the aim of integrating CT through simulation 
in middle schools’ physics and biology classes (Sengupta 
et al., 2013).

Many studies have concluded that computer science (CS) 
instruction or technology classes (e.g., robot-related pro-
gramming instruction) should be deliberately structured in a 
way that CT is fostered. Although students may acquire CT 
strategies while creating digital artifacts, they may be more 
likely to do so when those design products are outcomes of 
a developed CT curriculum. Favorable CT learning out-
comes have been reported in various settings, including 
after-school CS programs (Mouza et al., 2016) and the use of 
simulation instructional units in the middle school class-
rooms (Berland & Wilensky, 2015).

As outlined above, K–12 education is expected to provide 
students opportunities, through tasks, to think computation-
ally. To advance CT education, researchers (e.g., Hsu et al., 
2018) have advocated that instruction and assessment should 
inform each other to enhance students’ learning experiences. 
Within this scope, one of the crucial aspects is establishing a 
CT assessment framework. As Bonner et  al. (2021) have 
pointed out, “while a number of conceptually based curricula 
that draw on CT concepts have been developed and are now 
being taught in schools in the United States, the assessment 
of CT is still in its infancy” (p. 27).
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In this present research, we introduce a computational 
thinking competency assessment (CTCA) for middle school 
students. The goal is that the results can be used diagnosti-
cally by teachers as a pretest and, perhaps in the future, to 
compare the outcomes of CT instructional programs. The 
results also inform an initial understanding of typical learn-
ing progressions in CT at the middle school level.

The remainder of this paper is structured as follows: first, 
we summarize existing assessments in CT literature. Second, 
we describe the design features of the CTCA, response data 
from which are intended to be analyzed using cognitive 
diagnostic modeling (CDM; e.g., Deonovic et  al., 2019). 
Third, we present the design process for the CTCA in detail, 
such as item development and revisions. Finally, we evalu-
ate the psychometric properties of the assessment, based on 
students’ response data. This research will allow us to pro-
vide initial evidence regarding the question:

What is the learning progression of CT competency among 
middle school students?

Existing Assessments in Computational Thinking

Existing instruments to measure K–12 students’ CT 
reflect the diverse range of instructional approaches imple-
mented. Two main perspectives about CT development have 
emerged in the literature (e.g., Kite et al., 2021; Huang & 
Looi, 2021): (1) the context of programming instruction may 
foster CT development, but (2) it is also feasible to develop 
real-world problem-solving tasks that do not require stu-
dents to possess any prior ability to produce digital artifacts. 
We review first assessment instruments that involve pro-
gramming, followed by instruments that can be used outside 
of programming instruction contexts.

Brennan and Resnick (2012) proposed what is arguably 
the first CT assessment framework for young learners 
(between the ages of 8 and 16). They used Scratch (https://
scratch.mit.edu/), a block-based programming language. 
Using observations and digital artifacts–based interviews, 
the authors extracted three strands to represent students’ CT. 
The strands consist of (1) CT concepts (e.g., loops) that are 
common in many programming languages; (2) CT practices, 
or how students engage the CT concepts to create the digital 
artifacts; and (3) CT perspectives, or how young computa-
tional thinkers view the world around them.

Inspired by Brennan and Resnick’s work, Zhong et  al. 
(2016) further refined these three strands and proposed a 
Three-Dimensional Integrated Assessment (TDIA) frame-
work for the 3D Alice environment (www.alice.org). The 
TDIA contained six tasks generated from two categories: 
code completion, in which fifth and sixth graders were given 
an incomplete code, and error correction, in which a 3D 
interface was provided with a storytelling scenario (e.g., rab-
bits in the garden). Another assessment of CT in the 3D 

Alice environment, the Fairy Assessment by Werner et  al. 
(2012), gives middle school learners incomplete blocks of 
code to complete. As part of the computer game program-
ming instruction, the Fairy Assessment assesses thinking 
algorithmically, as well as making effective use of abstrac-
tion and modeling. Both of these assessments require stu-
dents to have received prior instruction in Alice 
programming.

An assessment designed by Bonner et  al. (2021) is 
intended to support self-regulated learning, which highlights 
the metacognitive aspects of CT competency. The assess-
ment contains: (1) a series of forethought questions (10 
items); (2) CT performance tasks that require students to 
produce digital artifacts based on a Fish Game or Clicker 
Game that were adapted from learning units in the Advanced 
Placement CS Principles curriculum (Code.org); and (3) a 
series of reflection questions (12 items). The CT perfor-
mance tasks are aligned with the CT concepts proposed by 
Brennan and Resnick (2012).

The empirical studies mentioned previously offer a vari-
ety of contexts to assess CT. They also require rubrics to 
score students’ work. In contrast, some researchers have 
developed multiple-choice items. The advantage of multi-
ple-choice items is their ease and the availability of quick 
scoring methods. Román-González et al. (2017) developed a 
CT test consisting of 28 multiple-choice items for students 
from Grade 5 to Grade 10. The items were generated from 
seven CT competencies (e.g., loops-repeat until). The psy-
chometric analysis of the students’ response data showed 
that the internal consistency reliability of total scores from 
the instrument is strong.

Buffum et  al. (2015) developed Computer Science 
Knowledge Assessments for middle school students. The 
assessment aimed to measure the effectiveness of a CS edu-
cation intervention in the ENGAGE game-based learning 
environment. The authors developed a set of multiple-choice 
items with a reasonable testing time suitable for middle 
school classrooms and piloted them with a representative 
sample of students. The assessment was aligned with AP CS 
Principles Draft Curriculum Framework. The content of 
items includes, for example, sequencing and iteration.

The programming context (e.g., block-based language 
programming) is a feasible context for assessing students’ 
CT. However, recent policy documents call for CT to be 
integrated across school subjects, including subjects in 
which programming instruction may not be suitable; even in 
programming instruction contexts, a pretest is needed before 
students learn any formal computational knowledge (e.g., 
Lu & Fletcher, 2009; Kite et  al., 2021). Thus, another CT 
assessment development perspective in the literature is cen-
tered around using other real-world applications as contexts 
in which to assess CT. For example, recently Tran (2019) 
developed a Computational Thinking Assessment for stu-
dents in Grade 3. The assessment contains 10 items (e.g., fill 

https://scratch.mit.edu/
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in the blank), which were written to measure five computa-
tional concepts—sequence, algorithm, looping, debugging, 
and conditionals—and that rely on real-world applications 
such as exercising at the gym.

Another CT assessment that does not require pre-knowl-
edge of programming is Gouws et al.’s (2013) assessment 
developed for first-year college students in an introductory 
CS course. They explicitly aimed to “assess the raw skills 
that students possess before they have learned anything as 
part of the formal academic course” (p. 273). The test mea-
sures six areas such as patterns and algorithms. The test 
contains 25 real-world application items (e.g., frog jumps) 
that can be objectively scored. As the pioneer work in assess-
ing CT, this work highlighted the use of a CT test before 
students learn any programming knowledge.

Relatedly, a number of authors have developed assess-
ment instruments containing modified Bebras tasks. Bebras 
tasks were originally developed in Europe as a style of inter-
national competition to spur students’ interest in informatics 
(Dagienė & Futschek, 2008; Vaníček, 2014). The tasks  
are embedded in a storytelling context (e.g., a beaver  
controls a grid of lamps). Dagiene et al. (2017) categorized 
Bebras tasks with the intention of supporting either curricu-
lum teaching or practice for the Bebras contest. They also 
defined CT as (1) abstraction, (2) algorithmic thinking, (3) 
decomposition, (4) evaluation, and (5) generalization. 
Solving the tasks does not require that students possess any 
programming knowledge. Although Bebras tasks are prom-
ising as a mode of CT assessment, because they were not 
originally intended for formal assessment, the tasks’ early 
documentation did not provide information about how stu-
dent response data supports the scores’ meaning. Thus, 
scholars designing assessments based on Bebras tasks have 
had to collect validity evidence to support their use in assess-
ing CT competency (work that is ongoing).

One assessment being developed based on Bebras tasks, 
the Assessment of Computing for Elementary Students 
(ACES; Parker et al., 2021), measures the CT concepts of 
loops and sequences for students in Grades 3–5. The ACES 
contains 10 questions, including both block-based coding 
questions and Bebras-style questions. Wiebe et  al. (2019) 
also developed a CT assessment for middle school students 
using Bebras tasks. The 25 multiple-choice items were 
developed from both Bebras tasks and the CT test (devel-
oped by Román-González et  al., 2017, mentioned previ-
ously). The authors explicitly acknowledged that the Bebras 
tasks were designed for competition, not for assessment, and 
validity evidence should therefore be collected. Thus, they 
collected students’ response data and used item response 
theory (IRT) models to assess the dimensionality of the data 
and support score interpretation.

As the literature discussed previously shows, the content 
framework and design principles adopted in CT competency 
assessment vary considerably. The weight of validity 

evidence supporting existing assessment instruments also 
varies. Some existing assessments are appropriate for use 
across instructional contexts, particularly when program-
ming is not a goal of instruction, and some can be objec-
tively (and therefore rapidly) scored. The limitations of all 
the existing assessment instruments are that (1) they yield 
only total scores, and (2) they do not report sufficient well-
established psychometric properties (e.g., model-data fit 
statistics).

Our CTCA brings together a content framework drawing 
on the CT literature, a scoring system based on CDM, and 
associated explicit score interpretations about multiple dis-
crete attributes, or cognitive skills, of CT. Our goal is that 
data from the assessment could be used to inform theory 
about students’ learning progressions in CT across develop-
mental stages, to evaluate CT instructional interventions, 
and to assess classrooms by the teachers. Although it might 
be possible to analyze item response data from existing CT 
assessments using CDMs, the psychometric problems of 
“retrofitting” CDMs to data from assessments that were not 
designed to be scored using these methods are well known 
(e.g., de la Torre & Karelitz, 2009), so developing a new 
assessment that was intended from the beginning to provide 
fine-grained diagnostic scores seemed prudent.

Design Process

The design of the CTCA follows the most recent Standards 
for Educational and Psychological Testing, jointly published 
by the American Educational Research Association, 
American Psychological Association, and National Council 
on Measurement in Education (hereafter, the Standards; 
American Educational Research Association [AERA], 
American Psychological Association [APA], & National 
Council on Measurement in Education [NCME], 2014). In 
order to design a coherent assessment, multiple design deci-
sions should be explicitly articulated. In assessment design 
language, the argument-based approach to validation (Kane, 
2013) refers to “the proposed score interpretations and uses 
that are validated” (p. 1).

Domain Analysis

During domain analysis, assessment developers make 
decisions about how to obtain substantive information 
within the performance or content domain of interest 
(Mislevy & Riconscente, 2015; Pellegrino et  al., 2016). 
Although previous research has explored characteristics of 
CT relating to communication, collaboration, and participa-
tion, we adopted the CT definition proposed by Barr and 
Stephenson (2011). Namely, CT is a series of mental opera-
tions used to solve a problem, so that the problem may be 
automated on a computer. This definition is also used in the 
national standards published by the Computer Science 
Teacher Association (CSTA; 2011). We specified that the 
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assessment should be usable across school subject areas and 
should not require previous programming instruction.

Assessment developers must collaborate with subject-
matter experts (SMEs) to identify the information that can 
be used for assessment design (Mislevy & Riconscente, 
2015). During the domain analysis, domain modeling, and 
Q-matrix validation phases of this study, three panel reviews 
were conducted to collect input from SMEs. The Q-matrix 
is an alignment table between the attributes and the items. 
Each panel review meeting with SMEs was in person and 
lasted about 60 minutes. The SMEs were two middle school 
teachers who had experiences in CT education and two aca-
demic researchers who had expertise in CT as well as CS.

National or state standards reflect what students should 
know and be able to do at certain grade level(s). To delineate 
an assessment content framework for the CTCA, in order to 
identify learning goals for students at middle school grades, 
the assessment design started by examining a performance 
objectives document. The CSTA K–12 Computer Science 
Standards (2011) were used because empirical research on 
CT conducted in K–12 has often used those standards as the 
starting point in characterizing the curriculum or assessment 
(e.g., Tran, 2019; Chen et al., 2017).

The standards have three levels in each of five strands. The 
CTCA is developed to measure Level 2 (i.e., middle school 
level) in the computational thinking strand, which contains 15 
standard statements. Among the 15 statements, 9 of them 
require either (1) the use of a computer (e.g., “Analyze the 
degree to which a computer model accurately represents the 
real world”), or (2) the integration of CT in other content areas 
(e.g., “Interact with content-specific models and simulations to 
support learning and research”). These nine statements were 
not considered in the CTCA design because they were not 
aligned with the design decisions made previously.

The next design decision was: Among the remaining six 
standard statements, which ones should be selected to guide 
the next design activities (e.g., item development) for the 
CTCA? It would have been possible to use all six standard 
statements. However, covering more standards statements 
would have required more assessment items. Considering the 
tradeoff between ensuring a reasonable testing time and admin-
istering a comprehensive test, three standard statements were 
selected to be further structured into claims, as shown below:

Claim 1: Students are able to use visual representations 
of problem state, structures, and data.

Claim 2: Students are able to describe and analyze a 
sequence of instructions being followed.

Claim 3: Students are able to examine connections between 
elements of mathematics and computer science, includ-
ing binary numbers, logic, sets, and functions.

In an achievement test design, a claim about score inter-
pretation typically reflects students’ standing with respect to 

specific learning standards that have been put forth (Kane, 
2013). For example, one possible claim in math is that 
“Students are able to identify when two expressions are 
equivalent” (e.g., x + x + x = 3x). The score interpretation, 
therefore, involves claims about students’ fluency in alge-
braic manipulation. In an argument-based approach to vali-
dation (Kane), such claims connect what is valued in 
instruction (or standards), what the items are designed to 
elicit, and what their scores on the assessment represent.

Domain Modeling

Next, a domain modeling design activity was carried out. 
The purpose was to examine how each claim should be 
unfolded (Pellegrino & Wilson, 2015). Claims cannot be 
directly used to guide the item development. At the end of 
this design activity, a set of fine-grained testable elements 
(categories) were extracted from the claims. Each testable 
element was then treated as a latent attribute of CT compe-
tency. A CT model of domain mastery consists of these attri-
butes, labeled below as A1, A2, and A3:

A1: Students are able to identify the underlying corre-
sponding pattern (e.g., trend or relation) in a given 
stimulus material. The material can include graphs, 
letters of the alphabet, or maps.

A2: Students are able to execute steps in an algorithm. 
That is, a series of ordered steps is given in an algo-
rithm in order to generate its output, in which none of 
the steps can be skipped.

A3: Students are able to evaluate variables in an algo-
rithm by examining the predefined conditions.

These three attributes were extracted based on the exist-
ing literature. For A1, we used the ideas provided by Gouws 
et al. (2013), Selby (2015), and Hsu et al. (2018). Attribute 
A2 was inspired by Looi et al. (2018), Wolz et al. (2011), and 
Rich et al. (2020). For the third attribute (A3), we used the 
ideas provided by Threekunprapa and Yasri (2020a, 2020b) 
and Kotsopoulos et al. (2017).

The first round of panel review was conducted. The 
SMEs reviewed the summary of the literature, and three 
selected standard statements. They agreed that the selected 
standard statements can represent the domain of CT for  
the sake of content coverage. The SMEs also expressed con-
sensus agreement that the extracted testable elements could 
be used to guide the development of item prototypes.

The Intended Cognitive Diagnostic Scoring Model

After identifying testable elements of the CT perfor-
mance domain, and before writing items, we decided on an 
intended statistical model for generating summary scores 
from students’ assessment item responses. Traditional one-
dimensional IRT models locate a student’s ability on a latent 



Assessment of Computational Thinking

5

continuous scale. The model estimates a single score to rep-
resent each student’s ability on the construct measured by an 
assessment, the latent variable score, denoted as θi . In con-
trast, in “cognitive diagnostic” latent class models, a vector 
is estimated to represent the profile of mastery scores or 
mastered attributes for each student (Gierl, 2007). 
Specifically, the CDM estimates a vector of zeros and ones 
to express a student’s mastery status on each of a set of latent 
attributes—here, aspects of CT.

In CDMs, an attribute simply describes an identified 
thinking skill or knowledge state in educational assess-
ment. In a simple algebra example, shown in Table 1, 
these attributes are addition, subtraction, multiplication, 
and division. To operationalize latent attributes in assess-
ment design, a CDM assessment requires the implementa-
tion of a “Q-matrix,” a formal cognitive model to describe 
the qualitative relationship among items (Haberman & 
von Davier, 2006). A Q-matrix has J rows and K columns, 
corresponding to the numbers of items and attributes, 
respectively. The jk element is one (i.e., qik =1)  if the  
kth attribute is necessary to be mastered for answering the 
jth item correctly. By the time that students’ response data 
are ready to be analyzed, the Q-matrix should be rela-
tively sound. Table 1 is the Q-matrix; it specifies the attri-
butes that are hypothesized to be needed for solving each 
item.

In the CDM, each student’s performance is decomposed 
into k attributes, so their scores are estimated as a vector ααi  
= { , , , },α α αi i ik1 2 … . Correspondingly, the estimated profile 
of mastery scores for a student, which we also refer to as 
subscores, serve as diagnostic information about this stu-
dent’s mastery status on four predefined attributes (shown in 
Table 1). If a student’s subscores are [1101], it indicates this 
student’s mastery status on Addition, Subtraction, Division 
are in good standing, but the student will need to practice 
more in order to master Multiplication.

To estimate the profile scores, more than 10 different para-
metric scoring models have been proposed (von Davier, 2019). 
The deterministic inputs, noisy “and” gate (DINA; Junker & 
Sijtsma, 2001) model is used in this research. The DINA model 
is a conjunctive model, meaning that students must possess all 
the attributes required by an item j in order to maximize their 
probability of getting a correct answer. A student’s latent 
response ηij  is a deterministic term through Equation 1:

ηij ik
q

k
K ik= ∏ = α1 .

	
(1)

If ηij  = 1, it means that student i possesses all the 
required attributes for item j. If ηij  = 0, student i has one or 
more attributes missing for successfully solving item j.

Since the CTCA assessment items are multiple-choice 
items, a student may guess an item response correctly absent 
the required attributes (e.g., simply because of luck). 

Alternatively, a student may get an answer wrong when they 
possess all the required attributes for that item. Therefore, 
two item parameters are used to characterize item j in the 
DINA model. The parameter s j  is the probability of “slip-
ping” on the answer, defined as Equation 2:

s yj ij ij= = =( )P  0 1| η
	

(2)

The parameter g j  is the probability of guessing the 
answer, defined as Equation 3:

g yj ij ij= = =( )P 1 0| η 	
(3)

Simply put, the slipping parameter is the probability that 
a student makes a mistake despite possessing all the required 
attributes. The guessing parameter is the probability that a 
student answers an item correctly when one or all required 
attributes are absent. The DINA model then gives the prob-
ability of responding correctly to item j for person i as shown 
in Equation 4:

P y s gij i j j
ij ij=( ) = − −1 1 1| ( ) ( )α η η

	
(4)

We chose the DINA model among other models in the 
CDM because it is parsimonious, with only two item param-
eters that are straightforward to interpret (de la Torre et al., 
2010; de la Torre, 2009). In addition, Paulsen and Valdivia 
(2021) used simulation studies to demonstrate that the DINA 
and non-parametric cognitive diagnosis models have accept-
able classification accuracy when sample size is as small as 25 
test-takers, which might realistically be observed in the class-
room settings where we expect the CTCA to be used. Also, 
several of the parametric CDM scoring models, including the 
DINA model, the log-linear, and G-DINA models, are inter-
related within the General Diagnostic Model (GDM) frame-
work, so the DINA model has a well-understood relationship 
to other possible scoring models (von Davier, 2014, 2019).

Item Prototype Writing

In total, 34 item prototypes were developed based on the 
testable elements and an initial Q-matrix. Figure 1 describes 
the CTCA design methodology. The assessment design 
started from the definition of CT and three selected claims to 
represent CT competency. Moving to the right is synony-
mous with moving from general to specific. Three fine-
grained categories extracted from the literature were used to 
represent how claims are elaborated for assessment design 
purpose. Thus, the formal cognitive structure of CT is a list 
that contains these three discrete attributes. In the third and 
fourth layers, the scoring model (i.e., the DINA model) that 
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is the parametric psychometric modeling and CT compe-
tency are tied together by a Q-matrix.

Subsequently, the second round of panel reviews was 
conducted where the SMEs were required to judge (1) the 
quality of the Q-matrix, that is, the alignment between items 
and attributes, and (2) the quality of the item prototypes. The 
panel’s feedback was as follows: (a) five item prototypes 
should be deleted because the design rationale was not suit-
able for CT, and (b) 10 items should be re-structured. Their 
design rationale was promising for eliciting CT competency, 
but the items needed to be better orchestrated. For illustra-
tion, Table 2 contains two of the problematic item prototypes 
along with the specific comments provided by the SMEs.

After receiving the input from the SMEs, the item proto-
types were revised, and 29 items were assembled for use in 
the next design activity—that is, the cognitive lab protocol.

Cognitive Lab Protocols

The Standards (AERA, APA, & NCME, 2014) clearly 
state that validation processes should include evidence of 
response processes (e.g., verbal data, students’ artifacts). 
Subsequently, this source of validity evidence allows assess-
ment developers to evaluate the extent to which they can 
adequately model students’ response processes. Establishing 
that students were using the expected response processes 
during assessment might support our proposed interpretation 
of the CTCA scores to be generated as measuring mastery of 
specific attributes. In this design activity, the participants 
were 10 middle school students. Five of them were boys; 

five were girls. All spoke English, the language of the 
CTCA, as their first language. The cognitive protocols asked 
students to “think aloud” as they were responding to each 
assessment item. Each interview session was about 70 to 90 
minutes.

The results based on the verbal data and the artifacts pro-
vided by the students during the interviews showed that test-
takers’ response processes were as anticipated for most of the 
item prototypes. Most of the prototypes were able to elicit stu-
dents’ CT. Figure 2, the artifact produced by a student when 
they were solving an item, gives one example of student work.

However, the interview results also indicated that six 
item prototypes should be revised, because the item stem 

contained too much unnecessary information. In addition, 
three items were flagged for deletion because the empirical 
evidence did not confirm the hypothesized mental opera-
tions. Table 3 shows an example of one deleted item.

Item revision was completed based on the results of the 
cognitive interviews. This design activity yielded a version 
of the CTCA with 27 multiple-choice items, which were 
ready to be tried out in a middle school classroom.

Pilot Testing

The first round of data collection with the CTCA, a pilot test, 
had a sample size of 79 students. A second round of data collec-
tion involving more students, and a refined version of the 
instrument, followed; its results are presented in the next sec-
tion. The purpose of the pilot testing was to empirically deter-
mine: (1) the testing time, and (2) any nonfunctioning options 
across all items. The assessment was administered to 79 sev-
enth-grade students in a financial literacy classroom at a middle 
school in the Midwestern United States. The sample contained 
44 male and 35 female students. The classroom teacher moni-
tored the pilot testing. According to the SMEs, the hypothesized 
testing time was 45 minutes for 27 items. According to the 
classroom teacher’s verbal feedback, the actual time used by 
students to complete the items was 40 minutes.

In the CTCA, each multiple-choice item contains one 
correct answer and three distractors (i.e., incorrect options). 
A “nonfunctioning option” means no students chose that dis-
tractor in a given item. By examining the pilot data, all dis-
tractors appeared to be functioning well; namely, every 
distractor on the CTCA was chosen by a certain number of 
students.

It is common practice to shorten a classroom-based 
assessment to make it more suitable for practical use. To 
shorten the instrument, the third round of panel review was 
conducted. Finally, 15 items were selected because the 
SMEs judged that these items possessed the strongest align-
ment to the attributes in CT. In other words, what the items 
were designed to elicit (shown in the Q-matrix) reflected 
what SMEs thought they were measuring. Figure 3 is the 
Q-matrix associated with these 15 items. A cell is marked as 
1 if the attribute was measured by that item, and 0 
otherwise.

Table 1
A Toy Example for the Q-matrix in the CDM

Attribute
Item ID Addition Subtraction Multiply Division

001 19 + 2 – 7 = ? 1 1 0 0
002 10 ÷ 4 = ? 0 0 0 1
003 (6 + 3) × (12 ÷ 3) = ? 1 0 1 1

Note. CDM = cognitive diagnostic modeling.
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Thus, the operational version of the CTCA assessment 
contained 15 multiple-choice items, delivered to students in 
a pencil-and-paper fashion. To prevent fatigue from influ-
encing validation of the Q-matrix, six test forms with differ-
ent item orders were produced. After student response data 
was collected, DINA models were used for item analysis and 
to hypothesize a learning progression for students’ process 
of acquiring aspects of CT.

Results

Sample

A sample of students from two middle schools in two dif-
ferent school districts in the Midwestern United States com-
pleted the items. The percentages of students in the two 
schools who had free or reduced-price lunch plans were 75% 
and 50%, respectively. The assessment was administered at 
the beginning of the school year as a pretest in six class-
rooms: three mathematics, one technology, one English, and 
one CS classroom. None of the students had received instruc-
tion on CS or CT.

Because teachers monitored their students’ test taking as 
well as collecting students’ answer sheets, the data collec-
tion process was constructed to avoid missing data. If a 
teacher found that an answer sheet contained missing items, 
the teacher asked the corresponding student to complete the 
item (or items) and resubmit their work. Furthermore, in 
this research context, the six participating teachers reached 
a consensus that if students completed the test within 5 

minutes, the students were not making serious effort, and 
therefore the response data were not meaningful. To avoid 
including rapid-guessing response data in the item analysis 
and the scoring model, teachers discarded any answer sheets 
submitted in less than 5 minutes. In total, 67 answer sheets 
were discarded for this reason. Furthermore, 19 students 
had an Individualized Education Program (IEP), so assis-
tant teachers read the test aloud to them. In all, this data 
collection procedure produced response data from 564 
students.

Psychometric Properties

In the CTCA, the response data collected from opera-
tional testing came from 564 students, 283 of whom were 
male and 281 of whom were female. Figure 4 shows how the 
total scores are distributed, across all students, on a box plot. 
A total score is simply the observed sum score across 15 
items for each student. For each item, a student receives 1 if 
answering it correctly, otherwise 0.

Six different test forms were administered, as described 
previously. ANOVA results indicated mean total scores on 
the six forms were significantly different, F(5, 558) = 8.29, 
p < .001, suggesting the existence of an item position effect. 
We then conducted a Tukey post-hoc test, with the results 
showing that “Form 6” produced a higher group mean than 
other forms. Boxplots of total scores by form are shown in 
Figure 5. The mean difference between each pair of test 
forms and its confidence interval is reported in Figure 6.

Figure 1.  The computational thinking competency assessment (CTCA) design methodology.
Note. CT = computational thinking.
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Differential Item Functioning Detection Procedure.  In this 
section, the item-level psychometrics properties are reported. 
In order to examine whether any item showed bias toward 
either gender group, a differential item functioning (DIF) 
procedure was used. The DIF procedure involves statisti-
cally identifying the content of some items that is not central 
to the measured attribute and that may be less familiar to a 
particular group of students. Consequently, students with the 
same level of ability might receive different scores because 
of their group membership. Thus, the presence of the DIF on 
any item may suggest that the item should be revised or 
deleted before future use of the instrument (Walker, 2011). A 
variety of methods can be used to conduct DIF procedure 
(e.g., see details in the review paper by Berríoa et al., 2020; 
Zenisky et al., 2004).

For our CTCA response data, a package, psychotree, 
written for the R environment by Zeileis et al. (2012), was 
used to check the DIF. This package employs a tree-based 
method with a recursive partitioning approach. Unlike the 
parametric regression approach to detect DIF, in this method 
the guide to interpretation suggests that if there is more than 
one terminal node in the tree, DIF may exist for a particular 
item. Based on the response data, only one terminal node 
was found. Thus, no DIF was found for any of the items.

Validation of the Q-matrix.  As mentioned previously, the 
SMEs had examined the items and the Q-matrix. The 
Q-matrix was thus ready to be empirically validated based 
on the students’ response data (N = 564). The validation of 
the Q-matrix can determine to what extent the items and 
attributes are aligned. De la Torre and Chiu (2016) used a 
stepwise Wald test to validate the Q-matrix. The algorithm 
has been implemented in the GDINA package written by Ma 
and de la Torre (2020b) for R. Thus, we used this algorithm 
to check the extent to which observed CTCA response data 
support the Q-matrix (Figure 3) specified by the SMEs.

Based on the empirical results, the items show reasonable 
alignment with the attributes. For example, in order to solve 
item 12 successfully, students are required to master the sec-
ond attribute (A2) and the third attribute (A3), as described 
in the Q-matrix. The item was expressed as [011], which is 
termed a q-vector by Ma and de la Torre. The “mesa plots” 
(Ma & de la Torre, 2020a), indicate the PVAF. The PVAF 
stands for Proportion of Variance in observed responses, 
Accounted For by each possible q-vector. Figure 7 shows the 
mesa plot for item 12.

However, several items showed problems with alignment 
to their attributes. The GDINA package also provided the 
suggested Q-matrix: namely, how these items should be 

Table 2
Specific Comments Provided by Subject Matter Experts

The Problematic item prototypes Panel’s comments

A list has 3 words and 3 numbers:
{Cat, Tree, Building, 6, 9, 14}

Taking the actions below step by step.
What does the new list look like?
Step 1. If the 1st item has fewer letters than the 3rd item,

switch two smallest numbers.
Step 2. If the 3rd item has more letters than the 2nd item,

switch these two items
Step 3. If the 2nd item has more letters than the 1st item,

no action is needed
Step 4. End
A. {Tree, Cat, Building, 14, 6, 9}
B. {Cat, Building, Tree, 6, 9, 14}
C. {Building, Tree, Cat, 14, 6, 9}
D. {Cat, Building, Tree, 9, 6, 14}

The design rationale is prominent. But it is rarely 
the case that sorting algorithm considers the 
number and letters simultaneously.

This item should be revised and rewritten.

In this story, each number is an event.
Please use only FIVE events in a correct order.
1. Mike wanted to buy a bike.
2. Mike got on a bus.
3. Mike did not find a green color bike.
4. Mike arrived at a store. He will buy a bike if he can

find a green color bike and the price is less than 90 dollars.
Otherwise, he will leave the store.
5. Mike went to a different store.
6. Mike bought a bike and went back home.
A. 24165 B. 12346 C. 41325 D. 12435

This is more like daily sequential events. It 
does require students to think logically. But 
thinking logically is not equal to thinking 
computationally. This is more like a generic 
problem-solving question. This item should be 
deleted.
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revised in order to better align with the attributes. For exam-
ple, originally, on the Q-matrix (Figure 3), to solve item 7 
successfully, A1 and A2 are required—that is, [110]. But, the 
empirical evidence from mesa plots suggested that success-
fully solving item 7 only requires mastering A1. The q-vec-
tor should be better expressed as: [100] (see Figure 8).

Thus, it is worth examining the content of item 7, and the 
design principle behind item 7. Figure 9 presents the content 
of item 7. (The correct answer, per the key, is option A.)

The design principle is that the given material is a series 
of numbers—that is, Step 1 list, Step 2 list, and Step 3 list. 
Students are required to identify that the comparison is made 
for every pair of numbers. In addition, students should move 

6 from the left to the right, step by step, in order to generate 
the final output without skipping any step.

Finally, the suggested Q-matrix provided by the GDINA 
package was not adopted here. As Ma and de la Torre 
(2020b) have pointed out, the revisions should not be solely 
based on the empirical results from the estimation; rather, 
“whether the suggested modifications should be incorpo-
rated should be subject to the judgement of domain experts” 
(p. 16).

Model Parameters.  Estimation of DINA model results for 
the CTCA data was conducted in the CDM package (Rob-
itzsch et  al., 2018) for R. To judge model-data fit, we 

Figure 2.  A student’ s artifacts.
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examined the standardized root mean squared residual 
(SRMSR), an absolute fit index. A suggested criterion for 
the SRMSR is that if its magnitude is less than .09, it indi-
cates a reasonable model-data fit (Maydeu-Olivares & Joe, 
2014). The SRMSR was .037. Thus, for this sample, the 
model-data fit is reasonably good.

On item level, two parameters are estimated in the DINA 
model: the guessing (g) and the slipping (s) probabilities for 
each item. For interpretation purpose, these two parameters are 
often reflected by the item discrimination index (IDI, denoted 

as d), that is, the probability of correctly solving an item with-
out the influence of guessing and slipping (i.e., d = 1 − g − s). 
Table 4 shows these three magnitudes across 15 items. Item 1 
has high magnitude on the guessing parameter. Item 10 has 
high magnitude on the slipping parameter. Therefore, these 
two items possess very low IDI values. Low IDI values may be 
used as the indicators of poor quality of the assessment compo-
nents (e.g., items or Q-matrix). Thus far, there is no recognized 
criterion value for an acceptable IDI. Norris (2021) developed 
27 items to measure students’ understanding in Newton’s laws. 

Figure 3.  Q-matrix: 3 attributes and 15 items.

Table 3
A Deleted Item

Original design principle Problem revealed from the cognitive interview

The design rationale for this item is that students 
will examine how the location of 1 has changed 
for every row.

Based on students’ verbal data, they used shortcut to solve the item. 
Namely, they did not examine the pattern row by row. They merely 
examined vertically on the very right column where the number is 
changing based on 0, 1, 0, 1 ordering.

So, the students reasoned that the very last row should be ending in 0.
Fill out the blank below: Fill out the blank below:
0 = 000 0 = 000
1 = 001 1 = 001
2 = 010 2 = 010
3 = 011 3 = 011
4 = 100 4 = 100
5 = 101 5 = 101
6 = ??? 6 = ???
A. 110, B. 111, C. 1001, D. 1100 A. 110, B. 111, C. 1001 D. 110
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Norris reported the mean values of IDIs across these 27 items 
as .47. In the CTCA, the mean is .33 across 15 items (IDI asso-
ciated with each item is listed in Table 4).

Other than the model-data fit statistics and item-level sta-
tistics reported above, scoring results for the CTCA provided 
additional psychometric properties. Because subscore report-
ing is part of the design of the CTCA, psychometric measures 
about the distinctiveness of the subscores were needed 
(Wainer et  al., 2000). The tetrachoric correlations among 
latent attributes were positive and moderate to high: the coef-
ficient between A1 and A2 was .71; the coefficient between 
A2 and A3 was .46; the coefficient between A3 and A1 was 
.78. These magnitudes indicate that A2 and A3 are clearly 
distinct. Although possessing A1 is highly correlated with 
possessing both A2 and A3, the meaning of A1 is substan-
tively distinct from A2 and A3. In the CDM literature, no 
criterion has been used to judge the magnitude of the tetra-
choric correlations to evaluate attribute separation. Bradshaw 
et al. (2014) reported tetrachoric correlations among the attri-
butes in their newly developed CDM-based instrument. The 
range of the coefficients was from .62 to .78.

To answer the research question proposed in the begin-
ning of the paper, Figure 10 and Figure 11 are presented. 
Figure 10 shows the distribution of pattern scores, which 
represents the distribution of mastery status across students. 
In the DINA model, the number of latent patterns depends 
on how many latent attributes the assessment aims to elicit. 
In the CTCA, a CT model of domain mastery with three 

attributes was established. Thus, a student can be classified 
in any one of eight latent pattern groups to indicate his or her 
mastery status: {000}, {100}, {010}, {001}, {110}, {101}, 
{011}, or {111}. Using this scoring method, mastery status 
on a particular attribute is indicated by a 1, and nonmastered 
status by a 0. For example, the pattern score {100} repre-
sents the group of students who mastered A1 but failed to 
master the rest of the attributes.

Because the CDM uses a probability model to estimate 
mastery status, the estimated latent scores are expressed in a 
0–1 scale, where magnitudes below 0.5 indicate an attribute 
has most likely not been mastered. The results can also be 
expressed as a percentage. For example, according to Figure 
10, about 43% of students have mastered all three attributes 
of CT competency. For the remaining students, about 15% of 
students will need the highest levels of instructional support 
in their CT learning because they mastered none of the attri-
butes; about 35% of students mastered only one attribute. 
Figure 11 shows the attribute-level mastery status across this 
sample. Among all students, about 51% of students mastered 
A1, 62% mastered A2, and 64% mastered A3.

Figure 4.  Distribution of total scores for 564 students.

Figure 5.  Boxplots of total scores by form.

Figure 6.  Mean score comparison across different test forms.

Figure 7.  A mesa plot for item 12.
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For individual score reporting, a set of subscores (i.e., the 
latent mastery probability estimated by the DINA model) is 
reported to represent each student’s mastery status along 
with the total score (i.e., the observed sum scores). Figure 12 
is an example of a score report. The first row of the score 
report is the student ID, which a teacher can link to a stu-
dent’s name. The second row reports the total score of the 
student. The third row includes further detail about the 
wrong and right answers. The last row displays the indica-
tors of mastery status. The results shown in the example sug-
gest that the student has not mastered A1 yet.

Discussion

In the present research, we began the assessment design 
by establishing a formal cognitive structure of CT. Three 
extracted attributes were used to characterize CT compe-
tency. In this section, we discuss how the results provided in 
this research relate to the existing literature. The CTCA is 
distinct from, and has some advantages over, existing CT 
assessment instruments. The CTCA includes subscores to 
represent each individual student’s mastery status on the rel-
evant attributes. As shown in Figure 12, the score reporting 
for each student contains their total score, along with the 
subscores estimated in the CDM framework. As the litera-
ture (e.g., Gotch & Roberts, 2018) has suggested, students 
with the same total scores may have different areas of weak-
ness. The CTCA is a CDM-based assessment that intends to 
offer the subscores, and the design of the CTCA aims to sup-
port the subscores. The process of subscore reporting thus 
communicates a student’s weakness and strength in a single 
score.

Other than individual score reporting, the CDM-based 
estimation also provides information on this group of stu-
dents’ attribute mastery proportions and mastery patterns. 
Compared with the traditional measurement that a single 
score is used to reflect a student’s ability, the CDM-based 
results are informative in this research. Particularly, the 

results suggest that fewer middle school students have mas-
tered pattern recognition (A1) than either of the other CT 
attributes, which may suggest that pattern recognition tends 
to be acquired later in students’ learning progression for CT, 
at least in these school districts.

An assessment-centered classroom for middle school 
teachers can both measure and promote learning (e.g., 
Turner, 2014). The proposed score use for the CTCA will 
enable teachers to gain information about students’ current 
CT competency before instruction begins. Instead of giving 
the same problem-solving activities to all the students in a 
class, a teacher can use the CTCA mastery score profiles to 
assign different problems (or activities) for different stu-
dents to practice. Teachers can do this with a deliberate 
focus. For students who fail to master the first attribute (A1: 
pattern recognition), teachers can use English language 
grammar rules as a context for students to practice (see 
examples provided by Rich & Hodges, 2019). For students 
who fail to master the second attribute (A2: sequence of 
instructions), teachers may ask students to complete the 
selection sort algorithm examples provided by Looi et  al. 
(2018). Teachers may also provide some examples that com-
bine metaphorical language and programming together for 
students to practice (Pérez-Marín et al., 2018). The concep-
tual metaphors and the gestures may help students under-
stand computing processes as motion along a path (Manches 
et al., 2020). For students who fail to master the third attri-
bute (A3: evaluation of variables), teachers can use com-
puter-based exercises (e.g., Scratch) to help students 
recognize that variables in general do not hold a value (data); 
rather, variables point to values. Previous research 
(Hambrusch et al., 2009) suggested that students had diffi-
culty evaluating variables in CT, because they treated vari-
ables in CT like variables in mathematics. Whereas in 
mathematics, variables in an equation are bound to a given 
value only once and then keep that value, a variable in CT 
should be treated like a storage box with a name. Its value 
can be changed over time.

One payoff of this research may be the capacity to inform 
instruction by equipping teachers with a tool to pre-assess 
existing CT competency. However, this initial validation of 
the CTCA assessment has shown some weaknesses in the 
current test’s psychometric properties. A few issues should 
be taken into consideration for future revision. As Mislevy 
(2007) has articulated, validation is an open-ended process. 
Validity evidence should constantly be collected, even for 
tests that have existed for many years (e.g., Canivez et al., 
2019; Kleiger et  al., 2018). Future empirical data should, 
then, be collected for the CTCA to further validate the mean-
ing of scores and possibly to revise the items (and the 
Q-matrix).

The first issue relating to psychometric properties is that 
two of the items possessed unacceptably low IDI 

Figure 8.  A mesa plot for item 7.



13

magnitudes because of high slipping and guessing parameter 
values. These items would be expected to contribute little to 
an accurate classification of a student’s mastery profile. 
Some other items’ IDI values also seemed relatively low. 
Generally speaking, low IDI values indicate relatively weak 
correlations between item responses and students’ status on 
the latent attributes (Henson et al., 2018). Low IDI values 
may appear when students’ responses are affected by attri-
butes that have not been modeled (i.e., systematic measure-
ment error) or random measurement error. Adding other 

well-defined attributes of CT to the model might improve 
the IDI values, but we expect the numbers of student test-
takers and items might need to be increased to estimate the 
additional parameters.

Another possible explanation for high guessing and 
slipping parameters may be that the item parameters were 
modeled as fixed effects. An alternative scoring model, for 
example the random-effect DINA model (Huang & Wang, 
2014), could be considered. This approach argues that 
slipping and guessing parameters should depend on a per-
son’s (e.g., student’s) characteristics, such that “[T]he 
level of slipping may depend on the person’s degree of 
caution, and the probability of a correct guess may be 
determined by the person’s ability to eliminate distractors 
among the options included in an item” (p. 75). Applying 
this model to response data from the CTCA might enhance 
classification accuracy, because it allows for the possibil-
ity of individual variation in item parameters across the 
sample of students.

Figure 9.  The content of item 7.

Table 4
Item Discrimination Index in the DINA Model

Item ID Guessing parameter Slipping parameter IDI

1 .88 .03 .09
2 .73 .01 .26
3 .48 .06 .46
4 .35 .05 .59
5 .20 .47 .33
6 .69 .05 .26
7 .53 .16 .31
8 .27 .26 .48
9 .38 .21 .41
10 .37 .57 .06
11 .66 .08 .26
12 .41 .24 .35
13 .35 .26 .39
14 .31 .25 .44
15 .13 .55 .32

Note. DINA = deterministic inputs, noisy “and” gate.

Figure 10.  Classification on latent pattern scores.
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The second issue is that in the Q-matrix validation, sev-
eral items appeared not to align with the attributes as pre-
dicted by the SMEs. For example, the SMEs believed 
responding correctly to item 7 should require a student to 
possess both attributes A1 and A2, but a mesa plot generated 
from the empirical data suggested that successfully solving 
item 7 only requires possession of the first attribute (A1). In 
the future, these items should be reconsidered by the SMEs.

A third issue is that an item position effect was evident in 
data from one of the six CTCA forms. In the existing litera-
ture, item position effects seem to be common, even for pro-
fessionally developed large-scale assessments (e.g., Weirich 
et al., 2017). But little research has examined why item posi-
tion effects occur (e.g., Debeer & Janssen, 2013). In our 
forms with different item orders, the first cluster of items in 
Form 6 may possess some features that motivated the test-
takers, who in turn had better test-taking engagement. For 
example, the visual stimuli contained in certain item stems 
might have been particularly compelling to test-takers. 
Another possibility might be cueing, namely, solving certain 
items first reduced the difficulty of particular subsequent 
items. Bearing this in mind, future research use of the CTCA 
should administer a single form.

Conclusion

In this study, we sought to measure CT competency 
among middle school students by developing a new assess-
ment specification. In order to preserve the proposed scoring 
interpretation, during the assessment design process, multi-
ple item prototypes were deleted or revised by using subject-
matter experts’ opinions. In addition, the outcomes of the 
students’ think-aloud process for assessment development 
provided another source of validity evidence. Based on stu-
dents’ verbal data and artifacts, some items were deleted or 
revised because the empirical evidence indicated they failed 
to elicit the hypothesized response process (i.e., the mental 
operations). Psychometric properties of the item response 
data were evaluated as additional validity evidence. The 
results from the CTCA can be a basis for establishing a cur-
rent learning profile for each student that may be used by 

teachers, or even students, to plan the next steps of instruc-
tion and practice for each student.

In terms of practical utility in classrooms, the CTCA’s 
potential for subscore reporting helps teachers identify spe-
cific computational thinking skills a student has not yet mas-
tered, so that those skills can be targeted by follow-up 
instruction. In the future, more work is needed to assess the 
effectiveness of specific curricula that provide students with 
opportunities to think computationally. Future studies in CT 
assessment should also endeavor to collect more evidence 
about relevant cognitive aspects while students solve CT 
problems. This final goal may, perhaps, be realized by exam-
ining the trajectories of CT acquisition across grade bands to 
better understand how these cognitive processes develop.
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