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Abstract 
Learning analytics (LA) provides tools to analyze historical data with the goal of better understanding how curricular 
structures and features have impacted student learning. Forward-looking curriculum design, however, frequently 
involves a degree of uncertainty. Historical data may be unavailable, a contemplated modification to curriculum may 
be unprecedented, or we may lack data regarding particular learner populations. To address this need, we propose 
using curriculum modelling and learner simulation (CMLS), which relies on well-established modelling theory and 
software to represent an existing or contemplated curriculum. The resulting model incorporates relevant research-
based principles of learning to individually simulate learners and estimate their learning achievement as they move 
through the modelled curriculum. Results reflect both features of the curriculum (e.g., time allocated to different 
learning outcomes), learner profiles, and the natural variability of learners. We describe simulations with two versions 
of a college-level curriculum, explaining how results from simulations informed curriculum redesign work. We 
conclude with commentary on generalizing these methods, noting both theoretical and practical benefits of CMLS 
for curriculum (re)design. 
 

Notes for Practice 

• Curriculum Modelling and Learner Simulation (CMLS) is a method for making principled quantitative 
projections of the impact curricular structures and arrangements will have on student learning. 

• CMLS draws on general principles of curriculum design, human learning, and simulation modelling, with 
assumptions that are explicit, transparent, and easily adjusted. 

• We implement CMLS in this work as coloured Petri nets using CPN Tools, a widely used and freely 
available simulation development environment. 

• CMLS can be applied both to test novel curriculum designs and to inform redesign work by simulating 
how modifications to a curriculum are likely to impact student learning. 

• The CMLS methods we describe both support existing methods in learning analytics and significantly 
extend our capacity for theoretically motivated work in curriculum design and development. 
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1. Introduction 
A central risk in curriculum design is that design solutions cannot be empirically evaluated until well after stakeholders have 
made significant commitments. Large-scale curricular design efforts usually begin with broad philosophical and pedagogical 
principles, but these commitments typically leave many questions unanswered. This is especially true when it comes to 
evaluating specific modifications to a proposed or existing curriculum. Even a knowledgeable designer may be hard-pressed 
to forecast the ultimate impact of a given modification. For example, stakeholders might want to put greater emphasis on a 
specific learning outcome in a curriculum. In response, a designer might propose using assessment data to reallocate 
instructional time to the target outcome. Before implementing a modification, stakeholders may want to explore both whether 
a modification is likely to achieve the intended goal and to what extent achievement on other learning outcomes will be 
reduced. Moreover, instructional dependencies are influenced both by general principles of human learning and student 
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attribute-treatment interactions (e.g., Cronbach & Snow, 1977; Snow, 1989), further complicating forecasting. For example, 
if we consider the principle that unreinforced learning decays over time (e.g., Arthur et al., 1998; Pilotti et al., 2009), it becomes 
clear that the same curricular modification (e.g., additional instructional time) can have quite different effects on achievement 
depending on where in the curriculum it is implemented. If a target skill is allocated additional instructional time early in a 
course of study, student achievement is likely to increase in the short-term, but long-term achievement may be greater if the 
additional time is allocated in two lessons or courses spaced in time, one early in the course of study and a second later on 
(e.g., Carpenter et al., 2012). 

To cope with this challenge, curriculum designers and other stakeholders have traditionally looked to experimental and 
quasi-experimental education research. Scouring the literature may sometimes turn up a study that investigated a curricular 
modification closely matching the one being contemplated. More frequently, designers and other stakeholders must extrapolate 
from studies that do not exactly match the details of their particular scenario, so, while these studies may be generally relevant, 
and may provide some general guidance, they will not support the detailed forecasts of impact that would be most helpful. 
More recently, designers have also been able to turn to the emerging field of learning analytics (LA) that has developed methods 
to analyze available historical data to shed light on possible or likely future effects of a contemplated modification (e.g., Brown 
et al., 2018; Hilliger et al., 2020; Munguia & Brennan, 2020; Salazar-Fernandez et al., 2021). As a post-hoc research design 
relying on existing data, however, learning analytics do not support tests of theory-based causal hypotheses. 

In situations like this, we propose that curriculum designers and other stakeholders consider the more systematic and formal 
approach to forecasting provided by curriculum modelling and learner simulation (CMLS). With CMLS, stakeholders build a 
virtual replica of a curriculum incorporating specifically relevant principles of learning (e.g., unreinforced learning decays over 
time). In addition, simulated students can be defined with learning profiles to reflect specific populations of learners. CMLS 
therefore has the capacity to reflect features of the curriculum, learner characteristics, and the natural variability of learners, 
and how these variables can interact. For example, a curriculum redesign effort that seeks to reorganize the sequencing of 
courses could compare multiple versions of a program based on the quasi-empirical data generated by simulations (Winsberg, 
2010). Two benefits of this kind of modelling are especially important. One benefit is that simulations can support both general 
and specific research questions exploring possible curriculum designs as stakeholders consider different options and make 
critical design decisions. The second benefit is that CMLS provides a shared systematic framework for stakeholders to anchor 
discussion and decision-making. CMLS therefore has the potential to address the problem of inadequate or unavailable data 
while simultaneously supporting predictive analytics (Chou et al., 2017) that are both theoretically motivated and can support 
iterative investigations of specific design options. 

The remainder of this paper consists of the following sections. We begin with an overview of curriculum design concepts 
and general learning principles that serve as theoretical and empirical foundations for CMLS. We then present a detailed 
explanation of the CMLS approach. Starting from the fact that modelling and simulation methods are not currently included 
in the average curriculum designer’s toolkit, we explain the key concepts and methods that make modelling possible, and how 
models work to produce forecasts. As part of this unpacking of CMLS, we explain why and how we rely on coloured Petri 
nets to develop simulations, and present basic principles behind Petri net modelling using the CPN Tools development 
environment (AIS Group, 2019). Next, we describe the process we relied on to create two proof-of-concept CMLS simulations 
comparing alternative curriculum designs as part of a curriculum redesign effort at a large Midwestern university. We then 
present the results of our analyses comparing the two versions of the curriculum to highlight how our simulations helped us 
explore the potential impact of program structure on student learning. Finally, in the last two sections we discuss the 
applications and benefits of CMLS and conclude with the limitations and implications of the CMLS approach for thinking 
about curriculum more broadly. 

2. Background 
CMLS is not a theory of curriculum design, it is a practical tool for quantitative investigation of curricular designs that draws 
on well-established curriculum design frameworks and theories of human learning. These concepts, frameworks, and theories 
are reviewed in the following subsections. Regarding technical aspects of model building and simulation, we apply existing 
tools and techniques based on coloured Petri nets (Jensen & Kristensen, 2009) and the CPN Tools development environment 
(AIS Group, 2019). Finally, to contextualize the unique contribution of CMLS in relation to existing scholarship aimed at 
informing curriculum design, we briefly contrast the guidance provided by CMLS with work based on experiments, quasi-
experiments, and LA studies of historical data. 

2.1. Curriculum 
We use the term curriculum to refer to an “academic plan” based on a specific institutional context (e.g., a school of education) 
and comprising four macro-curricular elements: purpose, content, sequence, and learners (Lattuca & Stark, 2009). We define 
purpose in terms of program-defined learning outcomes, content in terms of courses, sequence in terms of temporal 
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dependencies between courses (e.g., prerequisites), and learners in terms of general attributes that define populations of 
learners we are interested in modelling (e.g., high- vs. low-proficiency learners). Moreover, our work abstracts micro-curricular 
instructional elements (e.g., specific materials, pedagogical strategies, assessments) so we can focus on simulating a curriculum 
as a complete instructional system rather than lesson-, activity-, or assignment-level events experienced by individual learners. 
As is necessarily the case with any simulation, we have made deliberate choices about what to model and how to abstract 
elements that are not modelled. Moreover, because our work was motivated by a specific college-level curriculum redesign 
effort, the language we adopt conforms with common usage in college and university settings. We have, however, chosen to 
anchor our intentionally familiar curricular terminology in three broader conceptual frameworks that will better contextualize 
our work: 1) outcomes-based education that serves to define our thinking about purpose, 2) curriculum mapping that defines 
our thinking about sequencing and structural aspects of curriculum, and 3) learning progressions, a framework central to 
defining the curriculum redesign effort that motivated our work. 

Outcomes-based education (OBE) is an approach to curriculum design that prioritizes the learning outcomes that students 
are expected to attain at the conclusion of their studies (Spady, 1994; Spady & Marshall, 1991), as opposed to short-term 
objectives teachers tend to focus on in individual activities or lessons. Recently, OBE has been widely adopted, particularly in 
professional domains such as engineering (Besterfield-Sacre et al., 2000; ABET, 2018; Chou et al., 2017; Tshai et al., 2014), 
nursing (Hsieh & Hsu, 2013; Tan et al., 2018), and teacher education (Ball & Forzani, 2011; Forzani, 2014; TeachingWorks, 
2019) where professional organizations often work to define standards for entry into professional fields. Furthermore, with 
exit outcomes more clearly articulated, instructors are better able to address instructional design at the micro-curricular level 
to align with and support program-level outcomes. Clarity about exit outcomes also means that student progress can, at least 
in theory, be mapped in terms of how far students have come, and how far they still need to go, toward achieving mastery. The 
result is a high level of cohesion, transparency, and accountability across an entire program. CMLS, as we implement it in this 
work, fully embraces OBE’s focus on learning outcomes. In modelling curriculum, therefore, simulations should be rooted in 
clearly stated learning outcomes that are shared across program courses. As simulated learners progress through a series of 
courses in a modelled curriculum, their growth toward mastery of these learning outcomes is estimated and tracked. In the 
proof-of-concept demonstration of CMLS we present in this paper, for example, the shared learning outcomes are seven “high-
leverage teaching practices” (HLPs; TeachingWorks, 2019) that all pre-service teachers in a teacher-preparation program were 
expected to master (e.g., “eliciting and interpreting individual student’s thinking”; “leading a group discussion”). Every course 
in the program addressed two or more of these HLPs (see Table 3 for a list of these learning outcomes). 

Curriculum mapping (CM) shares OBE’s focus on learning outcomes. However, where OBE emphasizes the importance 
of “outcome specification” (Morcke et al., 2013, p. 853), CM adopts a more explicitly structural perspective (e.g., Heileman 
et al., 2017) that puts priority on providing a bird’s-eye view of a program with the potential to yield insights about areas for 
improvement (e.g., Fuchs et al., 2014; Hale, 2008; Jacobs, 2004). In CM, more attention is paid to the sequencing and 
relationships of curriculum components. Perhaps most relevant in the present context is that CM, like CPN Tools, capitalizes 
on visualization to both convey the “big picture” and help contextualize more specific curricular elements within that larger 
picture. As we describe later, this and several other key CM concepts are central to the CMLS approach we have adopted in 
this work. 

Finally, learning progressions (LPs) are a framework for conceptualizing the stages of engagement and understanding that 
students move through as they progress from novice-level encounters with content to expert-level applications of concepts and 
skills (Otero, 2006). In effect, LPs typically define categorical levels of complexity and sophistication in thinking about a 
domain and, for that reason, often serve as a tool to “sort” lower-level learning objectives extracted from individual course 
syllabi as a first step in defining or confirming the sequencing of activities, topics, and courses in a curriculum. As we will 
describe later, LPs turned out to be particularly important in our work because this kind of sorting was precisely the way our 
colleagues had begun the curriculum redesign effort prior to the time we began our modelling and simulation work. 

2.2. Principles of Learning 
CMLS also makes use of what we know about general principles, patterns, and regularities of human learning and cognition. 
For example, it is now well established that possessing topic-relevant prior knowledge has a significant positive influence on 
learners’ comprehension and recall of unfamiliar text (e.g., Kendeou & van den Broek, 2007; Kostons & van der Werf, 2015; 
Pearson et al., 1979), that the capacity of learners’ working memory is limited (e.g., Burin et al., 2018; Leong et al., 2008), 
that first-learned and last-learned information is better recalled than information learned in the middle of a study session (e.g., 
Follmer et al., 2018; Guéraud et al., 2018), and that temporally “spaced” and “interleaved” study sessions are more conducive 
to deep learning and retention of information than “massed” study time, also known as “cramming” (e.g., Janes et al., 2020; 
Weinstein et al., 2018). Moreover, CMLS is not simply loosely “based on” or “aligned with” this large body of empirical 
findings and theory. Rather, the CMLS approach involves intentional selection of a small subset of learning principles of 
particular relevance to a target scenario. For example, when modelling student progression through a series of courses, obvious 
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candidate learning principles might include the principle that, on average, more time on task with new content correlates with 
higher levels of achievement (e.g., Fredrick & Walberg, 1980; Gromada & Shewbridge, 2016), and the principle that, unless 
reinforced over time, new learning will gradually decay and newly acquired skills will fade (e.g., Pilotti et al., 2009). Building 
a CMLS model involves explicitly identifying a short list of relevant principles and then coding these into the algorithms that 
estimate achievement as simulated students move through a given curriculum. The specific learning principles built into our 
proof-of-concept curriculum model are detailed in the following section. 

2.3. Modelling and Simulation 
Modelling methods and tools are well established and widely used outside the field of curriculum design. For example, 
computational chemists use simulations to discover novel approaches to chemical synthesis (Jensen, 2007) and astronomers 
test competing models for what occurs when galaxies collide (Mapelli & Mayer, 2012). Recently, epidemiological modelling 
of COVID-19 transmission in higher education settings has helped institutions make decisions about when and how to reopen 
campuses (Gressman & Peck, 2020). In the areas of learning and instructional design, there is also a long history of model 
building in research on perception (Minsky & Papert, 1969), cognitive processes (Wetherick, 1992), learning (Gogate & 
Hollich, 2013), and social interaction (Thalmann & Musse, 2013). In short, outside of curriculum design, there is longstanding 
and growing appreciation of models and simulations as tools that operate in a “middle ground” (Winsberg, 2010) between 
theory and empirical observation. As classroom access to digital technology has grown, some educators have adopted 
simulation technologies as teaching tools to help students learn about political decision-making (Bursens et al., 2018) and 
scientific hypotheses (Kuang et al., 2020), among other topics, and to support more effective collaborative learning (Gijlers & 
de Jong, 2013). Application of simulation technologies to support curriculum design, however, is rarely described. We found 
no published scholarship specifically targeting curriculum simulation, nor did we find colleges offering courses to teach 
educators about this kind of work. With a few notable exceptions (e.g., Gonzalez-Brenes & Huang, 2015; McEneaney, 2016; 
Pelánek et al., 2016; Lomazova et al., 2021), it appears that the potential of computer-based modelling and learner simulation 
to inform curriculum design has rarely been considered. As we will show, however, concepts, techniques, and tools to support 
modelling and simulation can be readily adapted to support curriculum design. 
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We selected CPN Tools (AIS Group, 2019), a programming environment based on coloured Petri nets (CPNs; Jensen & 
Kristensen, 2009), to build our models and run simulations. Figure 1 presents the model building and simulation interface for 
our curriculum models. The graphical part of the simulation appears as a grey window with oval nodes representing system 
states, rectangular transitions representing points in the simulation where system states change, and arrows indicating the flow 
of data within the model. Green highlighting of two nodes and one transition at the top of the window indicates that the model 
is initialized and ready to run a randomized sample of 100 simulated students. Oval nodes 1, 2, 3, and 4 represent student 
learning states prior to the start of each of the four semesters in the modelled curriculum, represented by the four rectangular 
transitions. Programming code appears in the background window in a pale blue panel on the left that defines constants, 
variables, and functions that drive the simulation. Core simulation processing occurs in four rectangular transitions Junior 1, 
Junior 2, Senior 1, and Senior 2, representing each of the four terms in the curriculum. Nodes and transitions that follow the 
Senior 2 transition address circumstances where a student fails a course or a prerequisite. When a simulation is completed, 
student data records are extracted from the Student and Student2 output nodes. 

Table 1 presents simulated learning data for six students after completing the four-semester curriculum. The first and 
second values in each record are a unique student identifier (ID#) and an individual learning proficiency parameter (LP). The 
learning proficiency variable is assigned randomly by a Standard ML normal distribution function and influences both a 
student’s rate of learning and learning decay. The third data value in each record is an ordered list reporting simulated learning 
across seven learning outcomes targeted in the curriculum. Students start with outcomes initialized to [0,0,0,0,0,0,0]. As 
students progress through the curriculum, outcome values are incremented up to a maximum of 100 based on both a student’s 
learning proficiency and the relative emphasis learning outcomes receive in each course. Outcome values are also decremented 
to simulate learning decay in the absence of reinforcement. Finally, the “Term” data value (@4) represents the number of 
semesters completed. Although higher learning proficiencies are associated with greater achievement, the simulation is 
probabilistic, so individual student performance varies, with less proficient students sometimes outperforming more proficient 
peers (compare, for example, students 1 and 2). 

 
Student records like those illustrated in Table 1 can be examined at any point in the simulation. Moreover, student records 

can also be modified by functions representing particular learning principles (e.g., learning decay). In addition, although not 
examined in the simulations we describe, the models we have developed can also use student records to enforce curricular 
requirements restricting, for example, whether or not a student can enroll in a class depending on a minimum grade or 
completion of a prerequisite course. In Figure 1, for example, some arrows have associated filters that appear as short text 
segments in parentheses (e.g., “(s, ab, crslist, outlist)”) that can block or otherwise modify the flow of data by sending a student 
back to a prerequisite course rather than allowing them to enroll. Modification of data records within transitions are carried out 
by functions serving as the primary data processing mechanism. In CPN Tools all traditional programming elements, including 
constants, variables, filters, and functions are defined in the CPN ML programming language, based on Standard ML (Milner 
et al., 1997; Ullman, 1998). 
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Table 2 presents a finer-grained view of individual learning in the simulation, with data for three simulated learners with 

different learning proficiencies (lower, average, and higher) across the four semesters in the curriculum. This data also 
illustrates the stochastic character of the simulation where, on average, students with higher learning proficiency tend to 
perform better than those with lower proficiency, although this is not a deterministic relationship, as evidenced by the higher 
average performance at the end of term 3 by student #53 over student #11 who has a higher learning proficiency. In most cases, 
a simulation study will rely on multiple simulations that depend on either different simulation parameters such as learner 
characteristics (higher versus lower learning proficiency) or modifications to the curriculum that adjust the emphasis courses 
put on learning outcomes (e.g., to provide more reinforcement of prior learning). In summary, each student in the simulation 
is individually modelled, with dependent variables representing learning achieved for each learning outcome and a time stamp 
incremented each semester. In addition, when the semester is incremented, a random decay function reduces learning 
achievement by a small amount. At any given point in time, therefore, a student’s data record represents the current level of 
learning in a way that accounts for prior performance, opportunities for learning, and learning decay. 

2.4. Unique Aspects of CMLS 
The potential contributions of CMLS to the work of curriculum design become clearer when CMLS is considered alongside 
other well-established branches of scholarship intended to inform curriculum designers such as quasi-experimental studies, 
learning analytics, and its recent offshoot of curriculum analytics. As we noted earlier, it may be difficult to identify prior 
studies that clearly address specific curriculum design questions and, apart from only very small-scale designs, ethical issues 
would usually preclude studies of hypothetical curricula with human learners. Even when relevant prior studies can be found, 
designers must undertake complex extrapolations from past correlations and trends, adjusting for different settings and learner 
populations. Simulation, by contrast, affords a tool for precisely the kind of iterative “informed exploration” Hilliger and 
colleagues (2020, p. 183) call for in continuous curriculum improvement. CMLS also aligns with some recent efforts defining 
curriculum analytics (Chou et al., 2017; Hilliger et al., 2020; Munguia & Brennan, 2020) that focus on the level of programs 
and curricula while avoiding the labour-intensive and course-specific work typical of more traditional learning analytics 
approaches (Gottipati & Shankararaman, 2017). 

3. Methods 
In this section, we describe a proof-of-concept study conducted in support of a curriculum redesign effort in an undergraduate 
teacher education program at a large Midwestern university in the US. Work on the redesign began in 2016 and formal analysis 
and modelling began in 2018 after a preliminary curriculum proposal had been developed. During the formal analysis needed 
to develop the simulation, a number of questions arose that suggested a modification to the original proposal. In response to 
these questions, we developed a modified version of the curriculum that focused on the relative emphasis courses put on 
specific learning outcomes. The study we present addresses two questions comparing the alternative curricula. The first 
quantitative question tested whether simulated students exhibited statistically significant differences in predicted learning 
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achievement despite the “natural” probabilistic variability of the simulations. Secondly, if the quantitative analysis indicated 
differences, a follow-up qualitative question would examine how student learning achievement differed and what these 
differences might suggest about the relative suitability of the two curriculum designs within the broader commitments and 
goals of the redesign effort. Our simulations adopted a fully crossed 2 × 2 analytic design comparing the two different curricula 
and two categories of simulated students of high and low proficiency. Because both programs focused on seven distinct 
learning outcome goals, we relied on MANOVA to address our initial broader question with follow-up univariate analyses to 
assess where differences arose if the omnibus test was significant. In the event of statistically significant differences, we would 
follow up with a qualitative examination. 

3.1. Developing the Simulations 
The first steps in simulating curriculum are deciding on elements to model and then creating an abstracted version of that 
curriculum. In our case, work began with a preliminary curriculum map developed by a faculty committee. The proposed 
design made mastery of seven high-leverage teaching practices or HLPs (TeachingWorks, 2019) the central focus of an 18-
course curriculum spanning four semesters. HLPs adopted in the curriculum are presented in Table 3. The preliminary 
curriculum was developed from a learning progressions perspective that distinguished four kinds of instruction tied to levels 
of student understanding related to the HLPs: introducing the HLP (i), developing and deepening understanding (d), 
independent practice (x), and providing opportunities for coaching and reinforcing (c) in a seminar setting. In addition, the 
preliminary curriculum identified a specific mapping, of the course, its sequences, and a preliminary time-on-task specification 
in terms of credit hours allocated to each course. Our goal in this first stage of formalization was to capture these specific 
elements in our curriculum model. 

 
As we studied the proposed curriculum (Table 4), some of the elements we needed to model were clear. Since the seven 

HLPs had been adopted as program-level learning outcomes, we selected cumulative learning achievement on these outcomes 
as dependent variables in our simulations. We also noted that time-on-task across the program as a whole had been roughly 
defined by assigning credit hours to each course (as shown in the second column of Table 4), although it was not clear how 
time-on-task for different program outcomes should be allocated within courses. Also, while the proposed curriculum 
distinguished developmental steps in a four-stage learning progression (namely, the stages indicated i, d, x, and c), it was not 
clear how we should assign more specific time-on-task weights depending on these categories. Should relatively more time-
on-task be allocated to learning outcomes at particular stages of development? Building simulations, therefore, required us to 
go back to our colleagues who had developed the preliminary proposal so that we could begin to make plausible decisions 
about translating the conceptual model into quantitative terms that would support simulations. 



 
 

 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

168 

 
It was at this stage in our work that we began to appreciate how our modelling and simulation work could be especially 

helpful in supporting ongoing stakeholder conversation and analysis about the goals of the redesign effort. When we sat down 
to talk with colleagues, we saw that our questions brought to light unstated assumptions and design details that had not yet 
been considered. Do all program outcomes deserve equal time-on-task emphasis, or should some be weighted more heavily? 
We found that questions like this led to conversations that might not have occurred in less concrete contexts. As a result of 
these conversations with colleagues, we decided on the following four principles to guide simulation development: 

1. Time-on-task values are based only on the seven HLPs (with zero time-on-task assigned to blank cells). 
2. Total time-on-task available for outcomes within a course is determined by the total course credit hours. 
3. Unless otherwise specified, time-on-task is equally distributed across outcomes for different types of instruction. 
4. Independent practice (x) is allocated a ½ relative weighting compared to other types of instruction. 
In cases where an HLP was not addressed in a course (assumption 1), the weight assigned is zero (0.000). In cases where 

multiple comparably weighted objectives occur in a course (e.g., d and i in the Math 1 course), weights are simply the total 
course weight (in credits) divided by the number of outcomes emphasized (assumptions 2 & 3). Independent practice (x) as an 
instructional type is accorded a relative weight of ½ compared to other types of instruction (assumption 4). In the Science 2 
course, for example, d values are accorded a unit weight while x values are accorded ½ of a unit weight, resulting in 0.546 
time-on-task devoted to HLP #2 and 0.273 time-on-task for HLP #3. Note that in the weight column to the far right, the value 
is based on the credit hours assigned to the course and summing across columns within a course results in the total course 
credit hours within rounding. Finally, the last row reports on the overall weighting by outcome for the curriculum as a whole. 
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This last row therefore reflects the relative priority of outcomes across all courses in the curriculum with some outcomes 
allocated considerably more time-on-task (e.g., HLP #9, at 13.184 units) than others (e.g., HLP #15, at 6.684 units). 

 
As we considered the time-on-task allocation shown in Table 5, however, we also found ourselves wondering whether the 

original proposal accurately represented the intent of the curriculum. We questioned, for example, why the coaching planned 
for seminars would exclude some HLPs that had been addressed in concurrent courses supported by the seminar (e.g., HLPs 
#3 and #9 in Seminar 2) while addressing others, given that student interest might lead to discussion on any one or all HLPs 
addressed during the term. It seemed to us plausible to think that all outcomes addressed in a semester would be eligible for 
coaching in seminar courses. A possible alternative time-allocation scheme might, therefore, provide coaching for every 
outcome addressed in a block, and by this assumption the time-on-task weights for Seminar 2 should be equally distributed 
across outcomes since all had been addressed in the block. Finally, we had the same kind of questions when we looked at time 
allocation in the student teaching course where, presumably, all outcomes (i.e., all the high-leverage teaching practices) would 
be expected to be addressed in some way. In response to these questions, we proposed an alternative modified curriculum 
displayed in Table 6 that reflects these ideas, with changes to the original curriculum highlighted in yellow. In the modified 
curriculum, overall constraints remain the same, with course weights still determined by course credit hours. What differs is 
that some outcomes that had zero weights in the first quantitative interpretation now are accorded larger weight values as a 
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result of shifting time-on-task from other outcomes. Perhaps the most notable difference, however, is the way the modified 
weighting scheme changed the overall allocation of time to outcomes across the curriculum as a whole. 

 
In the original curriculum design (Table 5), outcomes are dominated by HLP #9. After the principled adjustments to create 

a modified curriculum (Table 6), however, attention to outcomes is more evenly balanced across HLPs, with objectives #3 and 
#9 now receiving the most instructional attention, objectives #10 and #12 receiving significant attention though distinctly less 
than #3 and #9, objectives #1 and #2 in a third tier, and outcome #15 receiving least attention. In effect, the modified curriculum 
appears to provide a more systematic hierarchy of learning that might help guide faculty in their efforts to work out the many 
details that would next need to be fleshed out in course syllabi. If nothing else, it appears that the formalization of developing 
a learning outcome grid is useful as a basis for discussion and continued planning. But the modified curriculum design, while 
suggestive, does not provide the kind of analysis that a simulation can. Specifically, given the probabilistic variation built into 
the simulations, it is not apparent whether the differences we see in outcome weights across the curriculum would actually 
make a difference for student achievement. Do the relative priorities of total outcome weights lead to statistically significant 
differences across populations of simulated students and do these differences evince large enough effect sizes to be meaningful 
in a practical sense? This was the question we sought to answer by running a simulation in which 200 simulated students 
progressed through each of the two program models we built — one representing the initial program redesign and the other 
representing the modified program redesign. 
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4. Results 
Results of an omnibus multivariate F test (Table 7) of simulated students’ end-of-program achievement indicated a statistically 
significant difference in the achievement variable vector across the four cells of the study design (Hotelling’s Trace, F(7, 390) 
= 70.811, p = .000, η2 = .560), with a large effect size and excellent observed power. Planned follow-up univariate tests 
(Table 8) comparing achievement scores for each learning outcome across the two different curriculum designs also showed 
statistically significant differences for every HLP, with a small effect size for HLP #9 and medium to large effect sizes for all 
other HLPs (Ferguson, 2009). In short, the comparison of these two curriculum designs (original versus modified) indicate 
statistically significant differences after accounting for variability in simulated student learning–differences sufficiently large 
to suggest practical significance for learners. Not surprisingly, differences in student learning of individual HLPs across the 
two models depended on whether the overall outcome weight for a given HLP increased or decreased as a result of 
modification. Specifically, outcome scores in the modified curriculum indicated reduced learning for HLPs #1, #2, #9, and 
#15, while learning increased for HLPs #3, #10, and #12. Overall, as indicated in Table 9, student learning aligned as expected 
both with ability grouping and with the overall curriculum weight assigned to an HLP. 

It appears, however, that the more general pattern of changes in learning achievement may be more important than the 
changes to individual outcomes. In reviewing changes in weights between Tables 5 and 6, we noted that the modified 
curriculum led to a more readily interpretable hierarchy of HLPs across the curriculum as a whole. Whereas the original 
curriculum was dominated by very heavy emphasis on a single outcome (HLP #9), the modified curriculum establishes a 
clearer hierarchy of tiers consisting of three outcome pairs with a single trailing outcome (see the Total Outcome Weight row 
in Table 6). Although each HLP represents an important goal, a multi-year teacher education curriculum is likely to prioritize 
outcomes in different ways that reflect the values and core professional principles of the program. Whereas the original 
curriculum presents a somewhat scattered organizational framework, the modified version seems to better organize the 
curriculum. HLPs receiving high or medium emphasis in the modified curriculum seem to focus on social and individual 
foundations of learning whereas the less emphasized HLPs seem to focus on more specialized instructional practices 
(Table 10). Moreover, although all HLPs are interconnected, these distinctions between a social/personal emphasis and a more 
practical pedagogical emphasis may help students in this program achieve a more coherent understanding of the objectives and 
principles supporting the curriculum. 
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5. Discussion 
In the previous section, we described a two-stage approach to building a computer-based curriculum model and running a 
simulation that begins with the kind of curriculum map traditionally used by educators when designing or modifying a 
curriculum. In this first stage, the initial curriculum map is analyzed with the goal of highlighting key elements to be modelled 
and then tentatively assigning quantitative descriptors for these elements. Analysis of the curriculum may continue with further 
informal analysis by consulting with the curriculum design team to see if other elements or quantitative descriptors should be 
considered. Ultimately, an explicitly formal approach is adopted. In this more formal approach, gaps in the conceptual and 
quantitative framework are filled by means of assumptions drawn from research findings and recommendations of the 
curriculum design team. When all key elements of the model are defined and principles that determine student learning are 
coded, the model is ready to be used. Typically, model-based simulation studies will be designed to compare two or more 
alternative curricular models of special interest (e.g., McEneaney, 2016). Our work focused on comparing two distinct 
populations of simulated learners in two different curriculum designs focused on the same seven learning outcomes. Our first 
model represented a curriculum as proposed by program faculty. A second model introduced changes that were suggested by 
our first-stage curriculum analysis, while retaining the same overall course and program time-on-task constraints. In effect, we 
held overall time-on-task constant while we varied the allocation of time across learning outcomes within courses. 

Results of the simulation study we ran showed significant differences even after accounting for the variability built into 
the models. Because our study was based on seven dependent variables, our first analysis relied on a MANOVA showing 
significant differences. We followed up with a series of univariate ANOVAs focusing specifically on differences between the 
curriculum designs and learning achievement means for the seven HLPs across all students. Results showed that means for 
every learning goal differed significantly between the two curriculum designs, although some outcomes showed greater effect 
sizes than others. We did not test for differences in performance between high- and low-proficiency groups since this was a 
difference we had effectively embedded in our simulations in defining these learner populations. The results support the 
conclusion that even small modifications in a curriculum design can lead to measurable and practically meaningful student 
learning differences over the course of a multi-year curriculum. 

Lastly, when examining overall learning by simulated students across the two curricular designs, we found a reorganization 
of the curriculum’s de facto priorities, as expressed through levels of learning achievement. The original curriculum indicated 
a rather lopsided hierarchy with significantly greater learning gains for HLP #9 than for other HLPs. In the modified 
curriculum, however, we found that learning goal gains seemed to group in more conceptually meaningful tiers. Four HLPs 
(#3, #9, #10, and #12) that emphasize social and individual foundations of learning showed the greatest simulated learning 
gains, while three HLPs (#1, #2, and #15) that focus on more technical aspects of instructional practice reflected a lower 
priority in the modified curriculum design. This arrangement of priorities was not evident in the original curriculum but it 
appeared to more accurately reflect the social-justice orientation embraced by program faculty than the disproportionate 
emphasis on HLP #9. Colleagues on the curriculum design team not involved in the simulation work seemed especially 



 
 

 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

174 

interested in our forecasts of the modified curriculum’s impact on cumulative student achievement across outcomes, leading 
to further conversation about the relative importance and chronological prioritization of particular HLPs over others. It seemed 
to us that our curriculum redesign effort benefitted from both our predictive modelling and from the iterative informal 
discussion and analyses it supported. 

5.1. Benefits of CMLS 
Our proof-of-concept illustration of CMLS in action in the context of one program’s curriculum redesign effort showcases 
several key features and benefits of this approach. In this section we highlight what we see as the most important of these 
benefits and elaborate on key implications for stakeholders taking up the work of curriculum design and improvement. 

Regarding the practical challenges in curriculum design and continuous improvement, a first benefit of CMLS is the way 
it engages stakeholders in a collaborative process focused on the big picture of program improvement. Without imposing any 
particular protocols for collaboration, the CMLS approach in effect requires that stakeholders work together to clarify important 
global aspects of their program — things like shared learning outcomes and the allocation of time to outcomes in each course. 
Furthermore, CMLS requires that stakeholders quantify aspects of their curriculum — most notably time-on-task — for the 
sake of achieving a better collective understanding of students’ overall in-program experience. CMLS thereby centres the 
reality that, through their individual decisions about how much time to devote to particular learning outcomes, faculty 
collectively shape their students’ overall learning trajectories and their end-of-program levels of achievement — in both 
obvious and also not-so-obvious ways. These insights are, of course, not unique to the CMLS approach. That said, CMLS is 
unique regarding its capacity to directly show stakeholders — via simulations — big-picture consequences for students’ overall 
end-of-program learning achievement of even relatively minor changes in time-on-task allocation. This aspect of CMLS may 
have the effect of motivating diverse stakeholders to consider a broader whole-system perspective when making decisions 
about their individual courses. 

Beyond its centring of the basic importance of time-on-task, a related second key benefit of the CMLS approach is the way 
it foregrounds for stakeholders how decisions about sequencing and spacing courses influence student learning. Here again, 
no claim is made that insight into the importance of sequencing and spacing is unique to CMLS (e.g., Carpenter et al., 2012; 
Kang, 2017; Méndez et al., 2014; Pavlik & Anderson, 2005). As was the case regarding time-on-task, however, CMLS 
concretely shows stakeholders how general learning principles and assumptions may play out. The CMLS approach thus 
provides helpful grounding for conversations among stakeholders about a program’s structure, and the pros and cons of 
modifying that structure in specific ways. This grounding may be especially helpful when, as is often the case, faculty and 
other stakeholders involved in a (re)design process do not all have deep experience or training in curriculum design (Lattuca 
& Stark, 2009). 

Once curriculum design or redesign work is launched, a third benefit of CMLS is the way it can support sustained thinking 
through iterative testing of alternative options. When a promising program modification has been identified, CMLS provides 
a tool to evaluate pros and cons using constructs and metrics (e.g., student learning achievement) that are universally 
meaningful. Here again, it is important to underscore that, in the context of a curriculum (re)design effort, simulation results 
should not be seen as providing definitive answers. Rather, these results should be seen as providing support for specific theory-
based hypotheses (e.g., “Given learning decay, achievement may be enhanced if sequencing assures outcomes are periodically 
reinforced”) or, on the other hand, as alerting stakeholders to possible problems and/or raising questions for further 
investigation. In our proof-of-concept case study, for example, simulation results show how a few minor adjustments in 
weighting of outcomes in a handful of courses would result in an overall rebalancing of student learning across the program’s 
seven major outcomes — a rebalancing shown to be not only statistically significant but also practically meaningful, based on 
the magnitude of the measured effects (Ferguson, 2009). Determinations of effect size are, of course, especially informative in 
situations like this one where the general direction of effects appears easy to predict (e.g., more time-on-task yielding higher 
achievement). Moreover, as we noted, the new hierarchy of learning outcomes better reflects the social-justice orientation of 
the program, a finding that could support further discussion and investigation. 

Finally, a fourth practical benefit worth underscoring is the fact that, even as the CMLS approach shows how program 
design decisions are likely to impact student learning, it remains transparent and open to inspection, adjustment, and correction 
in ways a mathematical black-box model is not. CMLS’s assumptions, rules, and algorithms are both explicitly stated and 
easily adjusted. Indeed, we suggest that the transparency and adjustability of CMLS invites stakeholders to think even more 
deeply about the factors being modelled (e.g., learning decay, learner proficiency) and about the interplay of these factors in 
their local context regarding how they might impede or enable student learning. CMLS therefore addresses concerns expressed 
by Hershkovitz et al. (2017) that “the use of any [simulated] data must be carefully considered, rigorously analyzed, interpreted 
through a strong theoretical framework and actioned with care and caution.” CMLS can therefore facilitate and inform many 
of the tasks and processes familiar to stakeholders who participate in curriculum design and improvement efforts, while also 
providing a new methodological footing. CMLS gives stakeholders a new type of tool with a capacity to provide principled 
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forecasts of the impact on learning of different curricular arrangements, a tool that may be potentially transformative in a wide 
range of curriculum design tasks, processes, and lines of inquiry. 

5.2. Limitations of CMLS 
As with any other methodology, the CMLS approach to curriculum design and improvement has limitations. Primarily, CMLS 
depends on simplifying the complexities of human learning by focusing on just a handful of key features of curriculum (e.g., 
time on task), learners (e.g., learner proficiency), and learning processes (e.g., learning decay). For example, the two models 
we describe do not address a potentially relevant learner attribute such as prior knowledge, though research indicates that, in 
some domains, high prior knowledge can enable less proficient learners to outperform more proficient learners who lack prior 
knowledge (e.g., Pearson et al., 1979; Schneider et al., 1989). At the same time, the power of CMLS lies precisely in its 
capacity to generate useful forecasts based on a circumscribed set of chosen inputs. Ultimately, the purpose of CMLS 
modelling is not simply to predict learners’ achievement scores but to explore patterns of effects on student learning trajectories 
across program outcomes. Moreover, it is important to note that the calibration and application of curriculum models depends 
in a critical way on the reliability and validity of the learning assessments actually used with real students since this kind of 
assessment data is what anchors a model in reality and makes its predictions most meaningful and actionable. 

A second important limitation is that the work we describe here is in its early stages. Although based on prior work 
modelling smaller-scale issues in instructional design (McEneaney, 2016; McEneaney, 2019), as far as we know, this is the 
first published study that applies curriculum design modelling and learner simulation on the scale of a multi-year curriculum. 
Moreover, since the actual curriculum our model is based on was only implemented in practice in the fall of 2021, we do not 
yet have data available to calibrate and test the model, so our present work remains a proof-of-concept rather than a validated 
model. The real power of simulation-based research, however, lies in its capacity to be developed across time in an iterative 
way to give it an ever-firmer grounding in the realities it seeks to model. As a result, our work represents a promising theoretical 
and methodological beginning rather than a definitive empirical test. 

Lastly, CMLS models, like all forecasting models, are open to legitimate criticism for simplifying reality and relying on 
assumptions. In this regard it is important to remember that the goal of CMLS models and simulations is not to make predictions 
of student achievement like a regression model. Rather, the CMLS models we present allow us to make theoretically grounded 
estimates of potential positive or negative impacts on learning achievement that a particular curricular arrangement may 
produce. The question to ask about CMLS models and their forecasts is therefore not, “Are they true?” Rather, from a more 
pragmatic perspective, the question to ask is this: Are CMLS models and their forecasts useful for advancing the work of 
curriculum design and continuous improvement by alerting stakeholders to potential and perhaps unanticipated benefits and 
downsides of particular curricular modifications, generating productive questions for further exploration, and supporting well-
informed decision-making? 

6. Conclusions 
We opened this article by observing that curriculum designers, program administrators, and other stakeholders sometimes find 
themselves in situations where there is insufficient historical data to answer questions about the likely effects on student 
learning of a contemplated curricular change. Modifications being contemplated may be unprecedented and/or complex and 
entangled. Or it may be the case that, before implementing change, stakeholders want to do their due diligence in terms of 
investigating the full range of intended and possibly unintended effects on student learning that the contemplated changes may 
have. Further, when a plausible program modification is identified, stakeholders may face hurdles that include a lack of shared 
language, metrics, and methodology for estimating and evaluating the likely impact of the modification. As we have illustrated, 
CMLS can help stakeholders address these hurdles and concerns. More broadly, CMLS methods have the potential to expand 
the stakeholder toolset for curriculum design and continuous-improvement work. CMLS provides a conceptual framework, 
procedures, and analytical methods for identifying possible areas for improvement and then supporting stakeholders in 
estimating with impressive granularity and specificity the likely consequences for student learning of a contemplated 
modification based on factors that are clearly stated and easily reviewed and adjusted. In sum, CMLS offers a methodology 
for making theoretically principled and detailed projections of the impact of contemplated curricular changes on student 
learning across multiple learning outcomes as well as for students with different learner characteristics. CMLS in no way 
replaces other sources of guidance, such as relevant experimental and quasi-experimental studies and LA studies, from which 
designers may try to extrapolate the likely impact of a change they are contemplating. CMLS should instead be seen as an 
additional and complementary source of guidance with unique benefits. 
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