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Abstract
The purpose of this study was to examine the comparability of counts of embedded instruction 
learning trials when different methods of viewing and recording direct behavioral observations 
were used. In 13 classrooms, while videotaping embedded instruction implementation for a 
larger randomized controlled efficacy trial was occurring, teachers’ implementation of trials was 
coded in situ using pencil-and-paper methods. Videos were later coded using computer-assisted 
methods. Dependent-samples t tests, Pearson product-moment correlation coefficients, and 
additional score agreement calculations were conducted. Statistically significant differences were 
found in the estimates of trial frequency. Correlational analyses showed positive and strong 
relationships between the coding methods. Coding agreement was higher across the entire 
observation versus during 10-min continuous event blocks. In situ coding took significantly less 
time than video coding. Results provide empirical evidence for the advantages and disadvantages 
of common viewing and recording methods for quantifying behavior as part of systematic 
observation systems.
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When conducting observational measurements of behavior, a variety of formats and methodolo-
gies are available for use. Although informal observations can be conducted and recorded using 
descriptive notes or rating scales, direct behavioral observation systems (DBOS) often are used 
when the research questions of interest focus on systematically quantifying counts or durations 
of behavior (Yoder et al., 2018). One advantage of using these systems is that observers can code 
a range of behaviors from context-dependent to more generalized characteristics. DBOS are 
systematically developed or adapted to optimize the data collected on a behavior(s) of interest 
based on procedural decisions about behavior sampling, participant sampling, and coding view-
ing and recording methods (Yoder et al., 2018). Each of these procedural decisions has strengths 
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and limitations as these decisions influence data collection, data integrity, and the analyses that 
can be conducted with the data (Lane & Ledford, 2014). Of particular interest is the influence of 
viewing method (how coders observe the behavior) and recording method (how coders record 
their data and coding decisions). Without careful consideration of the strengths and limitations of 
these decisions and their interrelatedness, confounds can arise that affect the score reliability and 
validity of the observational data.

Methods for observational coding have progressed in part due to advancements in technology. 
In a 1991 summative review of technologies for collecting behavioral observation data, Farrell 
described recording methods ranging from the traditional in situ pencil-and-paper coding to bar-
code scanning, microcomputer switches, and palm pilots (Farrell, 1991). Since then, researchers 
have used additional methods such as computer-assisted coding with touchscreen tablets, smart-
phones, and telemetric devices with video or audio recording (Cohen & Rozenblat, 2015). As 
new technology emerges and applications for conducting systematic observations of behavior 
advance, there is a concurrent need to conduct studies that examine how decisions about behavior 
sampling, participant sampling, and coding viewing and recording methods affect score reliabil-
ity or validity. Studies conducted on behavior and participant sampling have generally found 
consistent results favoring continuous methods (e.g., Lane & Ledford, 2014; Mudford et  al., 
2009; Powell et al., 1977; Rapp et al., 2011), although recent guidance suggests circumstances 
when interval sampling might be justified (cf. Yoder et al., 2018). Studies comparing how behav-
ior is viewed (in situ vs. from video) and recorded (pencil-and-paper vs. computer-assisted) have 
been less frequently conducted. Recommendations related to selecting and using particular view-
ing and recording methods have primarily relied on scholars’ experiences and anecdotal observa-
tions. From these experiences and observations, strengths and limitations of using various 
viewing and recording methods have been described or proposed in the literature (e.g., Suen & 
Ary, 2014; Wessel, 2015; Yoder et al., 2018).

Given the coronavirus disease (COVID-19) pandemic, research in this area has become perhaps 
even more important. Researchers had to shift their methods for data collection when they lost the 
ability to observe in situ. This historical event further highlighted the importance of conducting 
research that compares viewing and recording methods so that researchers can make data-based 
informed decisions about how to use resources and adapt DBOS, particularly as viewing methods 
change. Although conducted prior to COVID-19, the primary purpose of the present study was to 
examine the extent to which two combinations of viewing and recording methods produced com-
parable estimates of the frequency of implementation of embedded instruction learning trials. In 
addition, we examined interobserver agreement between learning trial data coded in situ using 
pencil-and-paper versus when coded from video using computer-assisted software.

Comparing Coding Viewing and Recording Methods

Behavior viewing method refers to whether the observer is conducting the observation in situ or 
by watching a video. The recording method refers to the way in which the observer records the 
decisions and codes about the behavior of interest. The focus of the present study was the com-
bination of in situ pencil-and-paper methods compared with video computer-assisted methods.

Figure 1 shows a summary of considerations that have been described in the literature for four 
different combinations of behavior viewing and recording methods: (a) in situ pencil-and-paper, 
(b) video pencil-and-paper, (c) in situ computer-assisted, and (d) video computer-assisted. Among 
the considerations for selecting one of these combinations are the behavior of interest; materials 
required; and data collection, analysis, and use. In Figure 1, filled circles are used to indicate 
strengths for a combination of viewing and recording methods that have more practical utility 
given a particular consideration. A combination of methods that has limitations for a particular 
consideration and less practical utility is shown by hollow circles. Half-shaded circles are used to 
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reflect situations in which the utility may be dependent upon other aspects of the DBOS (i.e., 
conditional). For example, coding time is denoted as conditional for all video methods because 
coding time may depend on the degree to which a coder uses stop-and-go or multiple-pass cod-
ing. If a coder uses stop-and-go coding or multiple passes, then the coding time will be longer 
than that of in situ coding. If, however, the video coder uses single-pass coding and never stops 
the video to replay portions of the observation, coding time will likely be similar to in situ 
coding.

Related to the viewing methods used in the present study, in situ coding provides practical 
utility as it allows an observer to be present in the environment, which offers flexibility and 
adaptability. Alternatively, an observer using video must rely on data that have already been col-
lected and may restrict what the observer can see or hear. A situation where video coding may be 
more practical would be when a researcher wants to use the video data for additional purposes, 
such as during a coaching session. For recording methods, an observer could use either pencil-
and-paper coding or computer-assisted software based on resource availability, but computer-
assisted software might be more efficient for data processing and data analyses. Alternatively, 
pencil-and-paper coding may be more user-friendly and would minimize the risk of data lost due 
to technological malfunctions.

Beyond the considerations shown in Figure 1, we identified five studies in the extant literature 
(Bernal et al., 1971; Gridley et al., 2018; Johnson & Bolstad, 1975; Kent et al., 1979; Tapp et al., 
2006) in which data were compared when different viewing or recording methods were used. 
Table 1 shows information about each study for variables coded, sampling methods used, com-
parisons calculated, and findings reported. Across studies, mixed results were reported, often 
based on the statistics used to examine the comparability of methods. In some studies, correla-
tional statistics were used to examine comparability. Findings in these studies showed associa-
tions that ranged from no correlation to strong correlations (Gridley et  al., 2018; Kent et  al., 
1979). In other studies, researchers evaluated comparability by examining mean differences, or 
absolute differences, using analyses of variance (ANOVAs) or t tests (Gridley et  al., 2018; 

Figure 1.  Considerations for using four different viewing and recording methods.
Note. ●= strength; ◑= conditional; ○= limitation. These considerations are tailored to direct behavioral observation 
systems that use continuous event sampling.
aMethods of focus in the present study.
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Johnson & Bolstad, 1975; Kent et al., 1979). In these studies, some researchers found no differ-
ences between coding methods (Johnson & Bolstad, 1975), whereas others found differences for 
a subset of behaviors coded (Gridley et al., 2018; Kent et al., 1979). The viewing and recording 
methods used in each study and additional details about each study are discussed below.

In two studies, researchers compared continuous timed-event data using two different viewing 
methods: in situ at home or audio recordings of interactions in the home (Bernal et al., 1971; 
Johnson & Bolstad, 1975). Bernal et al. examined relationships between the recorded frequency 
of commands given by a mother to a child when an investigator-developed audio recorder was 
used to capture interactions in the home compared with an observer who was physically present 
to observe the interactions. Coders recorded the frequency of commands by tallying occurrences 
within 10-min blocks. No explicit recording format was reported. The authors compared com-
mand frequencies between the audio recordings and visual observations by calculating Pearson 
product-moment correlations and found a statistically significant and noteworthy correlation 
between the methods (r = .86, p < .01). Johnson and Bolstad (1975) examined differences in the 
recorded frequency of parent and child discrete behaviors during a 45-min continuous event 
sampling by observers in situ and those coding from audiotape recordings. The authors did not 
report the recording method used. No statistically significant differences in the absolute counts 
were found between viewing methods. In addition, moderate correlations were found for two of 
the three coding categories (r = .51 to .68, p < .05). A disadvantage of using audiotapes, noted 
by both Bernal et al. (1971) and Johnson and Bolstad, was technology malfunctions. Issues with 
the audiotapes resulted in lost and unrecoverable data in both studies.

Kent and colleagues (1979) compared frequency data gathered from the same DBOS that 
measured nine child behaviors using 20-s partial interval recording and three different viewing 
methods (i.e., in situ, behind a one-way mirror, and via closed-circuit television). No information 
on the recording method was reported by authors. No statistically significant differences were 
found in the estimates of frequency data between the methods for eight of the nine child behavior 
codes. The recorded rate of child vocalizations was higher for the in situ viewing method com-
pared to the other two viewing methods. Rank order comparisons across the coded behaviors 
were variable and ranged from no correlation to strong correlation (r = .00–.70). When all 
behaviors were collapsed together as a composite, correlation coefficients were moderate (r = 
.50–.58).

Only one study explicitly compared recording methods between observers (Tapp et al., 2006). 
Tapp and colleagues compared data collected when observers viewed videos and used pencil-
and-paper recording methods to observers who viewed videos and used computer-assisted 
recording methods. Observers coded caregiver–child interactions in a child-care setting for 
30-min, using 30-s partial interval sampling. The researchers compared the methods based on 
preparation time, duration of data entry, duration of kappa calculations, accuracy (kappa scores 
for coders within the same recording method), and overall cost. The authors found that the prepa-
ration times were comparable between the two recording methods. Kappa was high for observers 
coding within the same recording method (κ = .90 and .80, respectively, for computer-assisted 
and pencil-and-paper methods). The duration of data entry, kappa calculations, and overall cost 
indicated the computer-assisted method as the superior method because it was less costly, more 
reliable, and more time-efficient.

Gridley and colleagues (2018) compared continuous event sampling within six, 5-min blocks 
from observations where observers coded parent–child interactions for a sample of 40 dyads 
either in situ at home or via single-pass viewing of videotapes. Observers coded parent–child 
interactions on 29 discrete and non-contingent parent or child behaviors. No information about 
coding methods was reported. Gridley et al. found that the estimates of observed behaviors that 
resulted from the two viewing methods were positively correlated (r = .57–.96, p < .001) for all 
but two discrete behaviors (physical intrusions and physical negatives). When comparing 
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associations for the four composite categories, all four composites had statistically significant 
and strong positive correlations between coding methods. Absolute differences were calculated 
for the four composite categories (i.e., positive parenting, negative parenting, child positives, and 
child negatives). There were statistically significant differences for only one composite category 
(i.e., child positive).

For each study discussed above and shown in Table 1, researchers compared viewing and 
recording methods for discrete behaviors that were coded separately from any other participant’s 
behavior. Coders did not have to consider a linked set of codes that were based on individuals 
(i.e., practitioner and child) responding contingently to each other during an interaction, which 
was an issue in the present study. In the present study, we compared viewing and recording meth-
ods for a set of linked stimuli or behaviors (i.e., antecedent, behavior, consequence) coded as an 
event (embedded instruction learning trial) in a continuous event coding system. To inform future 
studies focused on quantifying embedded instruction learning trials, we were interested in deter-
mining if direct behavioral observation data collection obtained under two viewing and recording 
methods (i.e., in situ viewing with pencil-and-paper recording, video viewing with computer-
assisted recording) yielded comparable results.

Quantifying Embedded Instruction Learning Trials Using DBOS

Instructional interactions between a teacher and child comprise elements of a three-term-contin-
gency (i.e., antecedent, child behavior, consequence; Skinner, 1953). The combination of these 
teacher and child behaviors has been identified as a complete learning trial, which is defined as 
the teacher delivering all procedural components of a learning trial with fidelity (Snyder et al., 
2017). Measuring complete learning trials is a complex process for several reasons. First, observ-
ers are required to consider a sequence of interlocking behaviors occurring between people dur-
ing an interaction (e.g., teacher and child). Second, each child may be working on different skills, 
resulting in variability of the behavior of interest during teacher–child interactions within and 
across observations. Finally, the behavior of interest may be complex due to the target skill being 
a discrete behavior, chained behavior, or part of a response class that may vary in topography 
throughout the observation. Complete learning trials can be implemented as either embedded 
learning trials or as decontextualized instructional learning trials. Although several differences 
exist between embedded learning trials and decontextualized instructional trials, the most notable 
difference is that embedded trials are implemented in free-operant environments by familiar 
adults during typically occurring activities, routines, and transitions.

Researchers have used a variety of DBOS viewing and recording methods to measure the 
implementation of embedded learning trials. Kohler et  al. (1997) had observers code teacher 
implementation of instructional episodes on children’s target objectives during 1:1 activities, 
small group activities, and large group activities. Observers used the in situ viewing method and 
coded with continuous timed-event behavior sampling. The authors did not report the type of 
recording method used by observers. Horn et al. (2000) measured embedded learning opportuni-
ties by viewing videotapes of teachers’ implementation and recorded learning target behaviors 
using a 10-s partial-interval system with multiple passes (one pass per learning target behavior). 
The authors did not report the recording method used. Although the viewing and recording meth-
ods for coding embedded learning trials differed across these studies, there were no comparisons 
of viewing or recording methods examined within the studies.

The primary focus of the present study was to evaluate the comparability of quantifying 
embedded instruction learning trials when observations for the same session were conducted 
using two different viewing and recording methods (i.e., in situ/pencil-and-paper, video/com-
puter-assisted observational software). In addition, we were interested in examining interob-
server agreement across the two methods. As part of the present study, the first author adapted a 
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video and computer-assisted DBOS being used in a larger randomized controlled efficacy trial 
(Snyder et al., 2015) for use in situ with pencil-and-paper methods. Specifically, we addressed 
two research questions focused on whether the two methods yielded comparable results: (a) Are 
there statistically significant and noteworthy differences in the frequency of embedded instruc-
tion learning trials between video and computer-assisted coding methods versus in situ pencil-
and-paper methods? and (b) Are there statistically significant and noteworthy associations for the 
frequency of embedded instruction learning trials across the two methods? To explore interob-
server agreement (IOA), two questions were addressed: (a) What is IOA between the two meth-
ods when the frequency of embedded instruction learning trials is calculated for the total 
observation? and (b) What is IOA when it is calculated within 10-min continuous event blocks? 
Finally, we explored whether there were statistically significant and noteworthy differences in 
the time spent observing and recording data across the two methods.

Method

Context for Present Study

Embedded instruction is a multicomponent naturalistic instructional approach. In the larger 
embedded instruction study (Snyder et al., 2015), the researchers used a DBOS to measure the 
rate of teachers’ implementation of embedded instruction learning trials. Observers applied the 
codes for this DBOS while viewing video from the classroom and used computer-assisted record-
ing methods with multiple passes for each child’s embedded instruction priority learning target. 
Given the time and costs associated with these viewing and recording methods, the authors of the 
present study were interested in exploring the comparability and feasibility of alternative viewing 
and recording methods to inform future decisions about data collection for quantifying embedded 
instruction learning trials. An initial step was to compare in situ pencil-and-paper coding meth-
ods with video viewing and computer-assisted coding methods.

In the larger efficacy study, 111 preschool teachers were recruited at two performance sites in 
two cohorts (Snyder et al., 2015). Within each cohort, teachers were assigned randomly within 
schools to one of three experimental conditions. The first experimental condition included pro-
fessional development workshops and materials for teachers focused on embedded instruction, 
followed by on-site coaching. The second experimental condition included professional develop-
ment workshops and materials, followed by self-coaching. The third condition was a business-as-
usual (BAU) condition, where teachers attended the typical professional development provided 
by the district. Across both cohorts, teachers participated in the study for up to 2 years (i.e., an 
intervention year and a sustainability year). Activities for the present study occurred with the 
second cohort of teachers at one site during their sustainability year of the study (Snyder et al., 
2015). Thirty-four teachers remained in the study for the sustainability year, and 17 were enrolled 
at this site for this study. In situ data were collected at this site during the final data collection 
time point for the larger study.

Participants

Teacher participants.  To be selected for the present study, teachers had to submit at least one 
priority learning target for embedded instruction that was observable and measurable. Of the 17 
teachers, 16 at the site for this study met this criterion. After accounting for scheduling availabil-
ity and balancing observations across experimental conditions, 13 female preschool teachers for 
children with disabilities participated in the present study. Of the 13 teachers, five were in the 
on-site coaching condition, four were in the self-coaching condition, and four were in the BAU 
condition. Because teachers were randomly assigned to experimental conditions, they had 
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different experiences with the professional development and embedded instruction intervention 
variants that were part of the larger study. Including teachers in the counterfactual conditions in 
the present study was important given our interest in measuring teacher’s implementation of 
embedded instruction who may be at different levels of fidelity. The mean age for participating 
teachers in the present study was 48.07 years (SD = 8.75), and their average years of experience 
working with young children with disabilities was 8.23 years (SD = 5.71). Six teachers had a 
bachelor’s degree and seven had a master’s degree. Eight teachers served preschool-aged chil-
dren in inclusive classrooms and five teachers served preschool-aged children in classrooms that 
enrolled only children with disabilities. Nine teachers identified their ethnicity as White, three 
teachers identified as Hispanic, and one teacher identified as Black.

Child participants.  The present study included 30 children (21 males and 9 females) in the 13 
classrooms of the participating teachers. Each teacher had up to three children from their class-
room enrolled in the larger study as target children. Target children were the children with whom 
the teacher was focusing implementation of embedded instruction as part of the larger study. All 
target children in the present study had identified disabilities and were observed in the present 
study because their teacher submitted at least one priority learning target for them that was 
observable and measurable. All children had to be present on the day of data collection to partici-
pate. Two additional children had observable and measurable priority learning targets and were 
potential participants but were absent during data collection and could not be observed.

Observation Methods

To compare viewing and recording methods, observers in the present study used two different 
methods for coding the frequency of embedded instruction learning trials. The first coding 
method quantified embedded learning trial frequency using in situ viewing and pencil-and-paper 
recording. The first author observed and coded in situ, while another data collector videotaped 
the observation for the comparison coding method. After videotapes were collected, they were 
screened to ensure videos met quality standards for coding and did not need to be recollected. 
Videotapes that met screening criteria were used for coding using computer-assisted observa-
tional software.

Coding Variable

The coding variable of interest was the frequency of complete embedded learning trials imple-
mented by the teacher on the target children’s priority learning targets. A complete learning trial 
(CLT) was defined as all procedural components of an embedded learning trial being imple-
mented correctly by the teacher (i.e., antecedent, behavior, consequence, error correction, child 
behavior after error correction, feedback/consequence). The rationale for comparing only CLTs 
only was based on utility and feasibility. Coding a sequence of interlocking behaviors between a 
teacher and child in a free operant environment across numerous learning targets and children 
can be a complex and demanding task. We selected to code CLTs because it provided data on the 
frequency and accuracy with which teachers delivered embedded learning trials, which was the 
primary variable of interest in the larger efficacy trial.

Measures

Embedded Instruction Observation System–Revised (EIOS-R).  The EIOS-R (Snyder et al., 2017) was 
the DBOS used in the larger efficacy study to measure embedded instruction learning trials deliv-
ered by a teacher for children’s priority learning targets. EIOS-R observers watched videotaped 



Martin et al.	 361

observations and used Noldus Observer XT 12.5 (Noldus Information Technology, 2015) to 
record the frequency of embedded instruction learning trials. EIOS-R observers used multiple 
pass participant sampling to code each child’s priority learning target during a separate pass of 
the video collected in each teacher’s classroom. EIOS-R observers coded and timestamped a trial 
occurrence using the computer-assisted observational software and then recorded whether each 
component of a trial (i.e., antecedent, behavior, consequence, error correction, child behavior 
after error correction, feedback/consequence) occurred. An antecedent was defined as an event 
that set the occasion for a child’s priority learning target behavior to occur. The child’s behavior 
was coded as either a correct target behavior or an incorrect behavior, meaning the child did not 
exhibit the target behavior. When a correct target behavior occurred, the observer recorded the 
occurrence of a logical and timely natural or planned consequence. After an incorrect behavior, 
observers recorded whether error correction procedures occurred. If the child emitted the target 
behavior after error correction, an observer recorded whether the teacher delivered a conse-
quence. If a child did not perform the target behavior following error correction, the observer 
recorded whether the teacher provided feedback to end the trial.

At the end of each trial, observers entered a trial summary code (i.e., complete learning trial, 
incomplete learning trial, or uncodeable learning trial). Uncodeable trials were observable and 
measurable learning targets that could not be coded via video because the EIOS-R coder could 
not see or hear all components of the trial, preventing them from determining if the trial was 
complete or incomplete based on EIOS-R coding decision rules. Although all types of trials were 
coded using the EIOS-R, the current study only compared CLTs across the two methods.

Embedded Instruction Observation System–In Situ (EIOS-I).  The EIOS-I (Martin, 2019) was an 
adaptation of the EIOS-R (Snyder et al., 2015) designed for the present study to conduct in situ 
classroom observations on teacher implementation of CLTs. The first author piloted and modi-
fied the EIOS-I before the present study began and was the EIOS-I coder in the present study. The 
EIOS-I coder was a graduate assistant trained on the EIOS-R by the EIOS-R developers. She was 
a reliable EIOS-R coder with 2 years of experience using the EIOS-R before the present study 
was conducted. One EIOS-I observer (first author) coded in situ using pencil-and-paper record-
ing. She used continuous event sampling with trial frequency recorded within 10-min blocks. 
The decision to record continuously and use 10-min blocks was informed by previous literature 
(e.g., Bernal et al., 1971; Johnson & Bolstad, 1975) and pilot testing. CLT data were recorded on 
an EIOS-I data collection form (Figure 2) that grouped the priority learning targets that were 
observable and measurable for each target child and provided rows to indicate each occurrence 
of a CLT for each target. After observing an embedded learning trial, the EIOS-I observer deter-
mined if the trial was complete (i.e., a CLT) or incomplete. Only CLTs were recorded on the data 
collection form and were differentiated by two summary codes. When an observed CLT involved 
an antecedent, correct child behavior, and consequence, the EIOS-I observer circled “C” on the 
coding form. When a CLT with error correction procedures was observed, the EIOS-I observer 
circled “H” to indicate an additional help trial occurred.

Data Collection Procedures

Preparing for coding.  Teachers submitted up to four priority learning targets for each target child 
in the classroom to the site coordinator for the efficacy trial before each observation. The priority 
learning targets specified the behaviors or skills for which teachers planned to provide embedded 
learning trials for each child. For the present study, we used three indicators (i.e., behavior speci-
fied, demonstration specified, and observable) from the Learning Targets Rating Scale-Research 
Version (Snyder et al., 2016) to determine whether the priority learning target was observable 
and measurable. Observable and measurable priority learning targets were targets for which the 
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behavior specified was observable and measurable and the ways in which the learning target 
behavior was to be performed were specified (e.g., using single words to make a request, identi-
fying colors by saying the name of the color). Priority learning targets that were not used in this 
study were those that did not specify an observable or measurable behavior or did not describe 
how the child would demonstrate the behavior (e.g., identify letters without specifying if the 
child would point to letters vs. say letter names).

Sixty-nine percent (83 of 120) of priority learning targets submitted by the 13 teachers in the 
present study were observable and measurable. The median and mode number of observable and 
measurable priority learning targets per observation was 6. The number of submitted observable 
and measurable targets per teacher ranged from 3–11, with some teachers having only a single 
child with observable and measurable learning targets and other teachers having all three chil-
dren with observable and measurable learning targets. After determining whether a priority learn-
ing target was observable and measurable, the project coordinator for the larger study created a 
Learning Target Consensus Form (LTCF) for all observable and measurable priority learning 
targets. The LTCFs provided additional information about the target behavior and reminders 
about decision rules, derived from the EIOS-R coding manual (Snyder et al., 2017), to use while 
coding using either recording method.

EIOS-I coding and materials.  Before EIOS-I coding, the first author reviewed the LTCFs and added 
all observable and measurable priority learning target behaviors for each target child in the class-
room to an EIOS-I coding form. The prepopulated EIOS-I coding forms and LTCFs were printed 
and brought to the observation along with a clipboard, pencil, and smartwatch with a timer. The 
first author coded each teacher’s implementation of CLTs across all observable and measurable 
priority learning targets using pencil-and-paper. Continuous event behavior sampling was used 
for in situ coding with trial frequency recorded within 10-min blocks. In situ data were gathered 
by tallying frequencies within blocks to reduce errors when yoking CLTs coded using the EIOS-I 
to the timestamped consensus-coded CLTs obtained using the EIOS-R.

Figure 2.  Embedded Instruction Observation System–In Situ (EIOS-I) coding form.
Note. C = observed a complete learning trial that involved an antecedent, correct behavior, consequence; H = 
observed an additional help complete learning trial that involved error correction procedures and either feedback or 
a consequence.
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When EIOS-I coding began, the observer started a 10-min timer on a cell phone using the 
Multitimer App®. To ensure the same length of observation was observed across video and in 
situ methods, the in situ observer only coded when the videographer was filming, which involved 
a signaling system used by the data collectors. Every 10 min, the observer was notified that the 
block had ended via a vibration on a Bluetooth® paired watch and switched to a new coding 
sheet. When a block ended before 10 min due to the teacher or children leaving the classroom, 
EIOS-I coding ceased, and the observer noted the duration of the block. Given these procedural 
decisions, in addition to prepopulating the priority learning targets onto the recording forms, the 
first author recorded (a) the block number, (b) the activity in which trials occurred, (c) when each 
block began and ended, and (d) any CLTs that occurred during the block. Collecting this informa-
tion provided additional context when aligning EIOS-I blocks to the corresponding 10-min video 
block.

After returning from the in situ observation, the EIOS-I observer entered EIOS-I data into an 
Excel® spreadsheet to transfer the CLT frequency data from paper to electronic files. All data 
from the in situ forms were entered into the spreadsheet, including block number, activity type, 
start and stop observation time, and CLT frequency data. Only two differences existed between 
the pencil-and-paper data collection forms and the spreadsheet data: (a) frequencies of CLTs 
within the block were summed when transferred to the spreadsheet, and (b) data from all blocks 
were recorded on one sheet rather than using a separate sheet for each block.

EIOS-R coding and EIOS-R consensus coding.  For viewing and coding using the EIOS-R, two 
observers trained to agreement standards in the larger study independently coded video observa-
tions using the EIOS-R at least 30 days after in situ coding was completed. The 30-day minimum 
was specified because one observer also conducted the EIOS-I observation. The EIOS-R observ-
ers used the same LTCFs as used during the EIOS-I observation. After each EIOS-R coder com-
pleted the observation, consensus coding meetings were held.

Consensus coding for the EIOS-R was used to quantify CLTs for the present study to address 
potential observer bias given that it was not feasible to have a second coder present during the in 
situ observations. Three individuals were involved in consensus coding: the two EIOS-R coders 
and the project coordinator for the larger study who was involved in the development of and 
observer training for the EIOS-R. The project coordinator conducted the consensus meetings to 
ensure objective and consistent decisions were made regarding which video-coded trials were 
CLTs. During consensus coding meetings, all three individuals watched and discussed trials iden-
tified by either of the two EIOS-R coders. All CLTs coded by either EIOS-R coder were reviewed 
regardless of whether the EIOS-R coders agreed or disagreed on CLT occurrence. After watching 
trials and jointly identifying trial components, each trial was classified as either a consensus-
coded CLT or not a CLT. Interobserver agreement was calculated between the first author’s 
EIOS-R coding and the EIOS-R consensus-coded data for the frequency of CLTs using a point-
by-point method. The average IOA between the first author’s EIOS-R coder and EIOS-R consen-
sus-coded observations was 83.40% (SD = 18%) and ranged from 53%–100%.

Data Analysis

To address the research questions focused on method comparability, we compared the recorded 
frequency of CLTs coded in situ using pencil-and-paper to the recorded frequency of CLTs coded 
using video and computer-assisted observational software. Descriptive statistics were calculated, 
a dependent-measures t test was conducted to compare the means from the two different viewing 
and recording methods (i.e., the EIOS-I and EIOS-R), and a Pearson product-moment correlation 
was used to examine the relationship between the two methods.



364	 Journal of Early Intervention 44(4)

To address the research questions focused on IOA, we compared EIOS-R consensus-coded data 
and EIOS-I data using three different agreement calculations. Two occurrence agreement calcula-
tions and one non-occurrence agreement calculation were used. The first agreement calculation was 
overall proportion agreement, which examined IOA for the total observation across the two methods. 
Overall proportion agreement was calculated by summing the number of CLTs for each method and 
then dividing the smaller number of CLTs observed by the larger number of CLTs observed.

For the second agreement calculation, correspondence agreement, we determined when an 
EIOS-R consensus-coded CLT mapped onto an EIOS-I in situ coded CLT during a corresponding 
10-min block. By recording EIOS-I data using event frequency counts within a 10-min block, we 
were able to examine trials coded by both methods using the same unit of time (within 10-min 
blocks). To calculate correspondence agreement, we matched each EIOS-I 10-min block to the 
corresponding 10-min video block. Occurrence agreement was examined within each 10-min 
block by identifying CLTs coded using each method and aligning them within the same 10-min 
block. The purpose of comparing agreement within 10-min blocks was that it would likely pro-
duce a more conservative agreement estimate than proportion agreement by providing informa-
tion about whether the same trials were coded across methods, particularly when compared with 
the overall proportion agreement metric.

The third agreement statistic examined was non-occurrence agreement, defined as agreeing a 
CLT did not occur within a 10-min block. Agreement was 100% when a CLT was not coded for 
consensus-coded EIOS-R and EIOS-I within a block and 0% when a CLT within a block was 
coded for one method but not the other. After examining non-occurrence within the block, the 
data were averaged across the observation.

To address the research question about coding time, we calculated time spent coding using 
each method and examined differences using a dependent-samples t test. Time onset was when 
the EIOS-I coder began coding, which was marked as the start time on the first EIOS-I data col-
lection form. Time offset was determined using the end time marked on the final EIOS-I data 
collection form. When the EIOS-I coder was in the classroom but not coding (because the teacher 
or students left the classroom), this time was included in the calculations. For EIOS-I time calcu-
lations, time spent (a) preparing for coding, (b) transferring codes to spreadsheets, and (c) con-
ducting analyses was not included. For time spent coding using the EIOS-R, we calculated the 
time spent coding in addition to time spent on short breaks taken to reduce fatigue. When a 
teacher had only one observable and measurable priority learning target, and no breaks were 
taken, the time to code using video viewing and computer-assisted coding was the length of the 
video in minutes. If a teacher submitted multiple observable and measurable priority learning 
targets, coders watched the video one time for each priority learning target submitted by the 
teacher. For EIOS-R time calculations, the amount of time spent (a) gathering or processing vid-
eos, (b) exporting observations, and (c) conducting analyses was not included.

Results

Frequency Comparison

Figure 3 shows the frequency of trials coded by each method during each observation. Across the 
13 observations, the frequency of CLTs coded in situ using the EIOS-I form ranged from 0–43, 
and the frequency of CLTs consensus-coded from video using the EIOS-R and observational 
software ranged from 0–48. Across the 13 classrooms, the mean frequency of trials coded in situ 
using the EIOS-I (M = 12.07; SD = 14.58) was greater than the number of consensus-coded 
EIOS-R trials (M = 9.38; SD = 14.52). This was a statistically significant and noteworthy dif-
ference between the two methods, t(12) = 2.28, p = .04, d = 0.63. A statistically significant 
strong positive correlation was found between the methods (r = .96, p < .001), with 92% of the 
variance shared between the two methods.
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Coding Method Interobserver Agreement

Overall proportion agreement between the EIOS-I and the EIOS-R consensus coding ranged 
from 0%–100% with a mean of 68% (SD = 29%). For the teacher who implemented the most 
trials (n = 43 using EIOS-I and n = 48 using EIOS-R), the overall proportion agreement was 
90%. Five teachers implemented three or fewer trials, making a disagreement of one CLT occur-
rence result in low levels of agreement for three teachers. Video coding decision rules prevented 
consensus coding of EIOS-R trials for one teacher (Teacher 7) that were able to be coded in situ 
using the EIOS-I. The inability to code the consensus trials with the EIOS-R resulted in 0% 
agreement between the methods for this one observation.

Correspondence agreement was calculated within 10-min blocks across the 13 observations. 
Correspondence agreement between the two coding methods ranged from 0%–100% with a 
mean of 57% (SD = 29%). Of the 181 CLTs coded using either method, 95 trials (52%) were 
coded in the same 10-min block across the two methods. The most notable difference in an agree-
ment percentage between overall proportion and 10-min block correspondence agreement was 
for the teacher who implemented the most trials. For this teacher, the overall proportion agree-
ment was 90% and the 10-min block agreement was 49%.

Non-occurrence agreement ranged from 77%–100% and averaged 96% (SD = 6.5%) across 
all 13 classrooms. Except for observations for two teachers where non-occurrence agreement 
across the two methods was 77% and 88%, respectively, the non-occurrence agreement was 
above 97% for all observations. Non-occurrence agreement was lower for two observations that 
were of shorter duration. When disagreements occurred during these shorter observations, the 
average disagreement was greater due to fewer numbers of blocks.

Differences in Coding Time

On average, EIOS-I coding took 201 min (SD = 60 min) with the longest observation lasting 240 
min and the shortest lasting 120 min. On average, the length of the video observations was 151 
min (SD = 32 min). The shortest video was 89 min, and the longest video was 183 min. The dif-
ference between the length of EIOS-I coding and the length of video observation was due to the 
time the EIOS-I observer was in the classroom but not coding (e.g., the class left the room to go 

Figure 3.  Complete learning trials coded by viewing and recording method.
Note. EIOS-I = Embedded Instruction Observation System–In Situ; EIOS-R Consensus = Embedded Instruction 
Observation System–Revised Consensus. For Teachers 2 and 13, no complete learning trials were coded using either 
method. For Teacher 7, no complete learning trials were coded during EIOS-R consensus coding.
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to lunch and recess). On average, EIOS-R coding took 304 min (SD = 139.8 min). A two-tailed 
dependent-samples t test showed EIOS-I coding took less time than EIOS-R coding; t(12) = 
−2.80, p = .02, d = 0.77.

Discussion

The primary purpose of the present study was to explore the extent to which in situ pencil-and 
paper-coding and computer-assisted video coding yielded comparable results for quantifying 
embedded instruction learning trials. Secondary purposes were to explore interobserver agree-
ment data between the two methods and to compare the time spent coding using each method. We 
addressed these research questions by adapting a direct behavioral observation coding system 
that used video and computer-assisted scoring to quantify embedded instruction learning trials 
(i.e., EIOS-R) to a system that used in situ pencil-and-paper coding (i.e., EIOS-I). Adaptations 
included the viewing method (i.e., from video to in situ) and the recording method (i.e., from 
computer-assisted to pencil-and-paper). The first author conducted observations of 13 teachers’ 
implementation of embedded instruction learning trials and coded in situ using the EIOS-I, while 
video data were collected for later consensus coding using the EIOS-R.

A statistically significant difference in the frequency of CLTs was found between the two cod-
ing methods. This finding differs from Johnson and Bolstad (1975), who found no difference in 
absolute counts of behaviors of interest, but replicates Gridley et al. (2018) and Kent et al. (1979). 
These latter authors found absolute differences in count data for select observed behaviors across 
coding methods. Given the t test involved a direct comparison of the number of CLTs observed 
using each method, it was the most conservative estimate of agreement. When examining corre-
lations (i.e., rank order of CLT counts and intervals between these counts across the 13 observa-
tions), the magnitude of the relationship was positive and strong. Other researchers have found 
strong correlations when comparing counts of behavior across different viewing methods (Bernal 
et al., 1971; Gridley et al., 2018).

For the questions focused on interobserver agreement, CLT agreement data for EIOS-I and 
consensus-coded EIOS-R data were compared for the total observation versus 10-min blocks. In 
general, agreement across the 13 classrooms was higher when calculated for the total observation 
than when calculated by 10-min blocks. When examining non-occurrence across the 10-min 
blocks, the agreement between the two coding methods was consistently high. By coding and 
calculating agreement within 10-min blocks rather than across the entire observation, the authors 
gained the ability to calculate agreement more precisely (i.e., within 10-min blocks). In this case, 
it also provided evidence that comparing agreement data across an entire observation rather than 
shorter time blocks may inflate agreement data. Methods used in the present study offer a format 
other researchers might use when calculating IOA for continuous event data in the absence of 
timestamped data.

For the research question focused on time, observing and recording using the EIOS-R took 
significantly more time than the EIOS-I. This finding differs from what was reported by Tapp 
et al. (2006), who found a computer-assisted coding method took less time than a pencil-and-
paper coding method. This difference should be considered in the context of the time tracking 
method used in the present study versus in Tapp et al. For EIOS-I data, time spent preparing for 
observations (including travel time to the location of data collection), transferring data to spread-
sheets, and using statistical software were not included when calculating time in the present 
study. For EIOS-R data, time spent collecting videos, checking the quality of the audio and video 
data prior to coding, exporting computer-assisted data, and transferring data to statistical soft-
ware were not included when tracking time. Tapp et al. included time calculations for preparing 
data for analysis, conducting data analyses, and conducting IOA analyses. Given the differences 
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in time spent coding in the present study, researchers might consider whether the advantages of 
video coding (e.g., multiple passes, stop-and-go coding) offset potential limitations (e.g., time) 
of video coding when determining how to observe the behaviors of interest in their research 
(Figure 1).

Limitations

One limitation of the present study that was imposed by the in situ pencil-and-paper method, 
which did not permit comparisons of trial occurrence across the two methods using exact time-
stamps. To address this limitation, we used continuous event counts within 10-min blocks to yoke 
embedded instruction trial occurrence across the two methods. Second, IOA data were not gath-
ered in situ for EIOS-I coding, which precludes statements about the dependability of observa-
tions across in situ observers. Due to the combination of limited resources (i.e., personnel), the 
practicality of scheduling observations, and the feasibility of having three additional staff in 
preschool classrooms during data collection of the primary dependent measure of the efficacy 
trial, a second EIOS-I observer was not available for the purpose of gathering IOA data in situ. A 
decision to create and use EIOS-R consensus coded data for comparison with EIOS-I data was 
made to address this limitation. Using this method, IOA data between the first author’s EIOS-R 
codes and the EIOS-R consensus coded data were acceptable (i.e., above 80%). Finally, a poten-
tial generalization limitation of the present study was the experience of the EIOS-I coder. Before 
the present study, the first author had 2 years of experience coding trials using the EIOS-R. The 
generalization of findings from the present study might be limited to trained coders with similar 
or greater coding experiences as the first author.

Implications

When comparing two methods for collecting direct behavioral observational data on embedded 
instruction CLTs, we found that the two methods of data collection resulted in a statistically sig-
nificant difference in absolute count data, but noteworthy associations. The implications of these 
findings for research might depend on the questions of interest. In situations where the research 
question focuses on differences in the absolute number of CLTs implemented by practitioners 
within or across experimental conditions, findings from the present study suggest the two meth-
ods might produce different results. If interest is focused on examining associations within or 
across experimental conditions, findings from the present study suggest the two methods might 
produce similar results. Because our findings showed strong positive correlations (i.e., associa-
tions) between the two coding methods, researchers interested in examining associations might 
consider in situ coding as a more efficient method. Based on the findings in the present study, 
researchers should evaluate the relative strengths or limitations of pencil-and-paper in situ coding 
to those of computer-assisted video coding when determining which observational or recording 
method offers the utility for their needs.

Strengths and Limitations of Pencil-and-Paper In Situ Coding

More trials were identified using the EIOS-I than the EIOS-R, replicating previous findings that 
in situ observers code more occurrences of target behaviors than observers using other coding 
methods (Bernal et al., 1971; Johnson & Bolstad, 1975; Kent et al., 1979). Similar to what others 
have reported in the extant literature, in the present study, the restrictions in the visibility or audi-
bility of the video data resulted in some trials not being coded using video methods that were 
coded as CLTs in situ. For example, more than 12 discrepancies within corresponding 10-min 
blocks were accounted for when consensus coders mapped these uncodeable EIOS-R trials onto 



368	 Journal of Early Intervention 44(4)

CLTs coded using the EIOS-I. For one teacher (Teacher 7), visibility restrictions accounted for 
100% of disagreements. During the observation for Teacher 7, the ability of the in situ coder to 
adjust her positioning so that she was able to see the antecedent stimuli used during trials was a 
strength that could not be replicated when using the EIOS-R to code the video. Evidence in the 
present study suggests benefits for in situ coding of CLTs versus coding from videotaped obser-
vations because in situ coders can reposition during the observation to hear and see all compo-
nents of a trial.

Strengths and Limitations of Computer-Assisted Video Coding

For the present study, coding CLTs in situ required the in situ coder to recall and apply coding 
decision rules without being able to reference the EIOS-R coding manual, which describes cod-
ing decision rules. Computer-assisted video coding permits coders to stop the video and refer-
ence coding manuals or decision rules and then resume coding. In the present study, stop-and-go 
coding was used during consensus coding. During EIOS-R consensus coding meetings, it was 
common for all three coders to watch the trial several times to determine how to code the trial. 
The longer time for EIOS-R coding was likely due to the strengths of video viewing methods. 
When the behavior of interest is more complex (e.g., chained behaviors or response class behav-
iors), the utility of having video data that can use multiple passes and stop-and-go coding to 
ensure trials are coded accurately could be more important than coding in situ in a time-efficient 
manner. Video coding may therefore be a more accurate way to code trials for some behaviors, 
especially behaviors without clear onsets or offsets. In the present study, EIOS-R video coding 
permitted coders to focus on one target at a time by using multiple passes. In situ coding required 
the coder to observe multiple trials when they occurred simultaneously for different target behav-
iors or different children.

Recommendations for Future Research

Given the initial findings in the present study about the comparability of various viewing and 
recording methods, additional studies that compare data gathered using different viewing and 
recording methods are still needed. Future research might explore comparing a computer-assisted 
recording method in situ with a computer-assisted recording method using videotaped observa-
tions. This comparison would permit exact timestamps to be applied to trials across both methods 
and better yoked comparisons, permitting examination of other influential factors that might 
affect comparability across the two methods. Studies might also be conducted to examine com-
parability across different types of learning trial behaviors (Wolery & Hemmeter, 2011). For 
example, to what degree are the methods comparable when coding discrete behaviors versus 
response class or chained behaviors? Studies focused on examining IOA for in situ observers 
who code complex behaviors, such as embedded instruction CLTs, are also needed.

Initial empirical evidence focused on the comparability of direct behavioral observation data 
for two different viewing and recording coding methods was provided in the present study. 
Studies such as this one demonstrate a need for additional research to understand further how 
decisions about viewing and recording methods influence data collection, data integrity, data 
analyses, and results.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or 
publication of this article.



Martin et al.	 369

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publi-
cation of this article: The research reported here was supported, in part, by the Institute of Education 
Sciences, U.S. Department of Education (R324A150006) and by the Office of Special Education Programs, 
U.S. Department of Education (H325D150079) to the University of Florida. The opinions expressed are 
those of the authors and do not represent views of the Institute of Education Sciences, U.S. Department of 
Education or the Office of Special Education Programs, U.S. Department of Education.

ORCID iDs

Mackenzie K. Martin  https://orcid.org/0000-0002-4589-9270
Brian Reichow  https://orcid.org/0000-0001-8305-3105
Crystal D. Bishop  https://orcid.org/0000-0001-8769-9085

References

Bernal, M. E., Gibson, D. M., Williams, D. E., & Pesses, D. I. (1971). A device for recording automatic 
audio tape recording. Journal of Applied Behavior Analysis, 4(2), 151–156. https://doi.org/10.1901/
jaba.1971.4-151

Cohen, E., & Rozenblat, R. (2015). Applied, behavioral, analytic and.  .  . technological: A current literature 
review on the use of technologies in behavior analysis. European Journal of Behavior Analysis, 16(2), 
178–187. https://doi.org/10.1080/15021149.2015.1085720

Farrell, A. D. (1991). Computer and behavioral assessment: Current applications, future possibilities and 
obstacles to routine use. Behavioral Assessment, 13(2), 159–179.

Gridley, N., Baywater, T. J., & Hutchings, J. M. (2018). Comparing live and video observation to assess 
early parent–child interactions in the home. Journal of Child and Family Studies, 27(6), 1818–1829. 
https://doi.org/10.1007/s10826-018-1039-y

Horn, E., Lieber, J., Li, S., Sandall, S., & Schwartz, I. (2000). Supporting young children’s IEP goals 
in inclusive settings through embedded learning opportunities. Topics in Early Childhood Special 
Education, 20(4), 208–223. https://doi.org/10.1177/027112140002000402

Johnson, S. M., & Bolstad, O. D. (1975). Reactivity to home observation: A comparison of audio recorded 
behavior with observers present or absent. Journal of Applied Behavior Analysis, 8(2), 181–185. 
https://doi.org/10.1901/jaba.1975.8-181

Kent, R. N., O’Leary, K. D., Dietz, A., & Diament, C. (1979). Comparison of observational recordings in 
vivo, via mirror, and via television. Journal of Applied Behavior Analysis, 12(4), 517–522. https://doi.
org/10.1901/jaba.1979.12-517

Kohler, F. W., Strain, P. S., Hoyson, M., & Jamieson, B. (1997). Merging naturalistic teaching and peer-
based strategies to address the IEP objectives of preschoolers with autism: An examination of structural 
and child behavior outcomes. Focus on Autism and Other Developmental Disabilities, 12(4), 196–206. 
https://doi.org/10.1177/108835769701200402

Lane, J. D., & Ledford, J. R. (2014). Using interval-based systems to measure behavior in early childhood 
special education and early intervention. Topics in Early Childhood Special Education, 34(2), 1–11. 
https://doi.org/10.1177/0271121414524063

Martin, M. (2019). Comparing in situ and video coding to quantify embedded instruction complete learning 
trials [Unpublished master’s thesis]. University of Florida.

Mudford, O. C., Martin, N. T., Hui, J. K., & Taylor, S. A. (2009). Assessing observer accuracy in continu-
ous recording of rate and duration: Three algorithms compared. Journal of Applied Behavior Analysis, 
42(3), 527–539. https://doi.org/10.1901/jaba.2009.42-527

Noldus Information Technology. (2015). The Observer XT (Version 12.5) [Computer software].
Powell, J., Martindale, D., Kulp, S., Martindale, A., & Bauman, R. (1977). Taking a closer look: Time 

sampling and measurement error. Journal of Applied Behavior Analysis, 10(2), 325–332. https://doi.
org/10.1901/jaba.1977.10-325

Rapp, J. T., Carroll, R. A., Stangeland, L., Swanson, G., & Higgins, W. J. (2011). A comparison of reli-
ability measures for continuous and discontinuous recording methods: Inflated agreement scores with 

https://orcid.org/0000-0002-4589-9270
https://orcid.org/0000-0001-8305-3105
https://orcid.org/0000-0001-8769-9085
https://doi.org/10.1901/jaba.1971.4-151
https://doi.org/10.1901/jaba.1971.4-151
https://doi.org/10.1080/15021149.2015.1085720
https://doi.org/10.1007/s10826-018-1039-y
https://doi.org/10.1177/027112140002000402
https://doi.org/10.1901/jaba.1975.8-181
https://doi.org/10.1901/jaba.1979.12-517
https://doi.org/10.1901/jaba.1979.12-517
https://doi.org/10.1177/108835769701200402
https://doi.org/10.1177/0271121414524063
https://doi.org/10.1901/jaba.2009.42-527
https://doi.org/10.1901/jaba.1977.10-325
https://doi.org/10.1901/jaba.1977.10-325


370	 Journal of Early Intervention 44(4)

partial recording and momentary time sampling for duration events. Behavior Modification, 35(4), 
389–402. https://doi.org/10.1177/0145445511405512

Skinner, B. F. (1953). Science and human behavior. Macmillan.
Snyder, P., Algina, J., Hemmeter, M. L., & McLean, M. (2015). Impact of professional development on 

preschool teachers’ use of embedded-instruction practices: An efficacy trial of tools for teachers 
[Abstract]. https://ies.ed.gov/funding/grantsearch/details.asp?ID=1619

Snyder, P., Bishop, C., Hemmeter, M. L., Reichow, B., McLean, M., & Crow, R., & Embedded Instruction 
for Early Learning Project. (2017). EIOS: Embedded instruction for early learning observation system-
revised (Version 1.1) [Manual and training videos, Unpublished instrument]. Anita Zucker Center for 
Excellence in Early Childhood Studies, University of Florida, Gainesville, FL.

Snyder, P., McLaughlin, T., Sandall, S., McLean, M., Hemmeter, M. L., Crow, R., & Scott, C., & Embedded 
Instruction for Early Learning Project. (2016). LTRS: Learning target rating scale (Version 2.3) 
[Manual, Unpublished instrument]. Anita Zucker Center for Excellence in Early Childhood Studies, 
University of Florida, Gainesville, FL.

Suen, H. K., & Ary, D. (2014). Analyzing quantitative behavioral observation data [eBook]. Psychology 
Press. https://doi.org/10.4324/9781315801827

Tapp, J., Ticha, R., Kryzer, E., Gustafson, M., Gunnar, M. R., & Symons, F. J. (2006). Comparing obser-
vational software with paper and pencil for time-sampled data: A field test of Interval Manager 
(INTMAN). Behavior Research Methods, 38, 165–169. https://doi.org/10.3758/BF03192763

Wessel, D. (2015). The potential of computer-assisted direct observation apps. International Journal of 
Interactive Mobile Technologies, 9(1), 31–40. https://doi.org/10.3991/ijim.v9i1.4205

Wolery, M., & Hemmeter, M. L. (2011). Classroom instruction: Background assumptions, and challenges. 
Journal of Early Intervention, 33(4), 371–380. https://doi.org/10.1177/1053815111429119

Yoder, P. J., Lloyd, B. P., & Symons, F. J. (2018). Observational measurement of behavior (2nd ed.). 
Springer.

https://doi.org/10.1177/0145445511405512
https://ies.ed.gov/funding/grantsearch/details.asp?ID=1619
https://doi.org/10.4324/9781315801827
https://doi.org/10.3758/BF03192763
https://doi.org/10.3991/ijim.v9i1.4205
https://doi.org/10.1177/1053815111429119

