
Citation: Sideridis, Georgios, and

Maisa Alahmadi. 2022. Estimation of

Person Ability under Rapid and

Effortful Responding. Journal of

Intelligence 10: 67. https://doi.org/

10.3390/jintelligence10030067

Received: 5 July 2022

Accepted: 2 September 2022

Published: 13 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Intelligence
Journal of

Article

Estimation of Person Ability under Rapid and
Effortful Responding
Georgios Sideridis 1,2,* and Maisa Alahmadi 3

1 Boston Children’s Hospital, ICCTR, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
2 Department of Primary Education, National and Kapodistrian University of Athens, Navarinou 13A,

10680 Athens, Greece
3 Education and Training Evaluation Commission and National Center for Assessment, King Khaled Rd.,

Riyadh 11534, Saudi Arabia
* Correspondence: georgios.sideridis@childrens.harvard.edu

Abstract: The goal of the present study was to extend earlier work on the estimation of person theta
using maximum likelihood estimation in R by accounting for rapid guessing. This paper provides a
modified R function that accommodates person thetas using the Rasch or 2PL models and implements
corrections for the presence of rapid guessing or informed guessing behaviors. Initially, a sample
of 200 participants was generated using Mplus in order to demonstrate the use of the function with
the full sample and a single participant in particular. Subsequently, the function was applied to data
from the General Aptitude Test (GAT) and the measurement of cognitive ability. Using a sample
of 8500 participants, the present R function was demonstrated. An illustrative example of a single
participant, assumed to be either a rapid responder or a successful guesser, is provided using MLE
and BME. It was concluded that the present function can contribute to a more valid estimation of
person ability.
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1. Introduction

According to Erwin and Wise (2002), low effort represents the most salient obstacle
to accurately estimating a person’s abilities (see also Wise 2015a). This conclusion was
drawn based on engaging an “invalid” response vector in the assessment of a person’s
abilities, as is the case for random responding and attempts to guess (Wise 2019, 2020a,
2020b) and wandering (Baird et al. 2012; Szpunar et al. 2013). For this reason, several ideas
have been put forth aimed at improving the accuracy and validity of personal attributes,
some of them focusing on examining the quality aspects of response times (Wise et al. 2020).
One such idea was the effort-moderated model put forth by Wise and DeMars (2006), in
which rapid responding is reflective of disengagement and the display of effort levels that
cannot be adequate for an item of a given difficulty level (see also Rios and Soland 2021).
Other formulations include the speed–level model (Semmes et al. 2011), the speed–distance
model (Fox and Marianti 2016), the lognormal response-time model (RT, van der Linden
2006, 2007), and the 2PL compensatory MIRT model for accuracy (Man et al. 2019). The
present study focuses on the Wise and DeMars (2006) effort-moderated model, suggesting
that a minimum amount of effort is needed to choose the right response among erroneous
alternatives for a given test item (Otter et al. 2008); thus, rapid responding is considered
detrimental for measurement purposes (Wise 2006, 2009).

Why is it important to incorporate and evaluate response times for our understanding of
aptitude and achievement? Several researchers have suggested that fast response times and
ability are likely two interchangeable dimensions of the same construct (Kyllonen et al. 1991).
We believe that this controversy was solved through factor-analytic studies in which distinct
constructs emerged. The role of response time, however, is undoubtedly an important
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factor in understanding self-regulatory behaviors during test taking (Haladyna 2004). For
example, a fast response time, also termed ‘rapid responding’, could indicate superb
knowledge and skills or disengagement and effort withdrawal (Rios and Soland 2021, 2022;
Soland et al. 2019; Wise 2015b). A slow response time, on the other hand, may be adaptive if
a person is careful and thoughtful, thus making good use of the additional time (Foley 2016;
San Martín et al. 2006; Ubulom et al. 2012), or maladaptive, as in the case of wandering (Wise
2019; Wise and Kong 2005). Examining response times can provide insights into strategy
use and cognitive processing (Jeon and De Boeck 2019) but also aid the valid assessment of
individuals, as unpredictable response times can be indicative of aberrant response patterns
that invalidate a person’s ability estimation and achievement (Wise et al. 2022). For the
above reasons, incorporating response times into our measurement of aptitude can greatly
improve our measurement accuracy and validity.

The present study is organized along the following axes. First, item response models
are described, including the estimation of up to three parameters, to illustrate random
guessing. Second, response behaviors reflective of rapid guessing are defined based on the
conceptualizations of Wise and DeMars (2006). Third, corrective procedures in the presence
of rapid guessing are presented. The paper concludes with the presentation of a modified
Baker and Kim (2017) and Rose (2010) function in R using data from a national assessment
in Saudi Arabia in which person abilities are estimated using corrective procedures and
MLE and BME estimation methods.

2. Item Response Models: 2PL and 3PL

The original 2PL model put forth by Birnbaum (1968) is as follows:

P
(
Yij = 1

∣∣ai, bi, θj
)
=

eai(θj−bi)

1 + eai(θj−bi)
(1)

calculating the probability that person j with ability theta (θ) is successful on a binary item
i having a discrimination parameter αi and an item difficulty bι. The term e reflects the
exponent function. The estimation of person theta is straightforward for the 2PL model
but becomes increasingly challenging for the 3PL model, which includes a nonzero lower
asymptote, assuming that minus infinity is not the lowest threshold for ability provided that
there is some success due to guessing (e.g., random guessing). For example, in multiple-
choice tests, a person consistently selecting one option out of five would end up having
a success rate of approximately 20% (i.e., 1/5 = 20%) in a balanced test. That estimate
would reflect a purely random guessing estimate. Interestingly, as Embretson and Reise
(2000) noted, the empirical literature has observed estimates much lower than what was
expected from random guessing, most likely because the selection of a response option
involves some judgment based on ability. When the ability is low, these judgments may
lead to errors exceeding the random guessing (1/m) threshold, while when the ability is
high, the likelihood of successfully guessing may increase beyond random guessing. The
estimation of the 3PL model has been credited to Birnbaum (1968), assuming a nonzero,
low asymptote of the ICC, and is as follows:

P
(
Yij = 1

∣∣ai, bi, ci, θj
)
= ci + (1− ci)

eai(θj−bi)

1 + eai(θj−bi)
(2)

calculating the probability that person j is successful on a binary item i given a discrimina-
tion parameter a, an item difficulty parameter b, and an item’s nonzero lower asymptote c.
The term e reflects the exponent function. The 3PL model takes the following form using
the item guessing parameter γi in the logistic metric:

P
(
Yij = 1

∣∣ai, bi, γi, θj
)
=

e(γi)

1 + e(γi)
+

(
1− e(γi)

1 + e(γi)

)
eai(θj−bi)

1 + eai(θj−bi)
(3)
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The item guessing parameter c is estimated as follows:

ci =
e(γi)

1 + e(γi)
(4)

with γi being the second threshold of the 3PL model reflecting the lower asymptote of
the IRF. When γi is less than −15, the 3PL model reduces to the 2PL model, as the lower
asymptote is zero. An extension of the 3PL model is described in detail below, with an
attempt to estimate person-based theta by engaging some level of skill in the estimation of
guessing, hence introducing person-based guessing (e.g., San Martín et al. 2006).

3. Ability-Based Guessing Models

As mentioned above, random guessing is expected when no knowledge or skill is
present during the solving process. If this represented a valid argument, then there would
be no observations of guessing levels that are at times below what is expected according to
chance alone (Embretson and Reise 2000). Several authors have put forth the idea that some
degree of successful guessing is a function of a person’s abilities, as more skilled individuals
may more easily eliminate erroneous distractors (e.g., in multiple-choice questions—MCQs)
compared to less skilled individuals (e.g., San Martín et al. 2006). San Martín et al. (2006)
suggested that item-level guessing should be weighted by a person’s abilities using a
certain constant term, and this model was slightly extended by Zhu et al. (2019), who
stated that: “Correct response probabilities from a solution behavior and guessing behavior
increase as the level of ability increases” (p. 449). One goal of the present study was to
apply the San Martín idea in the use of ability as a foundation for estimating person-based
guessing. Specifically, San Martín et al. (2006) proposed the following model for estimating
a person’s likelihood of success on item i of latent trait Y using a fixed discrimination
parameter (excluded for clarity); the model is reduced to a 3PL ability-based guessing
model with a fixed discrimination parameter:

P
(
Yij = 1

∣∣, bi, γi, θj
)
=

e(θj−bi)

1 + e(θj−bi)
+

(
1− e(θj−bi)

1 + e(θj−bi)

)
∗ e(kθj+γi)

1 + e(kθj+γi)
(5)

which we supplemented with the inclusion of a discrimination parameter as follows:

P
(
Yij = 1

∣∣ai, bi, γi, θj
)
=

eai(θj−bi)

1 + eai(θj−bi)
+

(
1− eai(θj−bi)

1 + eai(θj−bi)

)
∗ e(kθj+γi)

1 + e(kθj+γi)
(6)

with k being a discrimination parameter or slope of the guessing process, so that ability-
based guessing incorporates both random guessing and ability-based guessing in the form
of a weight defined by parameter k. Although values of k are defined by the researcher,
San Martín et al. suggested a value of .228 as a realistic estimate for their random-guessing
example (i.e., 1/4 options). The present function allows for the inclusion of a researcher-
defined estimate of the slope that combines theta and guessing in the third column of
the item parameter file. Thus, in the ability-based model, a person-guessing parameter
was introduced contrary to the item-based pseudo-guessing parameter (in Equation (3)),
as follows:

cij =
e(γi+kθj)

1 + e(γi+kθj)
(7)

which comprises the item-level guessing parameter and weight k to incorporate a person’s
ability into the estimation of the person-ability-based guessing index. All the above models
involve the estimation of person abilities only; however, as mentioned above, there is ample
evidence that time invested in solution-based behaviors is a salient predictor of achieve-
ment outcomes. Consequently, the section below describes IRT-based methodologies that
consider solution behavior based on response time and ability-based behaviors.
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4. The Effort-Moderated Model (Wise and DeMars 2006)

The original effort-moderated model was put forth by Wise and DeMars (2006), who
posited that a solution behavior (SB) needed to be incorporated into the model so that indi-
viduals would be split into rapid and thus non-effortful responders and those displaying
solution-based behaviors. Specifically, they suggested that solution behavior could repre-
sent a dichotomy of 0–1 based on an overall index of response time effort (RTE) estimated
as follows:

RTEj =
∑k

i=1 SBij

k
(8)

with k being the number of items on the instrument under study. They further proposed that
the distinction between rapid and effortful responders should involve a judgment based
on item-specific response times, with values suggested as indicative of rapid guessing
when they reflected individuals responding within the 10th percentile of the response
time distribution per item. Further work by Wise and Kong (2005) indicated that the RTE
measure was internally consistent and exhibited convergent validity with self-reported
effort and discriminant validity with SAT scores. Thus, the 3PL effort-moderated model is
as follows:

P
(
Yij = 1

∣∣ai, bi, ci, θj
)
=
(
SBij

)
(ci + (1− ci)

(
eai(θj−bi)

1 + eai(θj−bi)

)
) +

(
1− SBij

)
(gi) (9)

with gi reflecting random guessing, i.e., 1/number of options. Given that SB only takes
values of 0 or 1, rapid guessing would be associated with theta levels equal to random
guessing only (gi), whereas effortful responding would be equivalent to a 3PL model
(Equation (2)). Rios and Soland (2021) suggested that a 2PL version of the EM model
incorporating SB may achieve a higher efficiency by being more parsimonious. Thus, they
proposed the following 2PL effort-moderated model:

P
(
Yij = 1

∣∣ai, bi, θj
)
=
(
SBij

)( eai(θj−bi)

1 + eai(θj−bi)

)
+
(
1− SBij

)
(gi) (10)

This also includes random guessing (1/number of options) when rapid guessing
is operative.

5. Extensions of the Effort-Moderated Model

In the present study, the EM model shown in Equation (10) was implemented along with
an extension through which rapid responders obtain a score not only for random guessing
but also for informed guessing. This idea is presented by the following conceptualization:

P
(
Yij = 1

∣∣ai, bi, θj
)
=
(
SBij

)( eai(θj−bi)

1 + eai(θj−bi)

)
+
(
1− SBij

)(
kθj + gi

)
(11)

with the last term indicating that rapid guessers obtain a score equal to random guessing gi
plus their estimated theta ability times a slope factor (San Martín et al. 2006). Obviously,
the estimated theta ability in Equation (11) originated from the running of a prior model
comprising a 2PL model fit to data assuming effortful responding for all individuals. Again,
the rationale for (11) lies in the fact that when there is one correct response and several
distractors, it is sensible to assume that individuals with a high ability may guess the item
correctly, even when their knowledge does not suffice, as they can eliminate one or more
erroneous distractors that tap into their relevant skills. Whether high-achieving individuals
can eliminate all distractors is irrelevant; if they eliminate more distractors compared to
lower-ability individuals, then the odds of success increase significantly to their favor. Thus,
Equation (11) extends the Wise and DeMars (2006) EM model by incorporating not only
rapid by also informed guessing.
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6. Estimation of Person Theta Using MLE and BME

The two most commonly used analytical derivations of person abilities involve maxi-
mum likelihood (ML, Lord 1983; White 1982) and Bayesian estimation (Owen 1975). Both
represent important conceptual frameworks, with MLE presenting the limitation that re-
sponse vectors with no variance (e.g., all zeros or all 1s) cannot be estimated (Bishop et al.
1975), which is why Baker and Kim put forth two conventions for lower and upper theta
limits (e.g., theta = ±log(2*length of measure)1). On the other hand, BME adds to the
estimation of theta the multiplication of the likelihood function with a curve representing
some form of prior knowledge. The elaboration of the MLE and BME functions is beyond
the scope of the present study. Excellent sources can be found in Rose (2010); Gelman et al.
(2003); and others.

7. Importance and Goals of the Present Study

This study presents several novelties. First, estimating person theta in the presence
of guessing patterns has not yet been investigated, particularly with regard to informed
guessing. Third, MLE and Bayesian methodologies were implemented by extending the R
function developed by Baker and Kim (2017) and Rose (2010). Consequently, the goal of
the present study was to provide MLE and BME estimates of person theta in the presence
of random and/or informed guessing. Third, incorporating response times could add
stochastic information to the measurement of skills and competencies and provide a more
valid estimate of these attributes.

8. RBIRT Function in R

The goal of the present R function was to provide MLE and BME estimates of person
theta in the presence of random or informed guessing with the application of corrective
procedures including the Wise and DeMars (2006) random-guessing approach and the
San Martín et al. (2006) informed-guessing approach. The function requires as inputs (a)
an item parameter matrix that includes item discrimination, item difficulty parameters,
and a vector of slopes as per the San Martín model, which is easily retrieved using any
commercial or freeware package (e.g., IRTPro, Mplus, R); (b) a response vector with 1s
denoting successful responding and 0s failure; and (c) a vector of estimates reflecting rapid
or effortful responders. The function returns a list of person theta and standard errors of
length equal to those of the input response vector. Specifically, the function is as follows:

RBIRT <- function(model,Nopt,respv,ip,rbe,est)

with each of the function parameters being:

Model: 1 = MLE estimation, 2 = BME estimation;
Nopt: Number of options/scaling as in multiple-choice, Likert-type measures;
Respv: Response vector of person for a given measure;
ip: Item parameter file with the first two columns presenting a and b estimates and the
third column the fixed slope defining informed guessing through combining theta with
random guessing as per the San Martín et al. (2006) ability-based guessing model;
rbe: A vector defining person rapid (0) versus effortful (1) responding;
est: (1) Rios and Soland model, i.e., random guessing, and (2) San Martín et al. ability-based
guessing model;

The present R function is available free of charge through the following GitHub
repository: https://github.com/GS1968/CFAtools/blob/main/RBIRT.R (accessed on
6 September 2022).

8.1. An Application of the RBIRT Function Using Simulated Data

Response vectors of 200 participants were generated for a seven-item instrument
using Mplus 8.8. Item discrimination parameters were estimated to be equal to 1 and item
difficulty levels equal to −2, −1, −.5, 0, .5, 1, and 2 logits. The RBIRT function was applied

https://github.com/GS1968/CFAtools/blob/main/RBIRT.R
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to a single individual (participant 9), who presented the following response vector, with 0 s
and 1 s signaling incorrect and correct responses, respectively:

Item I1 I2 I3 I4 I5 I6 I7

Person 9 1 1 0 1 1 1 0

Person 9’s theta score according to MLE was equal to 1.015, with a standard error of
0.927, assuming effortful responding. The respective theta estimate using BME was 0.995,
with an S.E. = 0.350. If the person was judged not to be effortful, then his/her theta ability
was simplified to random guessing (i.e., theta = −1.099) using both MLE and BME based
on the Rios and Soland model or −1.322 based on the San Martín model.

8.2. An Application of the RBIRT Function in the Measurement of Cognitive Ability

The present example involved the measurement of analogy from the computerized
version of the General Aptitude Test (GAT), a standardized achievement measure developed
and validated in the Kingdom of Saudi Arabia (Dimitrov 2017). Although its function
is for the estimation of a single person’s ability, it can be simultaneously applied to a
sample of participants. In the present example, theta estimates and standard errors for
8500 individuals were simultaneously estimated. First, the 2PL unidimensional model
was determined to be well-fitted to the data according to the Pearson chi-square test
(χ2(51) = 66.970, p = .066), and the root mean square error of approximation (RMSEA) was
.01, again indicating exact fit based on the recommendations of MacCallum et al. (1996).
Consequently, the obtained item parameter informed the item parameter matrix that was
used as the input in the RBIRT function (see Appendix A for model estimation using
Mplus 8.8). Further evidence when contrasting the 2PL model and the 2PL EM model was
provided by estimating the latter without including rapid responders (Rios and Soland
2021). These results are shown in Table 1 and are indicative of a better model fit for the 2PL
EM model compared to the 2PL model, suggesting that the proposition to exclude rapid
responders from the estimation process was valid. For the same sample, RBE behaviors
were also estimated using Equation (8), suggesting that these individuals exerted 10% less
effort compared to the rest of the sample. By applying the RBIRT function to the sample of
input parameters listed in Appendix B, we obtained the results shown in Figure 1, with
estimates of theta and standard errors of measurement (SEMs).

Table 1. Comparison between 2-PL model and effort-moderated model.

Model LogLik Pearson
χ2/DF LRT/DF AIC BIC SABIC

2PL −28709.021 66.976/51 66.169/51 57,442.043 57,526.581 57,488.448
2PL EM −27070.960 64.389/51 62.742/51 54,165.920 54,249.860 54,211.727

Note. Loglik = Log likelihood; AIC = Akaike information criterion; BIC = Bayesian information criterion;
SABIC = sample adjusted BIC.
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As shown in the figure, the MLE estimate of theta was −0.923, with an SE of 0.906,
and the respective BME estimate of theta was −0.761, with an SE of 0.379. These findings
agreed with the general premise that SE estimates using BME are generally lower than
those using MLE. Case 7 represented an effortful individual, but, if we assume that the
person was a rapid responder, his/her theta ability reduced to either random guessing (i.e.,
−1.098 logit) or ability-based guessing (i.e., −1.322 logits).

9. Limitations and Future Directions

The present study is limited for several reasons. First, the goal of the present R function
was to estimate person theta, and despite making simultaneous estimations for a sample,
the estimations only pertained to a single individual. Second, the estimation process
involved the Newton–Raphson algorithm, which is more efficient than the gradient descent
algorithm (or the steepest descent), but a plethora of estimators could achieve optimization,
each with various pros and cons. Examples are the Bayesian variational inference (VI,
Bishop 2006), quasi-Newton procedures, second-order extensions, and alternative direction
method multipliers. Furthermore, the corrective procedures adopted herein represent only
two of the available recommendations for incorporating person guessing. Other examples
include the 2PL model with guessing presented by Zhu et al. (2019), Han’s (2012) fixed
guessing approach, and higher-order mixture models (e.g., Lu et al. 2020).

The present study extended the work of Baker and Kim (2017) and Rose (2010) on
estimating person theta by using the 2-PL model and applying random guessing and
informed guessing recommendations. Furthermore, both MLE and BME approaches were
implemented. The current function avoids some of the complexities of the 3PL model by
accounting for random or informed guessing within the 2PL framework. This approach
preserves the desirable properties of the 2PL logistic model compared to the 3PL model.

Author Contributions: G.S. conceived the idea, created the R function, and contributed to the writing
of the manuscript. M.A. analyzed the data and contributed to the writing of the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This project was funded by ETEC.

Institutional Review Board Statement: The study met the requirements for ethical conduct provided
by the Ethics Board of the Education and Training Evaluation Commission. The data were part of a
national cognitive assessment in the Kingdom of Saudi Arabia.

Informed Consent Statement: Participants completed written consent forms before they participated
in the study.

Data Availability Statement: Data are available from the second author upon request.

Acknowledgments: We would like to acknowledge ETEC and the director of the Department of
Research Khaleel Alharbi for his support with this project and the data provision.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Annotated Mplus syntax for the estimation of a 2-PL IRT model with dichotomous data.

TITLE: 2PL (IRT) model ! Title of Model to run (label, not required)
DATA: FILE = data.dat; ! Name of data file in fixed asci format
VARIABLE: NAMES = u1-u6; ! Names of items, u1-u6
CATEGORICAL = u1-u6; ! Items are categorical
ANALYSIS: ESTIMATOR = MLR; ! Estimator is Maximum Likelihood with robust errors
MODEL: f BY u1-u6 *; ! One-factor model specified with 6 items, freely estimated
f@1; ! Factor variance fixed to unity for identification
[u1$1-u6$1]; ! First threshold estimating item difficulty in logits
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Appendix B

Inputs of R function for Estimating MLE Theta
RBIRT <- function(model,Nopt,respv,ip,rbe,est)
Example:
respv<-read.csv(“ANA2.csv”, sep = “,”, header = FALSE, stringsAsFactors = F)
as.matrix(respv)
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Appendix B 
Inputs of R function for Estimating MLE Theta 
RBIRT <- function(model,Nopt,respv,ip,rbe,est) 
Example: 
respv<-read.csv(“ANA2.csv”, sep = “,”, header = FALSE, stringsAsFactors = F) 
as.matrix(respv) 

 
ip<-read.csv(“ip.csv”, sep = “,”, header = FALSE, stringsAsFactors = F) 
as.matrix(ip) 
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as.matrix(ip)
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The reader should note that for the estimation of informed guessing (i.e., est = 2),
one needs to run the model in two steps. First, run the model with an rbe vector with
all 1s so that the theta estimates will be computed regardless of the response speed and
will be saved in the folder ‘c:\RBIRT\th.csv’ as a .csv file. Then, the specific theta vector
should be saved under the name {thmle} if the model was run with the MLE estimator
and {thbme} if the BME estimate was used. These vectors should be read in R or RStudio
using the read.csv command, as was carried out for the above vectors (respv, ip, rbe, etc.).
Furthermore, the rbe (rapid behavior vector) that includes 0s and 1s should be read again
(previously, the model was run with rbe = 1 throughout) so that the estimates of theta
under informed guessing can be estimated.

Note
1 For example, for a 20-item test, lower and upper theta values when response vectors include only 0 s or 1 s would be equal

to ±3.68879.
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