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Reform movements in mathematics education advocate that mathematical 
argumentation play a central role in all classrooms. However, research 
shows that mathematics teachers at all grade level find it challenging to 
support argumentation in mathematics classrooms. This study examines the 
role of teachers’ mathematical knowledge in teachers’ support of 
argumentation in mathematics classroom. The study addresses a 
documented need for a better understanding of the relationship between 
mathematical knowledge for teaching and instruction by focusing on how 
the knowledge influences teachers’ support of argumentation. The results 
provide insights into particular aspects of teachers’ mathematical 
knowledge that influence teachers’ support of students’ development of 
valid mathematical arguments in mathematics classrooms and suggest 
implications for research and practice. 

Keywords: mathematical knowledge for teaching, argumentation, mathematical 
arguments, collective argumentation, teacher support of argumentation 

1 Introduction 

Reform movements in mathematics education advocate that mathematical 
argumentation play a central role in all classrooms. In particular, mathematics 
classrooms should become communities of inquiry in which students seek, formulate, 
and critique the validity of each other’s conjectures and arguments (See e.g., National 
Council of Teachers of Mathematics [NCTM], 2000; CCSSM, National Governors 
Association Centre for Best Practices [NGA] & Council of Chief State School Officers 
[CCSSO], 2010). Yet, research shows that teachers find it challenging to support 
argumentation in mathematics classrooms (See. e.g. Ayalon & Even, 2016; Bieda, 
2010). Furthermore, teachers’ mathematical knowledge plays an important role in 
their support of this practice in mathematics classrooms (Cengiz et al., 2011; Yackel, 
2002). The study examines aspects of teachers’ mathematical knowledge that 
influence teachers’ support of argumentation. There is a documented need for a better 
understanding of the relationship between teachers’ mathematical knowledge and 
aspects of instruction (See e.g. Cengiz et al, 2011). This study examines the 
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relationship between mathematical knowledge and teachers’ support of 
argumentation in classrooms. Processes involved in argumentation are similar to 
those involved in mathematical thinking. Therefore, supporting argumentation is 
supporting mathematical thinking, the topic of this special issue. 

2 Theoretical Background 

2.1 Argumentation in mathematics teaching  

In the mathematics education community, argumentation is considered an important 
disciplinary practice that should be promoted in all classrooms. The Principles and 
Standards for School Mathematics of the National Council of Teachers of 
Mathematics (NCTM, 2000) emphasize reasoning, proof, and communication, three 
essential components of argumentation. The Common Core State Standards for 
Mathematics (CCSSM, 2010) state that students should be able to “Construct viable 
arguments and critique the reasoning of others” (p. 7). There are several reasons for 
promoting argumentation in mathematics classrooms. Students’ ability to justify 
claims, which is part of argumentation, is considered a key indicator of students’ 
mathematical thinking (CCSSM, 2010). Argumentation is a natural part of doing 
mathematics since mathematics is a proving science and mathematical 
argumentation is central to proving (Ubuz, Dincer, & Bulbul, 2012). Argumentation 
can also help promote equitable learning opportunities in classrooms. This is because 
argumentation is a central construct to discourse and classroom discourse influences 
students’ access to mathematics. Teachers can promote equity in learning by 
providing all students with opportunities to produce and defend their arguments in 
classroom discussions (Bieda, 2010). 

Research on argumentation in mathematics classrooms has examined the 
classrooms conditions and the role of the teacher in facilitating the process (Ayalon & 
Even, 2016; Conner et al., 2014; Douek, 1999; Forman, Larreamendy-Joerns, Stein, 
& Brown, 1998; Maher, 1998; Mueller et al., 2014; Yackel, 2002). This research shows 
that teachers can play a central role in supporting argumentation. They can negotiate 
classroom norms that foster argumentation as the core of students’ mathematical 
activity, support students as they interact with each other to develop arguments, and 
supply argumentative supports (data, warrants, and backing) that are either omitted 
or left implicit (Yackel, 2002). When supporting students working collaboratively to 
develop mathematical arguments, teachers can prompt students to establish claims 
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and justifications, encourage them to critically consider different arguments, present 
to students what constitutes acceptable mathematical arguments, and model ways of 
constructing and confronting arguments (Ayalon & Hershkowitz, 2017).  

Despite its importance for mathematical learning, the implementation of 
argumentation in mathematics classrooms is not common practice (Bieda, 2010; 
Bleiler, Thompson, & Krajcevski, 2014; Staples, Bartlo, & Thanheiser, 2012). Research 
shows that teachers find it challenging to incorporate this practice in classrooms 
(Ayalon & Even, 2016; Bieda, 2010). They find it challenging to engage students in 
constructing and critiquing arguments (e.g., Ayalon & Even, 2016) and their 
interpretations of facilitating argumentation may not be aligned with those of 
reformers such as assuming that mathematical argumentation can occur with 
relatively little scaffolding by the teacher (Kosko et al., 2014). There is a general 
consensus that research on teacher support of argumentation is still in its infancy and 
more needs to be known about teacher knowledge and practice of argumentation 
(Kosko et al., 2014; Mueller et al., 2014). This study addresses this issue by examining 
aspects of mathematical knowledge that influence teacher’s support of 
argumentation. 

2.2 Mathematical argumentation 

Research on argumentation in educational settings frequently uses Toulmin’s 
(1969/2003) scheme of argumentation as an analytical tool. According to this scheme, 
the core of an argument consists of three essential parts: claim, data, and warrant. 
The claim is the assertion of which an individual is trying to convince others. The data 
are the evidence that the individual presents to support the claim. The warrant is the 
explanation why the claim follows from the data. Members of a group may not be 
convinced that a claim follows from the data and question the validity of the warrant. 
In such cases, the individual may present a support or backing for the warrant. The 
model has two additional components: a modal qualifier, which refers to the degree 
of confidence about a claim, and a rebuttal, which refers to the conditions under 
which the conclusions may or may not hold. The restricted version of Toulmin’s 
scheme is considered sufficient to analyze arguments at school level (Knipping and 
Reid, 2015; Krummheuer, 1995). However, Inglis et al.  (2007) showed that 
considering the additional components can provide a more comprehensive 
description of individuals’ argumentation and reasoning processes and helps 
investigate arguments similar to those made by mathematicians. 
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Krummheuer (1995) extended Toulmin’s notion of argumentation from an 
individual to a collective notion by distinguishing between situations where one 
individual tries to convince an audience about the validity of a claim and situations 
where two or more individuals interact to attempt to establish a claim, which 
Krummheuer called collective argumentation. Collective argumentation thus 
becomes an interactional discursive accomplishment and an argument can no longer 
be analyzed solely by considering a sequence of statements that are made. The 
functions that various statements serve in the interaction of participating individuals 
become critical to making sense of the argumentation that develops. What constitutes 
data, warrants, and backing is no longer predetermined, but rather negotiated by the 
participants in the interaction. This makes collective argumentation a useful construct 
for analyzing mathematical activity characterized by collective problem solving (see, 
e.g., Whitenack and Knipping, 2002; Van Ness and Maher, 2019). In particular, this 
makes collective argumentation a useful construct for analyzing the teacher’s role in 
facilitating argumentation as the teacher interacts with students to support the 
development of valid mathematical arguments (Yackel, 2002). In this study, teachers’ 
support of argumentation refers to teachers’ discursive role in supporting students’ 
development of valid mathematical arguments to support their solutions as they work 
collaboratively on challenging mathematical problems.  

2.3 Mathematical knowledge for argumentation  

It is generally accepted in the mathematics education community that the quality of 
mathematical teaching depends on subject-related pedagogical knowledge that 
teachers bring to bear on their work and this type of knowledge goes beyond what one 
acquires as a student of mathematics (Adler & Davis, 2006; Ball et al, 2004; Ball, 
Lubienski, & Mewborn, 2001). However, there is no universal agreement on one 
widely-accepted framework for describing this knowledge (Petrou and Goulding, 
2011). Several conceptualisations or models have been proposed over the years (See 
e.g., Shulman, 1986; Fennema and Franke, 1992; Rowland, 2005; Rowland, 2007; 
Rowland, Huckstep, & Thwaites, 2003). Petrou and Goulding (2011) provide a 
comprehensive review of the models focusing on their meaning, importance, 
limitations, implications for research and teacher development, and the political 
context in which they were developed. They note that the models elaborate rather than 
replace Shulman’s (1986) well-known conceptualisation of content-related categories 
of teacher knowledge, particularly the categories of Subject Matter Knowledge (SMK) 
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and Pedagogical Content Knowledge (PCK).  
One model is the Mathematical Knowledge for Teaching (MKT) framework 

proposed by Ball et al. (2008). The model distinguishes among three SMK 
subcategories. Common Content knowledge (CCK) is the mathematical knowledge 
held by people who have not taught children mathematics. Specialized Content 
Knowledge (SCK) is the mathematical knowledge specific to teaching and includes 
being able to examine alternative representations, provide explanations, and evaluate 
unconventional methods. Knowledge at the Mathematical Horizon is the “awareness 
of how mathematical topics are related over the span of mathematics included in the 
curriculum.” The MKT framework also distinguishes among three PCK subcategories. 
Knowledge of Content and Students (KCS) is knowledge of how students learn 
specific mathematical ideas and concepts, students’ common conceptions and 
misconceptions, and what students are likely to do in specific mathematics tasks. 
Knowledge of Content and Teaching (KCT) is knowledge of effective strategies for 
teaching particular content, and includes useful examples for highlighting important 
mathematical issues, and the advantages and disadvantages of using particular 
representations to teach specific ideas. There is also Knowledge of Curriculum (KC) 
which is provisionally placed in PCK category.  

In this study, teachers’ mathematical knowledge refers to MKT knowledge for 
supporting argumentation. Research shows that having strong knowledge in MKT 
areas enhances teachers’ support of students’ mathematical learning (Hill et al. 2005, 
2004). However, the relationship between knowledge in MKT areas and instruction 
remains unclear (Ball et al, 2001; Cengiz et al. 2011; Tirosh and Even 2007). This 
study examines the relationship between teachers’ MKT knowledge and teachers’ 
support of argumentation in mathematics classrooms. The focus is on identifying 
aspects of MKT in the areas of SCK, KCS, and KCT that help teachers support students’ 
development of valid mathematical arguments. The following research questions 
guided the study:  

1.  What aspects of mathematical knowledge for teaching (MKT) in the areas of 
SCK, KCS, and KCT support teachers in facilitating students’ development of 
valid mathematical arguments in collaborative problem solving?  

2.  How do such aspects support teachers in promoting argumentation in 
mathematics classrooms? 
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3 Method 

3.1 Research context 

The three-year after-school classroom-based Informal Mathematical Learning 
project (IML) provided the context for the present study. The goal of the project was 
to understand how students reason in building mathematical knowledge as they 
worked collaboratively on challenging mathematical tasks. The project was 
implemented in an economically depressed urban district in the Northeast coast of 
the United States. Ninety-eight percent of the students were African American or 
Latin. Approximately twenty-four sixth-grade students, all African American or Latin, 
volunteered to participate in the project. During IML research sessions students 
worked for sixty to ninety minutes on mathematical tasks selected from several 
mathematical content strands including combinatorics, proportional reasoning, early 
algebra, and probability with dynamic software. Students worked in particular 
conditions: they were encouraged to work collaboratively and to always justify their 
solutions to problems to each other. Their contributions were encouraged and always 
received positively. They were asked to evaluate their claims based on whether or not 
they were convinced that they “made sense” and they were given extended time to 
work on tasks. Follow-up interviews with students were conducted after sessions to 
gain an in-depth understanding of the students’ reasoning.  

Seven elementary school mathematics teachers participated as interns in the IML 
project. Their participation was part of a professional development program designed 
to help teachers develop knowledge to promote mathematical reasoning and 
justification in teaching. During the first year of the project, the teachers observed 
researchers lead research sessions with a class of sixth-grade students. During the 
second year, partner teachers led similar sessions with a new cohort of sixth-grade 
students, implementing the same content, while other teachers, researchers, and 
graduate students observed. At the end of each paired teacher implementation 
session, one-hour debriefing meetings were held for reflection and discussion of 
challenges in supporting students’ thinking. 

3.2 Data source 

All research sessions and debriefing meetings in the IML project were videotaped and 
digitized. Several cameras captured students’ mathematical activity in small groups 
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and whole class discussions as well as teachers or researchers’ exchanges and 
interactions with students and facilitation of conversations about students’ 
presentations on an overhead projector for sharing of student work. One camera 
captured the debriefing meetings. Data for this study was selected from videos of IML 
student sessions led by teachers in the second year of the IML project and of 
debriefing meetings held at the end of the sessions and attended by teachers and 
researchers. Examining videos of IML sessions showing teachers’ pedagogical actions 
and videos of debriefing meetings showing teachers reflecting on their actions is 
consistent Shulman’s observation that the knowledge base for teaching is 
distinguished by ‘‘the capacity of a teacher to transform the content knowledge he or 
she possesses into forms that are pedagogically powerful’’ (1987, p. 15; emphasis 
added) and the distinction by Ball (1988) between knowing mathematics ‘for yourself 
’and knowing in order to be able to help someone else learn it (emphasis added). This 
suggests that mathematical knowledge for teaching is reflected both in teachers’ 
utterances/reflections (Debriefing meetings) as well as their actions (IML sessions) 
while teaching. There were approximately twenty IML sessions and an equal number 
of follow-up debriefing meetings during each year of the project.  Data for this study 
consisted specifically of videos of six teacher-led sessions and debriefing meetings 
held at the end of the sessions, all involving versions of the Tower Problem, a task that 
was part of the counting strand. The statement of the Four-Tall Tower Problem when 
choosing from two colors read as follows: 

You have two colors of Unifix cubes available to build towers. Your task is to 
make as many different looking towers as possible, each exactly four cubes high. 
Find a way to convince yourself and others that you have found all possible 
towers four cubes high, and that you have no duplicates. 

Other versions of the Tower Problem used in the IML project included the Two-
tall tower problem when choosing form three colors and the three-tall tower problem 
when choosing from three colors. The tower problem is reasoning-rich. Students often 
use different strategies and types of reasoning to solve the problem (See e.g., Maher 
et al, 2010). This and the fact that in IML students were asked to justify their solutions 
to each other and to teachers/researcher helped create a learning environment for 
studying teacher support of argumentation. This is a case study. Stake (1994) defines 
an instrumental case study as a form of research where “a particular case is examined 
to provide insight into an issue or refinement of theory.” The six teacher-led student 
sessions and corresponding debriefing meetings involving versions of the Tower 
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Problem were (the instrumental case that) was examined to gain insight into aspects 
of mathematical knowledge for teaching that help teachers support argumentation in 
mathematics classroom (issue of interest). 

3.3 Analysis 

Data analysis combined video analysis methodologies (see, e.g., Powell, Francisco and 
Maher, 2003; Erickson, 2006) and analytical approaches for studying argumentation 
(See e.g., Krummheuer, 1995; Knipping et al, 2015). The analysis had two parts 
corresponding to the two types of data used in this study: (1) analysis of the IML 
teacher-led sessions and (2) analysis of the debriefing meetings that followed the 
sessions. In both cases, the analysis involved several iterations of three sequential and 
interrelated main steps. First, all videos were viewed several times to have a sense of 
the data as a whole. Second, the videos were viewed again and parsed into episodes. 
Third, all episodes were analyzed for insights into aspects of teachers’ MKT knowledge 
that support teachers’ actions to promote argumentation. In the case of IML sessions, 
the episodes consisted of instances of sustained interaction between teachers and 
students where the teachers tried to support students in establishing claims. In the 
case of debriefing meetings, the episodes were instances in which teachers reflected 
on their interventions during IML sessions. Analysis of the episodes from IML 
sessions involved (1) coding students’ developing arguments using Toulmin’s model, 
(2) open coding for aspects of mathematical knowledge for teaching in the areas of 
SCK, KCS, and KCT reflected in teachers’ actions to support argumentation and (3) 
describing how those aspects influenced teachers’ support of argumentation, 
particularly in responding to or eliciting valid mathematical arguments supported by 
those aspects. The challenges of using the MKT framework for characterizing 
teachers’ knowledge base have been documented in the literature. Cengiz et al (2011) 
found it difficult to distinguish between CCK and SCK and chose to collapse the two 
categories into one category: Common Content knowledge (CCK). Similarly, Petrou 
and Goulding (2011) noted it may be difficult to distinguish between SCK and PCK in 
the MKT framework. Also, the Mathematical Horizon and Knowledge of Curriculum 
(KC) domains remain under-conceptualized and require further refinement and 
investigation (Ball et al., 2008; Lesseig, 2016; Petrou and Goulding, 2011). For this 
reason, the study focused on the three categories of SCK, KCS, and KCT and defined 
them as follows: 
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1. SCK – knowledge of argumentation as a mathematical process, including its 
components, structure, and function (e.g., Toulmin’s scheme, types of 
arguments, valid and invalid argument and functions and roles of arguments) 

2. KCS - knowledge of students’ typical conceptions and misconceptions as well as 
what they can do when engaging in argumentation (e.g., typical Harel and 
Sowder’s (2007) proof schemes that student may use to determine if an 
argument is convincing or not) 

3.  KCT – Knowledge of interventions for (1) eliciting and (2) responding to 
students’ arguments (e.g., how to help students transition from authoritarian or 
empirical justification toward more analytical types of arguments; how to 
challenge invalid arguments; how to support generalization of arguments) 

Analysis of debriefing meetings was used to corroborate the analysis of IML 
sessions. The analysis of both kinds of data helped get a more accurate interpretation 
of teachers’ actions for supporting argumentation. All coding and interpretations were 
discussed within a research team until disagreements were resolved to enhance 
reliability. 

4  Results 

Data analysis revealed several aspects of teachers’ mathematical knowledge for 
teaching that support argumentation. These are described below along with how they 
influenced teachers’ support of students in building valid mathematical arguments. 

4.1 Argumentation as a discursive activity 

In the episode below students were working on finding towers two-tall with exactly 
two colors, blue (B) and yellow (Y). Martina was working with two other students. She 
built four towers [BY, BY, YB, YB] and continued to build more towers despite having 
duplicates. When the teacher asked her how many towers there were in total, Martina 
said, “It depends on how many blocks [sic unifix cubes] you have.” This prompted 
teacher to intervene:  

Marina Did you say two colors? 
T1:   Two different colors, two tall. How many towers can you build? 
Martina:   I guess it depends on how many blocks [sic unifix cubes] you have 
T1:   Well, okay. Suppose you had more blocks? Here is another one 
   (points at a tower the student had built). You built that one. (Asks all  
   students) What happens if she builds that one? 
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Students 1 and 2: They are all the same. 
Student 2:   (Talking to Martina) You gotta take one of each of them out, like this. 
    (removes duplicates from Martina’s towers and leaves only the 

           towers BY and YB) 
T1:   So, you can only make two different towers, two colors, two tall. [to  
   all students] Do you agree? 
Student 1 and 2: Yes. 
T1:   (Asking Martina) Do you agree, Martina? (Martina nods). Right. 
   Because what happens? Even if you had more blocks, what happens? 
Martina:  It is still going to be the same. 
T1:   Correct. So, you start building the same thing. So, it’s a repeat. Good. 

Using Toulmin’s scheme, Martina’s argument can be coded as follows: any two 
cubes stuck together make a tower and there can be least four towers (data). Since 
more towers can be built if more cubes are available (Implicit Warrant), the total 
number of towers that can be built depends the number of unific cubes available to 
choose from (claim). Martina’s argument is not valid because the data in her argument 
includes duplicate towers, which is not consistent with the specifications of the 
problem since it requires that she builds different-looking towers. The teacher 
successfully challenges Martina’s argument and two moves were crucial in her 
intervention and provide nights into the role of MKT in supporting argumentation. 
First, the teacher tells Martina to pretend that she has as many towers as she wants 
and, as Martina tries to build more towers, the teacher points at duplicates in 
Martina’s set of towers (“Here is another one”, “You built that one”). Second, the 
teacher tries to involve the other students in the group in examining Martina’s 
argument by asking questions not only Martina but also to the students (e.g., “What 
happens if she builds that one?” and “Do you [Martina] agree [with them]?”). The two 
moves provide insights into the role of MKT in supporting argumentation. The first 
move shows that the teachers understood that Martina’s argument is not valid 
because it includes incorrect data (SCK). However. this was not enough to help 
Martina realize the mistake in her argument. It is the second move that effectively 
helps Martina realize the mistake in her argument as the other students in the group 
tell Martina that her set of towers includes duplicates (“they are all the same”) and 
one student even removes the duplicates from her set of towers. This highlights the 
importance of the view of argumentation as a social practice which emphasizes social 
and cultural aspects and persuasion as its main function, compared to a view of 
argumentation that emphasizes structural or cognitive aspects and validation as the 
main function of the process (SCK). In this episode, the view of argumentation as a 
social practice allowed the teacher to use students’ collaboration in the evaluation of 
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a mathematical argument as a strategy for supporting argumentation (KCT). The 
strategy helped Martina realize abandon an invalid argument. 

4.2 Counterexamples to challenge arguments 

In IML sessions, students eventually arrived that at the correct solution that there are 
in total sixteen towers four-tall when choosing from two colors. The teacher 
challenged the students to justify the solution. One student, Gabriel (Gabe) built four 
groups of four towers and then said that there are sixteen towers in total because “four 
times four is sixteen,” (See Figure 1).  When the teacher asked the student why he said 
“four times four?” the student said “you can divide the sixteen towers into groups of 
four towers each.” The teacher was not convinced by the student’s explanation, but 
did not know how to challenge it and walked away. In the debriefing meeting that 
followed the session, the teacher shared with the audience her difficulty in challenging 
the 4x4 argument admitting that she did not know how to “elicit the convincing 
argument” from the student: 

T1:  Gabe said, “Sixteen divided by four is four.” I am like, “Well, what does 
  that have to do with what we are doing?” So, the question I have as a  
  facilitator is, what do I do in order to elicit the convincing argument?  
  Because even with Yonnie, he is getting at a point where he is getting 
  annoyed with me because I keep saying, “How do you know?” 

One teacher in the audience suggested asking the students to write their solutions 
on posters and then share them and discuss in class. However, the researcher who 
was facilitating the meeting proposed a different idea. She suggested first asking the 
students to predict how many towers there would be three-tall when choosing from 
two colors and then asking them to investigate empirically if their prediction was 
correct. The researcher explained how she thought the students’ reasoning would 
unfold. The students would predict nine towers by analogy with the 4x4 argument and 
then, when trying to build them, they would not find nine towers and would find only 
eight. They would also notice that every tower has an opposite-looking tower and 
would conclude that the total number of towers had to be even and would abandon 
their prediction: 

Researcher:  The way I frequently address that is to say, “Okay, how many 
[towers] do you think there would be if they were just three tall with two colors 
to choose from?” And Yonny [student] is going to say “Nine.” And I say, “Hm … 
that does work with your prediction. How are you going to test that one out?” 
And Yonny is going to say, “I guess I can build them.” Then I say, “But don’t 
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mess up your fours [four-tall towers they built].” Make sure they don’t destroy 
their four ones in order to do the three ones. And then when they can’t find 
them [the nine predicted towers] …there is a little bit of disequilibrium…Also, 
“what do you think it’s going to be for five?” Then they’re going to say “Twenty-
five.” Many people say, you know, “We know it’s going to be even. So, it can’t 
be nine. So, it must be one less.” People of all ages stay with the four by four 
but modify it because we know there are opposites. It’s got to be an even 
number of them. Eight is one fewer than nine. So, it’s got to be twenty-four. I 
would keep pushing them in all the ways you are thinking about. That is just my 
suggestion.  

In the following session, the teachers implemented the researcher’s suggestion 
and events unfolded exactly as the researcher had predicted. Several students 
predicted that there would be “nine” towers three-tall when choosing from two colors. 
One student, Mohamed, said, “Maybe nine because three times three equal nine.” 
However, the students could not find 9 towers. They found only eight towers. Also, 
Martina, the student in the previous episode, noticed that every tower had a “double” 
and concluded that that there could not be nine towers because the total number of 
towers had to be an even number: 

Martina: I said if it was 9 there would be like double of them because of the 
   opposite of one another. Like this one blue (BBB) and this one is  
   yellow (YYY) there would be another one. Except there would be an  
   opposite. So, it has to be an even number.  

Based on Toulmin’s scheme, Gabe’s argument can be coded as follow: For towers 
four-tall there are four groups of four towers each (data). Therefore, the total number 
of towers must be sixteen towers (claim) because the total number of towers must 
“height x height” (implicit warrant).  The implicit warrant in Gabe’s argument is 
supported by the students’ prediction that there would be nine towers three-tall when 
choosing from two colors because “three times three equal nine,” where “three” is the 
height of the towers. However, is not valid as a general warrant as it did not work for 
the three-tall towers problem when choosing from two-colors. This episode highlights 
the importance of counterexamples in supporting argumentation. The three-tall 
towers problem when choosing from two colors served as a counter-example to the 
“height times height” general warrant implicit in the “4x4” and “3x3” arguments. If 
the warrant was correct, there would be 3x3=9 towers three-tall when choosing from 
two colors. However, the students could not find nine towers and could not support 
the “height x height” warrant implicit in the 4x4 argument. Knowledge of 
counterexamples that challenge particular arguments can be considered an example 
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of SCK. This episode shows that such knowledge can help support argumentation by 
challenging invalid mathematical warrants (KCT). 

 

Figure 1.  Gabe (on left) built for groups of four towers each when choosing from two colors 

4.3 Knowledge of Students’ argumentative strategies 

In the 4x4 argument above the researcher introduced her suggestion by saying “The 
way I frequently address that is to say...”, “Yonny is going to say…,” and “Many 
people say...” This suggests that the researcher was using her knowledge of how 
students reason when working on the tower problem to come up with the suggestion. 
The researcher knew that students often came up with invalid warrants such as the 
“height x height” embedded in the 4x4 argument and designed interventions to 
challenge them using counterexamples such as the three-tall tower problem when 
choosing from two colors. In contrast, in another episode in which students were 
asked to build towers three-tall when choosing form three colors, Yonny, the student 
mentioned in the 4x4 argument above, used a reasoning-by-cases strategy and a 
“diagonal strategy” to prove that he has built all towers within the cases (See diagonals 
in Figure 3). An example of the application of the diagonal strategy to prove that all 
towers with three reds and one yellow (3R and 1Y) have been found is to show that the 
yellow cube has occupied all possible positions in the tower forming a (yellow) 
diagonal. Teacher T5 explained during the debriefing meeting that he was familiar 
with the use of the strategy when building towers from two colors, but was surprized 
to see it being used with towers with three colors: 

T5:  I don’t know why in my mind I didn't think it would work when I went  
  around to see his. At first, I didn’t say anything to him. I’ve learned that.  
  But I just looked at it and asked him to explain it, but now it makes sense.
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The statement suggests that not knowing that the diagonal strategy could be used 
with towers with three colors constrained the teacher’s support of Yonny’s reasoning 
process (I didn’t say anything to him…. But I just looked at it and asked him to 
explain it). This and the way the researcher introduced het suggestion in 4x4 episode 
highlight the importance of KCS in supporting argumentation. It shows that having 
knowledge of argumentative strategies that students are likely to use when making 
argumentation (KCS) can help teachers design effective strategies for support 
argumentation. In the 4x4 argument, knowing that students could use the “height x 
height” argument helped the researcher come up with a counterexample to challenge 
the argument. However, T5 did not know that students could use the diagonal strategy 
with three-color towers and this limited the teacher’s ability to support a student in 
developing of a valid argument based on this strategy. Overall, knowledge of students’ 
typical reasoning or argumentation support strategies for promoting argumentation 
that build on students’ argumentative reasoning (KCT). The three-tall tower problem 
when choosing from two colors was carefully designed task to be a counterexample to 
the “height x height” argument in 4x4 episode. 

4.4 Representation 

While working on finding all towers 3-three cubes tall when choosing from three 
colors, Yonny came up with the tower arrangement displayed in Figure 2. The 
arrangement shows “opposite” groups of towers (i.e., towers in one group are 
opposites of towers in the other group) and diagonal lines in different colors running 
through all groups except the groups of single-color and three-color towers. Yonny 
told the teacher that there were 27 towers in total because “I can’t find [any more of] 
them.”  The teacher said, “that’s not a proof” and Yonny responded, “I used opposites” 
and explained his idea using the diagonal lines: 

T1:   Wait. What do you mean? So, these are opposites?  
Yonny: Yeah. 
T1:   Explain it to me why? 
Yonny: Because like I said before. You got the yellow in a little line here  
   [traces the yellow diagonal in towers 2R1Y]. You got the red in the  
   little line here [traces a red diagonal in the opposite group of towers] 
T1:   What do you call that line? 
Yonny:  A diagonal line 
T1:   Ok, so you are saying there is a yellow in this diagonal [towers 2R1Y]  
   and a red in this diagonal [towers 2Y1R]? So, what does that mean?  
Yonny:  They are opposites. So, you got yellow and the red on both sides [of 
   the diagonal] 
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The teacher turned her attention to the pairs of towers with three colors in the 
arrangement. The teacher started to put the towers together and then stopped and 
asked if the towers could form a group. Yonny said “No. because there is no other 
similar [sic opposite group],” indicating that the group would not have an opposite 
group. The teacher then turned her attention to the diagonals and pointed out that 
there were no diagonals in the group of towers with three colors. Yonny stared at the 
towers for a little bit and then all of a sudden had an “aha” moment. He reorganized 
the towers into two opposite groups of three towers each and revealed red diagonals 
running in opposite directions in the groups (Figure 3): 

T1:   Would you put these [towers with three colors] together? Are they  
   similar in any? 
Yonny: No because there is no other similar [i.e. Opposite group] [puts the 
   towers back into pairs of opposite towers] 
T1:   Well, ok. All right. I see why these [YYY; BBB; RRR] would go  
   together. Tanisha [student seating at the same table], you see his  
   diagonals here? He’s paired them up in these groups where he has 
   these diagonals going down? [Turns back to Yonny] What about 
   these here [towers with three colors]?  
Yonny:  Those no… oooh. I think I got something. I think I got something. Oh. 
   I am so smart. Like that [reorganizes the towers with 3 colors in two  
   groups of three towers: BYR; BRY; RYB and RBY; YRB; YYB. A red  
   diagonal running through each group]. Like that? Cause see… Oh  
   shoot. See [explains how the groups are opposites] you got the two  
   yellows and the [two] blues switch and you got these [red cubes]  
   going in the same diagonal. You got these and blue right here and you  
   got.  
T1:   [Staring at the towers with three colors] Well, I see the diagonal here 
   [in one of the groups] but I don’t see [a diagonal there in the other  
   group…]. Ooohhh it [the diagonal run] in the opposite way. Cool.  
   Hum. Hum. Very cool. 

Yonny presents a proof-by-cases argument. He built 9 groups/cases of towers with 
3 towers each (data). Since he believes he has all possible groups and all towers in 
each group (warrant), he concludes, by the proof-by-cases argument (implicit 
backing), that there must be 27 towers three-tall in total (claim). The “opposites” 
strategy helps Yonny account for all cases/groups and the diagonals assures him that 
he has all towers in each case/group. However, Yonny does not initially apply the 
“opposite groups” and the “diagonal” strategies consistently across the arrangement. 
The towers with three colors are not (1) organized in opposite groups and (2) there 
are no diagonals running through them as is the case with other towers in the 
arrangement. The teacher’s intervention helps Yonny addresses these challenges and 
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it shows the importance of attending to how mathematical arguments may be 
represented in supporting argumentation (SCK). During the episode, the teacher pays 
close attention to the tower representation. This allows the teacher to see that towers 
with three colors are organized in opposite groups and there are no diagonals running 
through them as the other towers in the arrangement. The teacher then challenges 
Yonny organize the towers as a group (Would you put these together? Are they similar 
in any?) and to show diagonals running through the towers (What about these here 
[where are the diagonals]?). Yonny addresses these challenges successfully and is 
finally able to apply his proof-by-cases argument consistently to the entire tower 
arrangement. The previous episode showed that understanding students’ arguments 
is key for supporting argumentation. This episode shows that attention to students’ 
representations can help teachers identify and find ways to best support students’ 
arguments (KCT). 

 

Figure 2.  Yonny ’s initial arrangement of towers for his solution to the 3-tal 3-colors problem 

 

Figure 3.  Yonny ’s final arrangement of towers for his solution to the 3-tal 3-colors problem 
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4.5 Challenging arguments based on abductive reasoning 

In IML sessions, there were several instances in which students justified their 
solutions by simply describing the models they were able to build to solve the tower 
problem. In the 4x4 argument above Gabe argues that there are in total sixteen towers 
four-tall when choosing from two colours because he built a model with four groups 
of four towers. In example below also involving the four-tall tower problem when 
choosing from two colors, James and Tanisha built four pairs of opposite towers and 
argued that there are eight towers in total because “4x2” equals eight: 

T1:   So, how can you prove to me that you have all of them? 
James: I was thinking that you have to multiply four by two because there 
   are four cubes in a tower and there are two colors. I mean, you have  
   to multiply the height by the [number of] colors [in a tower]  
Tanisha: And I said that’s how you can find out how many towers we got. You  
   can say two [opposite towers] times four [times] equals eight  
   [towers]. 

James’ and Tanisha’s explanations simply describe the models they built. They 
built four pairs of opposite towers, which equals 4x2 or eight towers. When the teacher 
helped them see that they could build at least two more towers (YYYY and RRRR), 
bringing the total number of towers to ten, James said that the two extra towers “don’t 
count’ and Tanisha said “You will do five times two:”  

T1:  Now you agree that there are ten (towers). But what happens to that two 
  times four is eight and four times two is eight, that mathematical thing  
  that you were talking about? 
Tanisha: [Reorganizes her towers into five pairs of opposite towers] I get the  
  same. Because you still can do it my way, but it will just be five on the  
  side and two. You will do five times two. 
James: Now I am saying that these two [the extra towers], they are the same 
   colors. They really don’t count. 

James and Tanisha continue to present explanations that describe the models that 
they built. James says that the two extra towers “don’t count,” which preserves his 
original explanation by applying it to the group of towers with two colors. Tanisha 
says “you still can do it my way…You will do five times two,” which is simply a way of 
counting the new set of five pairs of opposite towers that she was able to build with 
the addition of two extra towers. The students’ emphasis on models that they were 
able to build suggests that the warrant supporting their arguments is empirical. For 
example, the 4x2 argument can be coded as follows using Toulmin’s’ scheme:  There 
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are be at least four pairs of opposite towers (data). Since no more towers were found 
despite trying (implicit empirical warrant), there must be only eight towers in total 
(claim). The empirical warrant is evident in Tanisha’s response “you will do five times 
two” when she finds out that there can be two extra towers. She adjusts her response 
to the new set of towers that she has been able to find. 

The 4xx and 4x2 episode shows the importance of knowing how to challenge 
abductive forms of reasoning (KCT). In abductive reasoning students present the best 
or most plausible explanation to support their claims and it can be the model they 
were able to build if it supports the claim that they want to make. In the 4x2 episode, 
four pairs of opposite towers (or 4x2) does equal to eight towers which the students 
believe to be the total number of towers because they could not find more towers. The 
challenge in countering arguments based on abductive reasoning is that it can be 
difficult to cause a cognitive disequilibrium in the students reasoning because the 
explanations presented are plausible or fit the argument that they are trying to make. 
However, the 4x4 episode above may suggest ways for challenging this type of 
reasoning. The teacher uses a suggestion from a researcher to ask the students to 
empirically investigate the validity of their prediction that there would be 3x3=9 
towers three-tall when choosing from two colors based in their 4x4 model. The 
prediction does not hold which challenges the warrant in the 4x4 argument. This 
suggests that asking students to (1) empirically investigate the validity of general 
warrant that follow from their argument and/or (2) using counterexamples (the two-
tall three-color tower problem) can help successfully challenge arguments based 
abductive forms of reasoning.  

5 Discussion 

This study examined the relationship between subject-related pedagogical knowledge 
and mathematical instruction using the Mathematical Knowledge for Teaching (MKT) 
framework. Specifically, the study examined how aspects of mathematical knowledge 
for teaching in the areas of SCK, KCS, and KCT that support teachers in promoting 
argumentation in mathematics classrooms. The results reveal several aspects 
including (1) knowledge of counterexamples, (2) a view of argumentation as a 
discursive process, (3) knowledge of (students’) typical argumentative strategies, (4) 
representation of mathematical arguments and (5) knowledge how to challenge 
arguments based on abductive forms of reasoning. These aspects can help teachers 
elicit valid mathematical arguments from students in collective problem solving. The 
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results offer important insights into teacher knowledge and practice of argumentation 
in mathematics classrooms.  

There are several definitions of argumentation, which reflects different 
perspectives on argumentation and its function (Schwarz et Hershkowitz, 2010). 
Some perspectives emphasize cognitive and structural aspects and validation as the 
main function of argumentation. Other perspectives empathize social and discursive 
aspects and persuasion as the main function of the argumentation (See., van Eemeren 
et al, 1996; Krummheuer, 1995; Baker, 2003). In a study that examined how teachers 
select tasks to promote argumentation, Ayalon and Hershkowitz (2017) found that 
teachers emphasized socio-cultural aspects of argumentation including student-
teacher interactions and collective processes of argumentation (where arguments are 
constructed and critiqued). Ayalon and Hershkowitz used this finding to recommend 
incorporating this dimension into current frameworks for examining the effectiveness 
of textbook tasks for promoting argumentation, which they argue tend to focus mainly 
on structural and cognitive aspects of argumentation. The results of this study provide 
further support for an emphasis on the socio-cultural view of argumentation, showing 
that it can help teachers support argumentation in mathematics classrooms by 
allowing them to engage students in mathematical discussions that help challenge 
invalid arguments.   

Studies show that introducing representations or contexts that are familiar to 
students and using counter-examples are two of the least frequent instructional 
actions in mathematics classrooms (Cengiz et al, 2011). In this study, a teacher was 
able to identify elements of an emerging reasoning-by-cases argument by examining 
a student’s tower representation (groups/cases of towers and a strategy for proving 
that all towers in a case were found) and then use it to challenge the student to apply 
the argument consistently across all cases and complete the argument. In another 
episode, the same teacher used a counterexample to successfully challenge an invalid 
warrant in a student’s argument. This shows that students’ representations and 
counterexamples can be important tools for supporting argumentation in 
mathematics classrooms and need to be emphasized more in mathematical 
instruction. 

In many episodes in this study, supporting argumentation involved attending to 
and building on students’ particular reasoning or arguments. A researcher suggested 
a counterexample that was used to challenge an invalid warrant based on her 
knowledge of how students reason when working on the Tower Problem. The attempt 



LUMAT 

166 
 

by teacher T5 to support a student, Yonny, in building an argument to support a 
solution to the three-color tower problem was constrained by the teacher’s lack of 
familiarity with the use of the “diagonal” strategy in the problem to prove that all 
towers of a particular were found. In contrast, teacher T1 successfully helped the 
student develop a complete proof-by-cases argument after identifying aspects of the 
argument in the students’ tower representation. These episodes highlight the 
importance of teachers’ understanding of students’ mathematical reasoning in 
supporting argumentation and suggest that the supporting argumentation is more 
likely to be effective when it builds on students’ argumentative reasoning.  

The results of this study show the challenges of countering arguments based on 
abductive forms of reasoning. In mathematics classrooms this type of reasoning is 
common and one way students often engage in such arguments is by offering 
explanations that simply describe the models that they built to solve a problem. The 
challenge in countering such arguments is the difficulty to cause cognitive 
disequilibrium in students’ thinking because the models often support the solution. 
The results of this study suggest that teachers can challenge abductive types of 
arguments by inviting students to empirically investigate the validity of general 
warrant that support the particular argument through counterexamples. As students 
find out that the general warrant is not valid, they begin to question the validity of 
their argument.  

The results may emphasize individual aspects of MKT knowledge in the areas of 
SCK, KCS, and KCT that help teachers support argumentation in mathematics 
classrooms. However, as some episodes suggest, a combination of aspects in the three 
areas is more likely to help teachers successfully support argumentation in 
mathematics classrooms. Being able to make sense of students’ mathematical 
reasoning and arguments (KCS) can help teachers design appropriate interventions 
for supporting the students’ development of valid arguments (KCT). However, making 
sense of students’ mathematical reasoning and arguments may require teachers’ 
understanding of and skills in argumentation as a mathematical process (SCK). The 
episode involving the counterexample helps illustrate the idea. The researcher 
suggested the counterexample (KCT) based on her knowledge from experience of 
students’ reasoning when working on the tower problem (KCS) and also her 
understanding of the general warrant that was implicit in the student’s 4x4 argument 
(SCK). The combination of aspects from the three knowledge categories helped 
successfully challenge the argument.  
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The results of this study have implications for practice and research. First, the 
results emphasize the importance of building on students’ mathematical reasoning in 
supporting argumentation. This suggests that professional development programs 
need to particular attention to teachers’ understanding of students’ mathematical 
reasoning and argumentation if they are to prepare teachers to support the practice 
more effectively in mathematics classrooms. Second, teachers can build knowledge of 
students’ mathematical reasoning and argumentation from experience. However, in 
this study a researcher came up with the counterexample used to challenge a student’s 
argument based on the researcher’s knowledge of how students’ reason when 
engaging in the tower problem. This suggests that close collaboration between 
practitioners and researchers can help create important synergies for generating 
important knowledge of students’ mathematical reasoning that can help teachers 
support argumentation in mathematics classrooms. Third, the results emphasize the 
importance of teachers paying more attention to students’ mathematical 
representations and using more counter-examples in instruction. These are two of the 
least frequent instructional actions in mathematics classrooms. Yet, this study shows 
that they can help for support argumentation in classrooms.  Finally, this study 
suggests that a potentially important area for research could be the extent to which 
professional development models such as the IML project involving a close 
collaboration between teachers and researchers in after-school settings can be 
successful in supporting teachers in building the knowledge they need to support 
argumentation and thoughtful mathematical activity in mathematics classrooms.  
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