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Abstract: Figural matrices tasks are one of the most prominent item formats used in intelligence tests,
and their relevance for the assessment of cognitive abilities is unquestionable. However, despite
endeavors of the open science movement to make scientific research accessible on all levels, there is a
lack of royalty-free figural matrices tests. The Open Matrices Item Bank (OMIB) closes this gap by
providing free and unlimited access (GPLv3 license) to a large set of empirically validated figural
matrices items. We developed a set of 220 figural matrices based on well-established construction
principles commonly used in matrices tests and administered them to a sample of N = 2572 applicants
to medical schools. The results of item response models and reliability analyses demonstrate the
excellent psychometric properties of the items. In the discussion, we elucidate how researchers can
already use the OMIB to gain access to high-quality matrices tests for their studies. Furthermore, we
provide perspectives for features that could additionally improve the utility of the OMIB.

Keywords: intelligence; computer-based testing; item banking; figural matrices; test equating;
test development

1. Introduction

Figural matrices tasks represent a well-established class of tasks in intelligence tests
that load highly on general intelligence (Carpenter et al. 1990; Jensen 1998; Marshalek
et al. 1983) or, more specifically, on fluid reasoning (Gignac 2015) and are part of many
broad intelligence test batteries (e.g., Wechsler 2008). Fluid reasoning is an integral part of
modern intelligence models (Carroll 1993; McGrew 2005, 2009) and has a decisive role in
many aspects of a human’s life, such as occupational success (Schmidt and Hunter 2016),
educational attainment (Roth et al. 2015), and health (Gottfredson and Deary 2004). Thus,
figural matrices tasks are a popular and powerful instrument to answer many practical
and scientific questions. In the context of psychodiagnostics, to our knowledge, most
established measurement instruments are offered on a commercial basis only. Although
noncommercial tests might be of equal psychometric quality, commercially distributed tests
are usually better documented and easier to compare. As is the case for raw research data,
it is therefore desirable that the means to gather those data are also openly available, which
can serve as an accelerator to science (Woelfle et al. 2011). The current study therefore aims
to introduce a database of 220 figural matrices items with a broad range of item difficulties
that is entirely free and fully accessible for scientific use.

1.1. Figural Matrices

Traditional figural matrices tasks implement a distractor-based response format in
which the testee is presented with a fixed number of response options from which one
option must be selected. Test-takers must inspect the item stem and extract the underlying
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rules by means of inductive reasoning. Once the rules have been identified, test-takers must
envision the correct response and select it from the response options provided. However, it
has been shown that this approach results in some amount of uncertainty about to which
degree participants actually engage in inductive reasoning and to which degree they rely
on response elimination strategies (Carpenter et al. 1990).

An alternative to this approach has been proposed by Becker and Spinath (2014), who
developed and validated a construction-based figural matrices task (DESIGMA). There is
evidence that this approach improves the construct validity of figural matrices (Arendasy
and Sommer 2013; Becker et al. 2016). Furthermore, the DESIGMA items’ construction can
be described with simple mathematical and logical operations (Becker et al. 2016; Becker
and Spinath 2014) that provide a framework to classify the resulting items. Moreover,
the test developers have provided evidence that the strongest known predictor of item
difficulty is the number of construction rules underlying an item (r = −.49). Nonetheless, a
large amount of variance in item difficulties is unaccounted for. In another study, further
information (e.g., perceptual organization, amount of information) was used as a predictor,
which resulted in 87% explained variance (Primi 2014).

Despite this advantage, to our knowledge, the DESIGMA (Becker and Spinath 2014)
is the only publicly available construction-based figural matrices test. Unfortunately, it
is not free for scientific use. While the commercial distribution by publishers does have
advantages, such as protection of the test material, we believe that researchers should
have access to state-of-the-art measurement instruments free of charge. The item bank
that we introduce and evaluate in this article was mainly developed for scientific use and
consists of over 200 items with a construction-based response format, making it unlikely
that testees are motivated or even able to memorize all solutions. Furthermore, the results
presented by Levacher et al. (2021) indicate that learning the underlying rules will not
impair construct validity.

1.2. Item Banks

Item banks are a collection of test items aimed at a specific construct (Chituc et al. 2019;
Ward and Murray-Ward 1994) and are usually built on items tested under the assumptions
of IRT models (Bjorner et al. 2007). This has the advantage that all items measure the same
construct on the same scale and can therefore be combined in arbitrary combinations (Weiss
2013), which enables researchers to tailor a test that exactly fits their needs (e.g., short test
duration, only very difficult items, a special subset of characteristics, etc.) without impairing
the resulting test’s item properties. Furthermore, especially for longitudinal studies or
studies with repeated measures designs, it is essential that participants be presented with
different items for each measurement time. While some traditional figural matrices may
consist of two parallel forms, this is very rare to our knowledge. Moreover, the items from
an IRT-based item bank can be used for adaptive testing, allowing for more sophisticated
assessment procedures.

One common challenge for the development of item banks is that a large number
of items need to be included and analyzed regarding their psychometric properties. Of-
tentimes it is impossible to administer all items to a single sample to avoid systematic
measurement error (e.g., fatigue, dwindling motivation). Therefore, items are usually
spread across several subsamples. Although this approach could introduce some amount
of bias due to random differences between the subsamples, this problem can be mitigated
by statistical methods. Anchor-based test equating describes a method that uses shared
items (anchor items) between test forms to estimate a transformation coefficient (Battauz
2017). This coefficient can then be used for a linear transformation of the unique items
per test form. Consequently, all items are expressed on the same measurement scale, an
important prerequisite for a useful item bank.
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1.3. Aims of the Present Study

With the above in mind, the current study has four goals:

1. develop 220 items that are based on the construction principles described by Becker
and colleagues (Becker et al. 2016);

2. evaluate the psychometric properties of all items (e.g., item difficulties and part–whole
correlations from classical test theory);

3. test the items under the assumption of IRT models and eliminate the nonfitting items;
4. provide a dataset of the resulting item bank with detailed information on each item.

2. Materials and Methods
2.1. Sample

A total of 4657 applicants to medical schools in Germany registered for the current
study. After excluding 1076 participants who skipped the figural matrices and a further
1020 participants who gave no responses, the final sample consisted of N = 2561 participants,
of whom 1870 participants (73.02%) identified as female, 643 participants (25.11%) identified
as male, 3 participants identified as nonbinary, and 45 participants (0.02%) did not submit
their gender. On average, participants were 19.34 years old (SD = 2.58; range = 15–45).

2.2. Procedure

The figural matrices test was one subtest of a test preparation study consisting of
several tests of cognitive abilities and natural sciences. The order in which tests were
administered was randomized (therefore, participants interested in only certain tasks
sometimes skipped whole subtests). The complete preparation study was administered in
a self-paced and unproctored online study allowing participants to take breaks between
each subtest but not within items of a subtest. Upon starting the figural matrices test,
participants were presented with instructions on how the task was to be solved and were
then required to solve two practice items. For the two practice items, feedback was given
on whether the response was correct and what was wrong in case of a mistake. When the
practice items were finished, participants were allowed to work on 28 figural matrices tasks
without a time limit. For these items, no feedback regarding the response was given.

2.3. Development of the Figural Matrices Items

For the item bank, we chose to use the six construction rules described by Becker et al.
(2016) to develop a total of 220 items: (1) addition—elements from the first and second
cell in a row are added; (2) subtraction—elements in the second cell are removed from the
elements in the first cell; (3) disjunctive union (single element addition)—elements that
appear simultaneously in both the first and second cell are eliminated; (4) intersection—
elements that do not appear in both the first and second cell are eliminated; (5) rotation—
elements rotate (counter-)clockwise throughout the row; and (6) completeness—in every
row a certain set of symbols must be represented. The rules have been applied to simple
geometric shapes that have been selected for distinctiveness in order not to confound
inductive reasoning with individual differences in visual perception.

To ensure that the resulting item bank could be used for testing in every ability range,
item construction was based on a normal distribution of rules (e.g., many items with three
rules and fewer items with five rules), which can be seen in Table 1. Furthermore, Table 1
represents how often each construction rule was used (for a detailed overview of which
combinations of rules were used in each item, please refer to Table S1). Two students were
each provided with a list of items and constructed them with a tool developed by the first
author. For each item, an algorithm tested whether the item was solvable and whether the
demanded rules were implemented.

The items were divided into 10 test sets of 22 items each (Table S1). Each test set
consists of two items with one rule, five items with two rules, eight items with three rules,
five items with four rules, and two items with five rules. Furthermore, because it could not
be guaranteed that each test set consists of perfectly comparable items and because each
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participant would only take one test set, six anchor items were developed and added to
each test set. Two anchor items had three rules; for all other rule counts, only one anchor
was used. This approach has been developed and validated in a recent simulation study
(Weber 2021).

Table 1. Properties of the developed items.

Rules Number of Items Add Sub Dis Int Rot Com

One 20 4 4 3 3 3 3
Two 50 20 16 16 16 16 16
Three 80 44 44 37 41 37 37
Four 50 35 36 32 35 31 31
Five 20 17 17 17 17 16 16

Sum 220 120 117 105 112 103 103

Notes: Add, addition; Sub, subtraction; Dis, disjunctive union; Int, intersection; Rot, rotation; Com, completeness.

All items were exported as vector graphics, and the test environment was deployed
with Unipark Questback EFS (unipark.com). Participants were presented with the item
stem on top (a 3 × 3 matrix with the last cell left empty) and the 20 construction elements
needed for construction of the response below (Figure 1). Clicking a construction element
once would highlight it with a red border; a second click would deselect the element.
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Figure 1. Example item from the current study. On the left, the item stem is presented with eight cells
being filled and the last one left empty. Participants are required to use the construction elements
on the right to construct the correct response. In this item, the corner elements are added within the
rows; thus, the correct response would be to select all four corner elements. Clicking on the button
would switch to the next item until all items were solved.

2.4. Statistical Analyses

Unless stated differently, all statistical analyses were carried out with the statistics software
R (R Core Team 2021), and the alpha cutoff for significance testing was set to α = .05.

To analyze item parameters, we calculated item difficulty and part–whole correlations
in the sense of classical test theory for each test set of figural matrices items separately
with the R package psych (Revelle 2021). To identify misfitting items, each test set of
figural matrices was analyzed with the R package mirt (Chalmers 2012), and the cutoffs
proposed by Wilson (2005) were applied (i.e., combination of infit or outfit < 0.75, or infit or
outfit > 1.33, and significant t-statistic). For all items fitting the 2 PL model, we estimated
item threshold (b) and item discrimination (a) with the equateMultiple R package (Battauz

unipark.com
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2021), which allows for the usage of anchor items in order to control for differences in
the samples.

To test that the items were all loading on a single factor as in the original DESIGMA
(Becker and Spinath 2014), a multigroup CFA (MGCFA) was calculated with the item test
sets as grouping factor. For this, the R package lavaan (Rosseel 2012) was used. Three levels
of measurement invariance were tested: (1) configural CFA where only the structure is fixed,
(2) strong invariance with loadings and intercepts being fixed, and (3) strict invariance
with additionally residual variances being fixed (Schroeders and Wilhelm 2011). Due to the
dichotomous nature of the data, the WLSMV estimator was used. The model was assumed
to be well-fitting if RMSEA was smaller than 0.06, SRMR was smaller than 0.08, and CFI
was bigger than .95 (Hu and Bentler 1999).

3. Results

Out of the 28 items per test set, participants solved on average 16.82 items (SD = 7.79),
with only n = 25 participants (1%) solving all items correctly. Participants spent on average
26.05 min (SD = 7.07) on the set of tasks. Overall, the developed items were of medium
difficulty (M = .55, SD = 0.19) and medium part–whole correlations (M = .54, SD = 0.19).
The 10 test sets differed significantly in their difficulty (F(9,210) = 5.33, p < .001, ω2 = .15) and
part–whole correlations (F(9,210) = 5.33, p < .001, ω2 = .15) as depicted in Figure 2. Internal
consistency was high for all test sets (α = .92, SD = .02).
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One item was identified that did not fit the 2 PL model (outfit(Item 7) < 0.001, p < .001)
and was excluded from the estimation of item difficulty and discrimination parameters.
The average item difficulty parameter after test equating was Mb = -0.17 (SDb = 0.99), and
the average item discrimination parameter was Ma = 2.09 (SDa = .84). Table 2 depicts the
distribution of item parameters depending on the number of rules employed per item (for
single item estimates, refer to Supplementary Table S1). The test equating was successful,
with no significant differences between the subtests (item discrimination: F(9,209) = 1.42,
p = .180, ω2 = .02; item difficulty: F(9,209) = 0.98, p = .458, ω2 < .01). The solution probability
of each item and the item difficulty as estimated by the 2 PL model correlated highly
(r = −.68, p < .001) and rose substantially after correcting for extreme outliers (i.e., ±3SD;
r = −.83, p < .001). Furthermore, item difficulty was strongly correlated to the number
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of rules underlying an item (r = .53, p < .001). In a regression with all six unique rules
as predictors, 34% of the variance in item difficulties were explained, F(6,218) = 20.31,
p < .001. The increase in explained variance in comparison to the number of rules was
statistically significant, F = 5.34, p < .001. Except for completeness, all regression weights
were significant (Table 3).

Table 2. Item parameter estimates per rule combination.

Rules a Mina Maxa b Minb Maxb

One 1.45 0.11 3.16 −1.87 −8.98 1.43
Two 1.52 0.62 2.97 −0.30 −2.25 1.44
Three 2.01 1.05 3.63 −0.16 −1.12 1.65
Four 2.64 1.08 5.16 0.24 −0.12 0.88
Five 3.10 1.63 4.48 0.67 0.27 2.41

Average 2.09 0.11 5.16 −0.17 −8.98 2.41
Note: a, item discrimination parameter; b, item difficulty parameter; Min, minimum; Max, maximum.

Table 3. Item difficulty prediction.

Rules B β t p

Intercept −1.56 — — —
Addition 0.41 0.21 3.84 <.001
Subtraction 0.51 0.26 4.84 <.001
Disjunctive union 0.77 0.40 7.20 <.001
Intersection 0.68 0.35 6.43 <.001
Rotation 0.34 0.17 3.16 .002
Completeness 0.12 0.06 1.11 .267

Note: B, regression weight; β, standardized regression weight. The test statistic for the intercept was omitted, as it
holds no meaning (i.e., items without at least one rule do not exist).

The configural measurement invariance model had overall good model fit; however,
the SRMR exceeded the predefined cutoff value (CFI = .991, RMSEA = .047, SRMR = .097).
The strong measurement invariance model (CFI = .969, RMSEA = .084, SRMR = .138)
fitted significantly worse than the configural model (∆X2 = 448.96, ∆df = 234, p < .001,
∆CFI = .22). Due to the lack of fit for the strong measurement invariance model, the strict
model was omitted.

4. Discussion

The purpose of this study was to develop an item bank of figural matrices that is free for
scientific use and can be used in many diagnostic settings. To this extent, 220 original figural
matrices tasks were constructed, and their psychometric properties were evaluated in a
large field study. All but one item fit well under the assumptions of a 2 PL model, suggesting
that the construction of a homogeneous figural matrices test was successful. Because it was
not possible to administer all 220 items to all participants, a test equating approach was
employed in which 10 test sets of items were created and supplemented with six anchor
items. The significant results of two ANOVAs comparing the subtests regarding the item
difficulties (in the sense of classical test theory) and part–whole correlation underlined the
necessity of such an approach.

It was assumed that the item construction method for this item bank would result in
a large pool of items with medium item difficulty and few items with very high or low
difficulty levels. On average, the items were solved by 55% of the participants. This notion is
further corroborated by the average IRT item difficulty parameter b = −0.17. This indicates
that the developed items were somewhat easier than expected. Nonetheless, as only
25 participants managed to solve all items, no ceiling effects need to be considered. This, in
combination with the average item discrimination parameter a = 2.09, can be considered
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evidence that the figural matrices items in this study are appropriate for differentiating
between various ability levels.

In accordance with prior studies, there was also evidence for the number of rules
being used in constructing an item to be a strong predictor of item difficulty (Becker and
Spinath 2014); however, analysis with all rules as predictors explained even more variance.
This finding is highly relevant for the further development and improvement of the Open
Matrices Item Bank and figural matrices tasks in general, as it allows for more precise
development of specific item difficulties if needed. In addition, to a certain degree, the
association between construction principles and item difficulty can help to disentangle
the association of item and sample parameters. Furthermore, it has to be noted that the
approach presented by Primi (2014) explained a larger share of variance. Therefore, further
studies should take a more experimental approach to varying item properties in order to
gain further insight into the determinants of item difficulties.

Further, in an MGCFA, it could be shown that while the factor structure was invari-
ant throughout all 10 test sets of items, there was no evidence for strong measurement
invariance (i.e., identical thresholds and loadings). This was congruent to the assumption
that all tests should measure the same construct (i.e., fluid reasoning) but that raw mean
values could not be compared without the use of test equating procedures. Accordingly,
there was also evidence that the solution probabilities or item difficulties as described by
classical test theory were significantly different between all 10 item sets, whereas those
differences disappeared in the IRT- and test equating-based item difficulties. This further
emphasizes that in large-scale test settings, to select or deselect individuals from a large
pool of test-takers, they should all be administered the same items. If that is impossible,
test equating strategies such as the use of anchor items (Battauz 2021) must be employed.

There are, nonetheless, three potential limitations concerning the present study. The
first limitation is associated with the selected sample. To lay a foundation for the Open
Matrices Item Bank, the development of a large item pool was central. Accordingly, a large
sample was needed, and the test preparation study for medical school admission tests was a
fitting opportunity to validate the figural matrices tasks. Nonetheless, even though this was
no student sample, some degree of preselection cannot be ruled out. Until recently, a high
GPA was nearly mandatory to be admitted to medical schools in Germany; this might cause
many potential applicants to not take part in the costly admission tests (they are associated
with costs of 100€) because they doubt their chances at success. However, the fees can
be waived if they pose an unreasonable challenge to potential applicants. Furthermore,
the goal of the student admission tests for medical universities is to enable applicants
with school grades that would prevent them from studying medicine. Therefore, the
actual extent of preselection cannot be estimated accurately. Furthermore, it is reasonable
to assume that a sample consisting of applicants for medical schools is restricted in the
variance of g. This could have an impact on the estimation of item difficulties resulting
in an underestimation of real item difficulties. Consequently, this could also impair the
predictability of item difficulty by the underlying construction rules. Further, the sample
was skewed toward female applicants, which, in turn, might have affected parameter
estimates, as there is evidence of an advantage of male test-takers in these types of tasks
(Waschl and Burns 2020). While the variance restriction might not be as strong as in a
student sample (i.e., only those applicants who have been admitted), further studies should
inspect item parameters with a more heterogeneous sample. A second potential limitation
is the lack of a time limit and no proctoring for the figural matrices tasks, which might also
partly explain why the item difficulties were easier than expected. It has also been shown
that unproctored testing is associated with significantly higher test scores (Steger et al.
2018); however, due to the COVID-19-related contact and travel restrictions, traditional
group tests were not feasible. The third limitation of the study is the scarce availability of
validity data. While the results of the MGCFA lay a strong foundation for the construct
validity of the OMIB data, at present, no data for convergent, discriminant, or predictive
validity are available. However, as the participants of this study also agreed to the collection
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and scientific use of their academic achievements (e.g., grades), these data will become
available in the future, once the majority of participants have reached certain milestones in
their studies.

Despite these limitations, the current data suggest that the figural matrices of the OMIB
can be used in unproctored settings as well since only 1% of applicants were able to solve
all items. While the setting of the current study was no high-stakes situation, the possibility
to prepare themselves for the real admission test should have motivated participants to do
their best to fully understand the tasks and improve their chances at admission.

The current article has provided a strong foundation for the OMIB; however, its
development is far from finished. Not only is it desirable to increase the current item pool so
that the reuse of items becomes virtually unnecessary, but there are also further avenues for
research that would deepen the understanding of figural matrices tasks and fluid reasoning.
For example, the current construction strategy and documentation of constructed items
would allow for the development of parallel tasks in which the only difference would be
the used symbols (e.g., round shapes instead of pointy ones or different shadings), which
could then be used to deepen our understanding of how visual complexity is associated
with the difficulty of figural matrices tasks. Furthermore, in the current study, participants
had to construct the response in working memory, and an empty cell would indicate no
change when selecting response options. Prior studies have shown that performance in
figural matrices is strongly associated with working memory (Kyllonen and Christal 1990;
Wilhelm et al. 2013) and that this might be due to the filtering of relevant features (Krieger
et al. 2019). If the last cell could indicate which options a test-taker has clicked, this should
alleviate some strain on the working memory and improve overall performance. In contrast,
the last cell could also be filled with all construction elements requiring participants to
delete the incorrect ones. This might increase the demand on filtering processes and impair
overall performance.

The present study contributes to a large body of literature regarding the importance
of fluid reasoning and primarily its assessment. A total of 220 figural matrices tasks were
developed and tested in a heterogeneous sample to provide detailed estimates regarding
their psychometric properties. They were of moderate difficulty with some very difficult
and some very easy items, allowing for the administration in various diagnostic settings.
All items, the rules used to construct them, as well as their properties are provided in the
Supplementary Materials and can lay the foundation for open diagnostics in parallel with
the ongoing open science movement.

5. Access to the OMIB

All information needed to implement the OMIB into research projects can be found on
OSF (https://osf.io/4km79/) in the Supplementary Materials. The repository contains a
template for pen-and-paper tests, image files of all item stems, a table that contains all item
properties (e.g., 2-PL parameters, rules used), and an example code for its distribution as a
computer-based test on survey sites. These files are accompanied by an instruction that
summarizes how the OMIB can be used, what variables can be customized, and how the
resulting test is to be scored.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jintelligence10030041/s1, Table S1: construction rules and item characteristics. Vector graphics
of all items and test templates are available online at https://osf.io/4km79/.
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