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Abstract: Computational and atmospheric chemistry are two important branches of contemporary
chemistry. With the present topical nature of climate change and global warming, it is more crucial
than ever that students are aware of and exposed to atmospheric chemistry, with an emphasis on how
modeling may aid in understanding how atmospherically relevant chemical compounds interact
with incoming solar radiation. Nonetheless, computational and atmospheric chemistry are under-
represented in most undergraduate chemistry curricula. In this manuscript, we describe a simple
and efficient method for simulating the electronic absorption spectral profiles of atmospherically
relevant molecules that may be utilized in an undergraduate computer laboratory. The laboratory
results give students hands-on experience in computational and atmospheric chemistry, as well as
electronic absorption spectroscopy.

Keywords: computational chemical education; atmospheric chemistry; undergraduate computational
skills; curriculum development; photochemistry; spectroscopy

1. Introduction

Climate change is one of the most significant challenges faced by modern society.
The influx of harmful anthropogenic pollutants has led to an increase in the average
global temperature. The consequences of such increases in temperatures are most notably
observed in the Arctic regions, where melting of polar icecaps leads to rising sea levels.
As a result, forefront scientific research into climate change and its implications for global
warming has significantly increased in recent years [1–4].

Despite its importance, little emphasis is given to atmospheric chemistry in many un-
dergraduate chemistry programs. Students are therefore unaware of the vital link between
fundamental chemical concepts taught in undergraduate chemistry and their importance
in the life-sustaining chemistry of the atmosphere. To date, some studies have focused
on implementing atmospheric and environmental research into undergraduate chemistry
curricula [5–13]. Much of this research provides hands-on practical experiences in at-
mospheric sciences and attempts to make students aware of the experimental tools for
atmospheric measurements.

Computational chemistry is another field of chemistry to which students have little ex-
posure at the undergraduate level—despite its importance in aiding in the interpretation of
experimental results. Several computational chemistry packages such as Gaussian [14–16]
and Spartan [17] offer user-friendly interfaces that allow the user to draw structures and cal-
culate properties such as their optimized geometries, vibrational and electronic absorption
spectra and electronic charge distributions, etc. Such projects are routinely implemented
into undergraduate chemistry laboratory classes [18–25]. Given the COVID-19 pandemic,
recent educational research has focused on the design of computational-based exercises
for implementation into distance learning laboratories [26–29]. Such studies are important
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in identifying how science may be conveyed at a distance and may be translated to stu-
dents with disabilities or part-time students. Computational chemistry-based research is
particularly suitable for these scenarios.

Atmospheric modeling incorporates both Atmospheric and Computational Chemistry
and may be used to model global levels of pollutants, trace gases, and atmospherically
relevant products from a given emission source. Advanced modeling techniques such as
STOCHEM provide highly detailed information on the global distribution of atmospher-
ically relevant intermediates as well their most likely origins [30]. Such techniques are
based on experimental or theoretical kinetic models and are therefore far advanced for
implementation into an undergraduate setting.

Modeling may also be used to simulate the electronic absorption spectra of atmospher-
ically relevant molecules [31–33]. Recently, we have used the nuclear ensemble model to
model the electronic absorption spectra of various Criegee intermediates, which are a class
of carbonyl oxides formed via alkene ozonolysis in the troposphere and are implicated in
promoting the oxidizing capacity of troposphere [31]. Others have also used the nuclear
ensemble method to model the electronic absorption spectra of other atmospherically
relevant molecules [32,34–39].

In this manuscript, we report a versatile computational chemistry laboratory that may
be easily implemented into undergraduate general and organic chemistry laboratories. This
laboratory will make use of the nuclear ensemble method of simulating electronic absorp-
tion profiles. Students will compute the electronic absorption spectra of CO2, CH4, H2O,
O3, NO3, and NO2. They will be asked to compare their results with the experimentally
measured spectrum of these molecules, which can be found at The MPI-Mainz UV/VIS
Spectral Atlas of Gaseous Molecules of Atmospheric Interest [40]. The students will then
compare their results to the tropospherically relevant solar irradiance and will be asked to
comment on the extent to which the spectrum of a given molecule overlaps with the solar
irradiance spectrum. Students will elaborate on the implications that this observation has
on the removal of the molecule of interest by tropospherically relevant solar radiation.

The goal of the laboratory is to expose students to computational chemistry, spec-
troscopy, photochemistry, and atmospheric chemistry, as well as giving them to make the
vital link between the atmospheric lifetime of various atmospherically relevant molecules
and their removal by solar irradiation. In the next section, we outline the pedagogical goals
that we expect from the implementation of this laboratory.

2. Pedagogical Goals
2.1. Course Approach

Our current chemistry curriculum at UL Lafayette exposes undergraduate students
to fundamental concepts in chemistry, aligning with the standards set by the American
Chemical Society. Many of these concepts translate to atmospheric chemistry, which is an
essential field concerned with sustaining life on Earth. Despite this, practical atmospheric
chemical studies are largely limited to lecture courses, with very little exposure at the
laboratory level.

Atmospheric chemistry involves a myriad of interconnected reactions that have positive
and detrimental effects on the environment. Computational chemistry provides essential
tools for quantifying the reaction mechanisms of diverse ranges of chemistry. Such com-
putational methods, in particular quantum chemical methods, have been used to great
success for describing the complex chemistry of the atmosphere [41–45].

The laboratory experiment designed in this manuscript provides first-hand account of
both computational and atmospheric chemistry—in a self-contained manner. This simulation-
based laboratory may be implemented into undergraduate General, Organic or Physical
Chemistry laboratories as a single session in a straightforward manner. Implementation of this
laboratory will ensure that students are sufficiently exposed to how fundamental organic and
physical chemistry is relevant to sustaining the chemistry of our atmosphere and therefore
life on Earth. The students will be asked to complete a pre-laboratory assignment that cover
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topics associated with atmospheric chemistry and photochemistry. During the pre-laboratory
lecture, the instructor emphasizes the importance of photochemistry and how it relates to the
myriad of chemical processes relevant to our atmosphere. The instructor will then outline
the concept of quantum chemistry and methods such as time-dependent density functional
theory that may be used to simulate electronic absorption spectra of molecules.

2.2. Pedagogical Aims and Learning Outcomes

Prior to or alongside the General Chemistry Laboratory, students complete the General
Chemistry II lecture course and are exposed to concepts such as chemical kinetics which
is relevant to atmospheric chemistry. More relevant to the purpose of this study, the
General Chemistry I lecture course at UL Lafayette includes a unit comprised of three
modules and covers fundaments of electronic structure of atoms and their electronic
absorption spectra, as well as electronic and molecular structure of simple molecules. The
module-level objectives within this unit are designed to enable students to recognize and
understand concepts surrounding electronic and molecular structure as well as light—
matter interactions. In particular, the pedagogical aims (vide infra) of the current experiment
align with the following module- and course-level objectives for General Chemistry I,
which constitute the required background and pre-requisite knowledge for this activity:

1. Define and calculate the wavelength, frequency and energy of electromagnetic radiation
2. Describe the concepts of excitation and relaxation of an electron
3. Define the basic concepts of quantum numbers, shells, subshells, orbitals, electronic

charge distribution, and their relative energies
4. Write electronic configuration in simple atoms and molecules
5. Correlate electronic configuration of a molecule to its shape

As the current experiment requires students to compute optimised structures and
electronic excitations, its implementation in General Chemistry courses could provide
students at introductory chemistry level with hands-on experience in exploring principles
and concepts pertinent to learning objectives 1–5, outlined above.

Furthermore, the general chemistry laboratory course at UL Lafayette includes one
experiment on UV/Vis spectroscopy (in aqueous solution) of a metal complex (spectropho-
tometric analysis of Cu(II) tetraammonia complex); in this laboratory session, students
are expected to measure the UV/Vis absorption spectrum of the complex and relate the
measured absorbance to both its absorptivity coefficient at set wavelengths (e.g., λ = 610 nm)
and its concentration in the aqueous solution. The computer-based experiment presented in
this work could complement this or similar experiments as it provides a more fundamental,
molecular approach to exploring molecular spectroscopy and illustrating the link between
absorption of light and electronic excitation in simple molecules.

The use of electronic spectroscopy also finds common use in organic chemistry, es-
pecially in the context of photoinduced organic reactions—such as the Paterno–Buchi
reaction. Students undertaking organic chemistry courses should be equipped with good
background knowledge of electronic structure and spectroscopy to ensure that they acquire
a solid and well-rounded experience surrounding principles of the (photo)reactivity of or-
ganic molecules. In this context, the current experiment could represent a useful, hands-on
activity for consolidating such knowledge. Furthermore, if implementation into organic or
physical chemistry laboratories is planned, this laboratory will provide students with prac-
tical knowledge of various concepts in mechanistic chemical reactivity and photochemistry,
and how they extend and apply to atmospheric chemistry.

During the experiment, students will be asked to calculate the electronic absorption
spectra of CO2, CH4, H2O, O3, NO3, and NO2. Four (CO2, CH4, H2O and O3) out of the
six molecules have electronic absorption spectra that are outside of the tropospherically
relevant solar irradiance, while the other two (NO3 and NO2) absorb within it. When
the electronic absorption spectra are simulated, the students will be asked to compare
with measure spectra available in the literature. This will allow students to make the
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important link between a simulation and how well it is able to model the experimentally
derived spectrum.

The pedagogical aims of this experiment are as follows:

• Expose students to practical photochemistry and electronic absorption spectroscopy
at an early stage.

• Make students aware of how important chemical concepts translate to the chemistry
of the atmosphere.

• Be able to relate the lifetimes of long-lived greenhouse (and other) gases in Earth’s
troposphere and their overlap with the tropospherically relevant solar irradiance.

• Be able to discover the reasons for the scarcity of NO2/NO3 during the day and their
higher abundances at night—relating it to the photochemistry.

Furthermore, students will be asked to explore the relationship between the recorded/
simulated absorption spectrum of a molecule and its electronic and molecular structure. In
particular, at the end of the experiment students will be able to do the following:

• Visualize and analyze molecular orbitals
• Assign electronic transitions
• Relate the character of the electronic excitation to the magnitude of the associated

oscillator strength (and/or intensity)
• Compare and contrast spectra simulated with the nuclear ensemble method to those

predicted by exclusively computing the vertical excitation energies.

In order to complete the experiment and fulfill its learning objectives, the following
computational packages are required:

• GaussView6 [14] and Gaussian09 [15] and/or Gaussian16 [16]
• Newton-X [46]
• Our spectral simulation script which will be made available to interested users by

contacting the authors.

GaussView6 and Gaussian09/16 are commercial computational packages; if these are
not available, alternative open source computational programs can be used to carry out
this experiment. This may include MacMolPlt [47] and Avogadro [48] for drawing and vi-
sualizing molecular structure and viewing and analyzing normal mode wavenumbers and
molecular orbitals. For computation of optimized structures, normal mode wavenumbers
and vertical excitation energies, Psi4 [49] and ORCA [50] represent possible alternatives to
Gaussian09/16.

3. Experimental Overview

The methodology described in this section provides simulated electronic absorption
spectra that have excellent agreement with the experimentally measured spectra. Further-
more, the methods were selected to return simulated absorption spectra that are computable
within a single typical laboratory session (generally 2–3 h). An example pre-laboratory
assignment is illustrated in Section S1 of the Supporting Information, alongside the answer
keys. The pre-laboratory assignment is designed to test the students’ understanding of UV
spectroscopy and prepare them for the laboratory session, by sampling various general
aspects of this topic. In order to complete the experiment, the students are asked to perform
the following steps:

1. Computation of optimized structures and associated vibrational frequencies. This
step is performed using the GaussView6 and Gaussian16 computational packages.

2. Generation of initial geometries (Wigner points) and vertical excitation energies to
generate the full electronic absorption spectral profile of the selected molecule. This
step is performed using our home-written script and is very important because it
provides an absorption profile rather than the commonly used (and sometime mis-
interpreted) stick spectra.

3. Analysis and interpretation of the simulated spectra, with comparison to the known
experimental spectra.
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Details of steps 1–3 are explained in the following text, while the procedure for the
experiment is reported in Section S2 of the Supporting Information. The instruction pro-
vided in this procedure are specific to GaussView6, thus they need to be modified if
another computational package is used for this experiment. Using GaussView6, [14] i.e.,
a user-friendly graphical interface, the students will first construct the molecular struc-
ture of CO2, CH4, H2O, NO2, NO3 or O3. In this step, it is important to remind students
to derive the charge and spin multiplicity of each molecular system prior setting the
‘Opt + Freq’ calculations running, especially if the experiment is implemented in higher
division classes (even though, when using GaussView6, these are typically suggested by
default). Subsequently, they will use GaussView6 to setup the calculations for submis-
sion to the Gaussian computational package; [16] this allows geometry optimization and,
importantly, calculation of the vibrational frequencies. To this aim, it is important that
the job type in the Gaussian Calculation Setup is set to ‘Opt + Freq’. The method we
used in this project is Density Functional Theory (DFT), i.e., one of the most commonly
used computational methods in many research applications. The functional and basis set
selected for the calculations were B3LYP/6-311+G(d,p). After the calculation setup, the
students will submit the job so that the Gaussian computational program may optimize the
molecular geometry, calculate the vibrational frequencies and prepare an output file which
contains all the relevant information. If GaussView is unavailable, open-source alternatives,
such as MacMolPlt or Avogadro, may also be used.

Subsequently, a set of initial geometries is generated by sampling the ground state
vibrational wavefunction using a Wigner distribution. We opted to use this approach to
simulate the spectra of our molecules of interest because it has been previously used to
successfully simulate electronic spectra of more complex atmospheric molecules [32,34–39].
Furthermore, it represents a relatively straightforward approach to be implemented in
an undergraduate laboratory. To this end, we developed a simple script which can be
run using Terminal on a Unix or Linux platform. The script interfaces with the open
source package Newton-X [46] to generate the required number of Wigner points based
on the previous frequency calculations. In this way, the Gaussian16 output file from the
first step above is used to prepare a set of geometries around the equilibrium geometry.
The vertical excitation energies and corresponding oscillator strengths are then calculated
at each Wigner point to allow generating the full electronic absorption spectrum. The
interactive script guides the students by asking a series of questions to ensure that they
provide the required information for the Wigner point generation. The script then prepares
the corresponding input files. In particular, the students will be asked to provide the
name of the output file containing the frequency calculations and the desired number of
Wigner points to be generated. Subsequently, the script will require the students to select
the desired level of theory (computational method and basis set) to be used to compute
the electronic absorption spectra. Finally, students will be asked to input the number of
absorbing or emitting states for which the vertical excitation energy and oscillator strength
require computing. In our optimal case, we have used the B3LYP/6-311+G(d,p) level of
theory to compute the lowest 10 singlet excited states for closed shell molecules and lowest
10 doublet states for the radical species (NO2 and NO3). Once the level of theory is selected,
the script uses the optimized geometry and normal mode displacements to build an n-
point Wigner distribution to model the ground vibrational level of the ground state [46,51].
A preview of the interactive script is given in Section S3 of the Supporting Information.
Newton-X also allows one to simulate electronic absorption spectra using this method.
The additional aspects of our script are that it enables an interactive way of generating the
inputs, i.e., that the student is asked to select the level of theory as well as other molecule-
specific questions. This script is therefore expected to work alongside Newton-X to facilitate
implementation of absorption spectra simulations in an undergraduate laboratory setting.
As mentioned above, the number of Wigner points (n) is input by the students while
running the script and can be modified at the discretion of the instructor or operator.
In this project, we set the number of Wigner points to be 100. The number of Winger
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points to be sampled was selected so as to allow completion of the experiment within the
typical timeframe of an undergraduate chemistry laboratory session. A smaller or larger
number of Wigner points can be selected by the instructor based on the time and resources
allocated for the experiment. Figure S1 of the Supporting Information reports a comparison
between the UV absorption spectrum of O3 computed at the TD-B3LYP/6-311+G(d,p) level
of theory, when sampling 50, 100 and 150 Wigner points. If the required information has
been entered correctly and the initial geometries have been successfully generated, the
script will output a success message and proceed to submission of jobs for computation of
the vertical excitation energies. As part this project, a dedicated queueing script is coupled
with the previous script to allow the students to run automatically the jobs in series starting
from the first to the n-Wigner point. At each Wigner geometry, vertical excitation energies
and oscillator strengths are calculated at the TD-DFT level is computed. In our present
study, we use the TD-B3LYP/6-311+G(d,p) level of theory. After these are computed, the
excitation energy dependent photoabsorption cross section P(E) can then obtained using
Equation (1),

P(E) =
πe2

2mecε0

M

∑
j=1

[
1

NTOT

NTOT

∑
N=1

f N
ij g(E − ∆EN

ij , δ)

]
(1)

where g is a Lorentzian line shape function given by Equation (2),

g(E − ∆EN
ij , δ) =

hδ

2π

(
(E − ∆EN

ij )
2 +

(
δ

2

)2
)−1

(2)

fij is the oscillator strength.
An additional script is then used to obtain the vertical excitation energies and oscillator

strengths from each output file. Students are then asked to use Equations (1) and (2) to
compute the absolute photoabsorption cross sections of the molecules of interest. This
functionality is already implemented in Newton-X, which the students may use to calculate
the photoabsorption cross section, or they may simply use a spreadsheet program as part of
their post-laboratory report to obtain the photoabsorption cross-sections. Interested users
can contact the authors to obtain our scripts and for support.

4. Results and Discussion

This section will outline the results to be obtained from the laboratory session and the
learning outcomes that are expected to benefit the students.

Solar photolysis is a significant source of removing volatile gases from the atmosphere.
We therefore start by discussing the tropospheric solar spectrum to decide on the extent
to which the absorption profiles of our molecules of interest absorb at and are removed
by the fraction of near-UV and Visible solar wavelengths that survive through the strato-
sphere. Figure 1 presents the fraction of tropospheric solar flux in the wavelength range
280–2000 nm—at the surface of planet Earth. As is evident from Figure 1, no irradiance
(the power per unit area per nanometer wavelength of light) is measured at wavelengths
shorter than 300 nm. Ozone in our stratosphere is responsible for the lack of irradiance at
such short wavelengths.

The irradiance reaches a maximum at ca. 500 nm and tails off at wavelengths longer
than 1500 nm. The broad “dips” in the irradiance at ca. 950 nm, 1150 nm and 1350 nm are
due to near-IR absorptions by tropospheric water vapor. The sharp “dip” at ca. 750 nm is
due to near-IR absorption of O2. Absorption of IR radiation is insufficient for overcoming
the bond dissociation energy of the O-H and O-O bonds in H2O and O2, respectively.
Therefore, H2O and O2 are not removed from the troposphere via solar photolysis. Instead,
they are likely to undergo collisional relaxation and subsequent bimolecular chemistry that
promotes secondary chemistry in the atmosphere. If, however, the electronic absorption
profile of a given molecule overlaps with the solar tropospheric irradiance curve, and its
bond dissociation energies are less than or comparable to the excitation wavelength, it will
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likely undergo removal by solar photolysis. We will now access the electronic absorption
spectra of several key molecules that are expected to undergo electronic absorption outside
and within the tropospherically relevant solar irradiance.
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Figure 2 shows the calculated electronic absorption spectra of three key tropospheri-
cally relevant molecules CO2, CH4 and H2O using the procedure described in the method-
ology. These molecules are classified as greenhouse gases. The experimentally measured
electronic absorption spectra are displayed alongside each simulated absorption profile.
The students may be provided with the experimentally measured spectra or asked to
find these by consulting an online database (such as the The MPI-Mainz UV/VIS Spectral
Atlas of Gaseous Molecules of Atmospheric Interest) [40]. In all cases, the calculated and
experimental electronic absorption spectra are in good agreement—reinforcing the level of
theory and methodology used to simulate these spectra. By close inspection of Figure 2a, it
becomes clear that a second absorption feature is observed in the experimental UV spec-
trum at λ < 110 nm, but it is not reproduced by the simulated electronic spectrum. This is
most likely due to the limited number of excited states included in the spectral simulation;
computation of vertical excitation energies of additional, higher lying electronic states is
expected to return the short-wavelength absorption band observed in the experiment. This
was not carried out in the present work as we aim at keeping the computations consistent
for all molecules and the simulation easy to complete within the time allocated for a labora-
tory session. The expected minor differences between the simulated and experimentally
measured spectra provide the students with the vital first-hand account of the approxima-
tions inherent to quantum chemical methods that lead to such discrepancies between the
simulated and experiment results.

Time permitting, the instructor may decide to explore changes in the method and/or
basis set or, if the class has been exposed to the essential elements of quantum chemistry,
ask students to comment on the differences between the level of theory and the agreement.
Students can then gauge which methods and basis sets are the most accurate for a given
problem.

In all the molecular systems in Figure 2, the electronic absorption maximum, and
its long-wavelength tail, are at shorter wavelengths than the solar spectrum displayed
in Figure 1. At this stage, students should be able to make the connection between the
atmospheric lifetime and their lack of removal via solar photolysis, concluding that they do
not absorb within the solar spectrum and therefore survive with long atmospheric lifetimes
in the troposphere. Atmospheric lifetimes for CO2, CH4 and H2O are of the order of
300–1000 years, 9–12 years and a few hours to days, respectively [54,55]. The comparatively
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shorter lifetime of the latter is attributable to its removal by bimolecular chemistry with
atmospherically oxidants (e.g., Criegee intermediates).
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Figure 3 presents three further atmospherically relevant molecules NO2, NO3 and O3.
Again, their simulated electronic absorption spectra are given in black, while the experi-
mentally measured spectra are given in red. In all cases, the simulated and experimental
electronic absorption spectra are in good agreement. Again, the instructor may decide to
change the level of theory to show how method and basis set impacts the spectral profile.
In the case studies presented in Figure 3, NO2 and NO3 absorb in the range 300–600 nm,
covering the near UV and mid-visible spectrum, and at wavelengths that are well within
the solar irradiance that reaches the surface of earth. The students will then be expected to
recognize that both NO2 and NO3 absorb within the tropospherically relevant solar spectral
range. In the case of O3, students will be expected to analyze the absorption spectrum
of ozone and relate it to the anticipated stratospheric absorption of near- and mid- UV
radiation. From this, they will rationalize the absence of such near-/mid- UV wavelengths
in the tropospheric solar spectrum at sea level based on the absorption spectrum of O3. This
latter observation should be connected to the activity of O3 in the stratosphere in blocking
harming UV-radiation from penetrating into the troposphere, thus offering protection to
life to the surface.
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The students should also be able to appreciate the comparably shorter daytime life-
times of NO2 and NO3 (2–11 h), [56] connecting their daytime removal to their inherently
high solar photolysis rate constants, which manifest from their absorption within the
tropospheric solar spectrum.

Taken together, CO2, H2O and CH4 are case studies that are designed to show the
student that UV excitation in the troposphere does not contribute to their tropospheric
removal, leading to elevated atmospheric lifetimes and their potent activities as greenhouse
gases. In contrast, O3, NO2 and NO3 are examples which are selected to illustrate how
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the optical properties of certain atmospheric species can limit their lifetime due to solar
photolysis or to block harmful UV-radiation from reaching the surface of earth.

5. Conclusions

In this study, we devise a simple and efficient method for simulating the electronic
absorption spectra of atmospherically relevant gas molecules which may be implemented
into an undergraduate teaching laboratory. The method allows for the computation of
spectral profiles, which distinguishes it from the simple yet unreliable approach of calculat-
ing vertical excitation energies from optimized ground state minima, which only provide
stick spectra.

Once the laboratory session is completed, the participating students should have a
realization of the ways in which chemical and physical properties extend to topical issues
such as climate science. In particular, the laboratory is designed to expose students to
available methods for the simulation of electronic absorption spectra, as well as to provide
students with the essential knowledge of how tropospheric solar photolysis leads to re-
moval of trace gases from the atmosphere. The laboratory is especially suitable for exposing
students to two under-represented (but important) fields in chemistry: computational and
atmospheric chemistry. The laboratory is therefore expected to bridge the gap between
undergraduate and graduate level chemistry.

The computational exercise presented in this work could be implemented in introduc-
tory or general chemistry class as well as physical chemistry laboratories to allow students
to explore concepts of molecular and electronic structure through a hand-on activity. For
instance, the experiment allows students to visually investigate optimal geometries of
simple molecules, beyond the pen and paper approach typically offered in general chem-
istry lecture courses (e.g., Lewis Dot structures and fundaments of electronic structure),
and provides them with a 3D visualization of molecular orbitals in simple molecules.
Furthermore, the experiment may serve to reinforce or facilitate the introduction of basic
concepts of ground/excited state configurations of a molecule, vibrational motion and
electronic excitation, which may be particularly important for higher division classes such
as physical chemistry courses. The experiment can be implemented into organic chemistry
classes as it is or by adapting it to include the simulation of UV spectra of atmospherically
relevant organic species (e.g., chlorofluorocarbons or hydrochlorofluorocarbons). Finally, it
is important to remember that UV spectroscopy often features in both organic and physical
chemistry as a means to investigate the occurrence, mechanisms and kinetics of chemical
reactions, and computational modeling of ground and excited state properties may aid
interpretation of mechanisms of (photo)chemical reactions when experiments are not avail-
able; introducing students to the applications of computational chemistry may be beneficial
for their future studies or careers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/educsci12040252/s1. Figure S1: Dependence of the simulated UV
absorption spectra to the number of Wigner points sampled.
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