
����������
�������

Citation: Baroody, A.J.; Clements,

D.H.; Sarama, J. Lessons Learned

from 10 Experiments That Tested the

Efficacy and Assumptions of

Hypothetical Learning Trajectories.

Educ. Sci. 2022, 12, 195. https://

doi.org/10.3390/educsci12030195

Academic Editors: Colby Tofel-Grehl,

Beth L. MacDonald, Kristin A. Searle

and James Albright

Received: 22 December 2021

Accepted: 25 February 2022

Published: 10 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

education 
sciences

Review

Lessons Learned from 10 Experiments That Tested the Efficacy
and Assumptions of Hypothetical Learning Trajectories
Arthur J. Baroody 1,*, Douglas H. Clements 2 and Julie Sarama 2

1 College of Education, University of Illinois Urbana, Champaign, IL 61820, USA
2 Development and Research in Early Math Education, University of Denver, Denver, CO 80208, USA;

douglas.clements@du.edu (D.H.C.); julie.sarama@du.edu (J.S.)
* Correspondence: baroody@illinois.edu

Abstract: Although reformers have embraced learning trajectories (LT, also called learning progres-
sions) as an important tool for improving mathematics education, the efficacy and assumptions
of LT-based instruction are largely unproven. The aim of a recently completed research project
was to fill this void. Fulfilling this aim was more challenging than many supporters of LT-based
instruction might imagine. A total of 10 experiments were untaken, of which 5 demonstrated that
LT-based instruction was significantly more efficacious than a counterfactual involving either a Teach-
to-Target/Skip-Level approach (Assumption 1) or the same unordered activities (Assumption 2).
The results of the remaining studies were non-significant either for theoretical (2) or methodological
(3) reasons. In the five indicating LTs’ efficacy, we found that some LTs consists of levels that are
facilitative conditions for the next higher level and, thus, may be helpful but perhaps not necessary
for the subsequent level.

Keywords: cardinality; early childhood; (hypothetical) learning trajectories; learning progressions

1. Introduction

A hypothetical learning trajectory (HLT) is an extension of a learning progression or
learning trajectory (LT) that also includes instructional goals and activities [1]. Specifically,
HLTs in mathematics education consist of three components [2–4]:

1. A goal is the target developmental level. Goals are based on the structure of math-
ematics, societal needs, and research on children’s thinking about and learning of
mathematics and require input from experts in mathematics, mathematics education,
educational policy, and developmental psychology [5–7].

2. A developmental progression is a sequence of theoretically and research-based increas-
ingly sophisticated patterns of thinking that most children pass on the way to achiev-
ing the goal or target. Theoretically, each level serves as a foundation for successful
learning of subsequent levels.

3. Instructional activities include theory and research-based curricular tasks and pedagog-
ical strategies designed explicitly to promote the development of each level.

The conventional wisdom in the mathematics education community holds that HLTs
are an important tool in improving mathematics education. Indeed, it may seem obvious
that instruction (a) should promote lower levels of knowledge to the lay the foundation for
a goal at higher level compared to teaching to a target (focusing directly on a goal) and (b)
is more efficacious than using a project approach that entails instructional activities without
regard to developmental order.

Such assumptions are consistent with the conclusions of an Institute of Education
Sciences (IES) Practice Guide: Teaching math to Young Children [8]. The purpose of the
IES Practice Guide was to review the research literature and make instructional recommen-
dations based on this evidence and expert opinions. Frye et al. found moderate evidence
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for their first recommendation, “Teach number and operations using a developmental
progression”. Moderate evidence was defined as multiple studies with “high internal
validity but moderate external validity (i.e., studies that support strong causal conclusions,
but generalization is uncertain) or high external validity but moderate internal validity”
(i.e., studies that support the generality of a relation but the causality is uncertain; see also
https://ies.ed.gov/ncee/wwc/Docs/Multimedia/wwc_pg_loe_022718.pdf accessed on
1 March 2022). Frye et al. found minimal evidence for their second recommendation, “Teach
geometry, patterns, measurement, and data analysis using a developmental progression”.
Minimal evidence was defined as “evidence from studies that do not meet the criteria for
moderate evidence (e.g., case studies, qualitative research)”. Frye et al. concluded that
there was no direct evidence that instruction based on a developmental progression was
efficacious.

Citing Corcoran et al. [9], Shavelson and Karplus [10] similarly concluded that school
reformers and educational researchers have embraced instruction based on a learning
progression as an important but unproven tool for reform: “CCII (Center on Continuous
Instructional Improvement) views learning progressions as potentially important, but as
yet unproven tools for improving teaching and learning and recognizes that developing
and utilizing this potential poses some challenges” (p. 5). Shavelson and Karplus warned:

Learning progressions have captured the imaginations and rhetoric of school
reformers and education researchers as one possible elixir for getting K-12 ed-
ucation “on track” . . . Learning progressions and research on them have the
potential to improve teaching and learning; however, we need to be cautious . . .
The enthusiasm gathering around learning progressions might lead to giving
heavy weight to one possible solution when experience show single solutions to
education reform come and go.

More recently, Lobato and Walters [1] noted the empirical evidence supporting the
efficacy and assumptions of learning progression/LT-based instruction is (still) surprisingly
limited.

To provide such evidence, we proposed and IES funded the HLT Project, “Evaluating
the Efficacy of Learning Trajectories in Early Mathematics”. Sections 2–4 summarize
the project’s rationale, methods, and results, respectively. Spoiler alert: Corroborating
the efficacy and basic assumptions of HLT-based instruction was challenging. Section 5
discusses theoretical reasons for our inconsistent findings and underscores why developing
and utilizing the potential of HLT-based instruction is challenging, and Section 6 focuses
on methodological reasons for some findings, with implications for future research projects.
Section 7 summarizes our conclusions.

2. Rationale of the HLT Project
2.1. Goals

The overarching goal of our HLT Project was to rigorously evaluate the efficacy of us-
ing LTs as a curricular and pedagogical tool and the key assumptions on which HLT-based
instruction is based. To ensure the findings were generalizable, we conducted multiple
experiments across various mathematical topics and age groups. We studied the preschool
and kindergarten ages because HLTs are particularly important for early childhood mathe-
matics education for several interrelated reasons. One is that early childhood educators
too often have minimal, if any, training on mathematics development and education. As
a result, they frequently underestimate young children’s (informal) mathematical knowl-
edge, mechanically teach the lessons specified in a curriculum guide or textbook, and
focus only on the most basic numeracy content, which many, or even most, children have
already learned [11–15]. Indeed, because of a negative disposition towards mathematics
instructions, many early childhood teachers do not set any mathematical goals, use any
mathematical curriculum or resources, and rely on (hit-or-miss) opportunities that emerge
from children’s play or routine activities [13,16–20]. The pedagogical knowledge and
learning expectations of teachers of academically at-risk children are particularly unlikely

https://ies.ed.gov/ncee/wwc/Docs/Multimedia/wwc_pg_loe_022718.pdf
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to foster numeracy [21–25]. Another reason is that LTs have been well developed for the
preschool–kindergarten age range.

We now turn to the two key assumptions of HLT-based instruction.

• Assumption 1. Instruction in which LT levels are taught consecutively (e.g., for children at
level n, using instructional activities to foster level n + 1 and then n + 2 before instruction
on a goal or target-level knowledge at level n + 3) results in greater learning than instruction
that immediately and solely targets level n + 3 (or higher levels), namely the “Skip-Level” or

“Teach-to-Target” approach.
• Assumption 2. Instruction aligned with an LT sequence results in greater learning than

instruction that either uses a traditional curriculum’s activities and sequence (business as
usual) or uses the same activities as those of the LT but chosen and ordered to fit a theme-based
project.

The arguments pro and con for each assumption and the evidence regarding the
efficacy of HLT-based instruction are addressed in turn.

2.1.1. Assumption 1

The first assumption is that instruction should move children from their present level
to the next higher level and continue in this manner until the instructional goal is reached.
Proponents of traditional didactic instruction (a Teach-to-Target approach) continue to
argue that teaching to a skill—direct instruction and drill of target knowledge—is the
most mathematically rigorous and efficient way to ensure accurate target-level knowledge
(see [7,26–30]). Such an approach avoids promoting the informal and error-prone strategies
of lower levels and the slow movement through these lower levels. An example of this
“Teach-to-Target” approach is the “worked examples” method—explicitly describing and
illustrating how to solve a new type of problem, including the why (conceptual rationale)
for each step [31–33]. Some evidence supports the Teach-to-Target approach [27,34–37],
although the research designs often do not include other research-validated approaches.

In contrast, those interested in educational reform have long recommended building
on prior knowledge as a means overcoming limitations of rote memorization engendered
by traditional, didactic instruction. For example, in his 1892 “Talk to Teachers”, the eminent
psychologist William James [38] advocated meaningful memorization:

“When we wish to fix a new thing in a pupil’s [mind], our . . . effort should not
be so much to impress and retain it as to connect it with something already there
. . . If we attend clearly to the connection, the connected thing will . . . likely . . .
remain within recall”. (pp. 101–102)

In a similar vein, Piaget [39] argued that “the fundamental relation from the point of
view of pedagogical . . . application” is not associations, but assimilation: “the integration
of any sort of reality into [an existing] structure”(p. 16).

Since the late 19th century, when research on the development of mathematical knowl-
edge exploded, educational reformers became increasingly interested in developing, pro-
moting, and using such an approach [40]. A basic assumption for using HLT-based instruc-
tion is that it is more efficacious than teaching a target-level competence directly [2,8].

Consider, for example, the classic example of achieving fluency with basic sums such
as 3 + 4 = 7. Traditional didactic instruction focuses on direct imposition of the knowledge:
repeated exposure and practice of the basic facts, frequently accompanied by suppression
of children’s existing slow and sometimes error-prone informal strategies [41,42]. If such
efforts fail to result in memorization by rote, exposure and practice are increased and the
correct answer is provided if a child responds incorrectly or does not respond quickly [43].

In contrast to this one-phase approach, mathematics educators have long recom-
mended achieving meaningful memorization using three phases [44–46]. In Phase 1,
children are encouraged to develop efficient counting strategies to better detect patterns
and relations among basic sums. In Phase 2, children next use discovered mathematical
regularities to devise reasoning strategies such as the near-doubles reasoning strategy (e.g.,
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3 + 4 = [3 + 3] + 1 = 6 + 1 = 7). This strategy builds on prior knowledge by relating an
unknown near double (3 + 4) to a known double (3 + 3 = 6) and a known add-1 combination
(6 + 1 = 7). If this effort fails, knowledge of these prerequisites would be checked, and
if need be, remedied. For example, if a child was not fluent with the add-1 combination
6 + 1 = 7, prerequisite knowledge for its fluency—number-after relations (e.g., when we
count, the number after six is seven)—would then be checked. Once fluency with number-
after relations was achieved, remedial instruction would next focus on encouraging a child
to recognize the connection between adding 1 and the structure of the counting sequence—
that is, the number-after rule for adding 1 (e.g., the sum of 7 + 1 is the number after seven in
the counting sequence or eight). In Phase 3, children achieve fluency by either automatizing
reasoning strategies or internalizing families of related facts [2,47–49].

Similar to this example, HLTs can highlight developmentally appropriate and impor-
tant goals (e.g., the importance of number-after relations as a basis for fluency with basic
sums) and help focus instructional efforts on them. HLTs underscore how children typically
develop and the need to consider what they must already know to make progress and
what level of instruction is within their comprehension (e.g., a child who does not know
number-after relations is unlikely to achieve fluency with add-1 combinations, let alone
near doubles such as 3 + 4) [50,51]. HLTs, then, spotlight the need for formative assessment
to determine where children are developmentally on a progression, so that instruction
can target their learning needs with meaningful and effective learning tasks. For these
reasons and more, researchers, educators, and policy makers have recommended HLTs as
a useful tool for teachers in helping them to understand, promote, and assess children’s
mathematical learning [2,4,8,47,52,53].

2.1.2. Assumption 2

The second assumption of an LT approach is that there is a sequence of such levels of
learning and teaching that is determined by research-based developmental progressions
and that instruction is more efficacious if it promotes each level in turn. Postulating that
each level of knowledge builds hierarchically on the concepts and processes of the previous
levels stands in contrast to some traditional early childhood curricular organizations: theme,
project, and emergent approaches [54–59]. In these approaches, a theme (e.g., “colors”),
a project (e.g., visiting an apple orchard and making applesauce), or an emergent issue
(e.g., building a bus when children expressed interest in buses spontaneously) determines
the sequencing of activities. For example, if the theme is colors, children are asked to sort
by color; if it involves apples, children might count the seeds in an apple or cut them and
talk about “halves”. Thus, the activity is chosen for its fit to the classroom work, which
is ostensibly more meaningful and connected for the child and thus will lead to greater
learning.

In Experience and Education, Dewey [60] summarized the lessons he learned from
his own efforts to reform education. He argued that instruction cannot simply consist
of a hodgepodge of activities without clear educational purposes. Teachers must strive
to provide educative experiences (experiences that lead to worthwhile learning or a basis
for later learning), not mis-educative experiences (activities for the sake of activity and that
may impede development). According to Dewey’s “principle of interaction,” educative
experiences result “from an interaction of external factors (e.g., the nature of the subject
matter and teaching practices) and internal factors (e.g., a child’s developmental readiness
and interests). Unless a theme, project, or emergent issue is carefully chosen and developed
with important goals and students’ range of developmental levels in mind, instruction
may violate Dewey’s principle of interaction and, thus, be inefficient, ineffective, or even
detrimental. Some, many, or even most children may not be developmentally ready
or developmentally too advanced for the instruction. Although careful integration of
mathematics into daily routines and instruction in other areas can be valuable, doing so
without regard to the mathematical goals and developmental progressions of an LT may be
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mis-educative. Although children’s interest should guide instructional decisions, children’s
interests are malleable, and teachers can inspire new interests.

2.2. Existing Evidence of Efficacy and Its Limitations

Before we began the HLT Project, the following critical question had yet to be answered
causally: “Which approach, HLT-based, Teach-to-Target, or Theme/Project/Emergent-
based results in better mathematical outcomes for preschool children?” Although LT-based
instruction is often recommended as a valuable educational tool, there is surprisingly little
empirical support for this belief or its underlying assumptions [1,8]. Most research has fo-
cused on empirically validating the developmental levels of HLTs by using a cross-sectional
methodology or tracking the progress of individuals over time (e.g., [61–64]). Relatively
little research has involved closely examining the impact of instructional scaffolding on
children’s movement along an HLT compared to not doing so.

Moreover, although considerable research has shown interventions that have HLTs as
a component are efficacious in promoting numeracy, little research has directly or system-
atically examined their unique contribution or assumptions [8]. For instance, a preschool
curriculum based on HLTs promoted numeracy significantly more than did business-as-
usual instruction (effect size, 1.07) or an intervention organized by mathematical topics
(effect size, 0.47 [65]). Although the HLT and topically based interventions were closely
matched in terms of content and superior performance of the former might be due to using
an HLT, the two curricula had other differences (e.g., different activities and integrated
versus discrete content) that might account for the performance difference.

3. Methods

The HLT Project entailed scientific and rigorous tests not heretofore conducted on the
HLT construct by designing experiments that had the following three characteristics:

1. Ensured causal interpretation of the findings via Randomized Control Trials.
2. Ensured a control group received an intervention that was as similar as possible to

the HLT intervention, except for a single defining attribute of the HLT construct.
3. Identified each participant’s location on a LT at pretest and ensured an equivalent

baseline for posttest comparison of interventions on the dependent measure(s).

3.1. Research Design to Test Assumption 1

To test the assumption that progressively teaching one level above a child’s existing
level on an LT should be more efficacious than skipping a level and directly teaching
to the target level, seven experiments were undertaken that involved a comparison of a
LT-based instruction and a control group, which received the same target-level instruction
but skipped prior levels.

3.2. Research Design to Test Assumption 2

To test the assumption that presenting instruction in the developmental order hypoth-
esized by a LT presumably matters, three experiments involved comparing an experimental
group received LT-based training (activities ordered by an LT) with a counterfactual group,
which, involved the same activities but not ordered by a LT and (typically) a business-as-
usual (BAU) control group, which received only classroom experiences.

4. Results
4.1. Results for Assumption 1

Table 1 shows that the results of the seven experiments that evaluated Assumption 1
produced different results. Four found that progressively teaching one level above a child’s
existing level on an LT was more efficacious than skipping a level and directly teaching to
the target level: Experiment 3 [66], Experiment 4 [67], Experiment 7 [68], and Experiment
10 [69]. Unpublished Experiments 1, 2, and 9 had a positive impact but not above and
beyond the Teach-to-Target intervention) due to methodological problems.
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The results of Experiments 3, 4, and 7 indicate that the LT-based instructional approach
is efficacious in various ways. For example, Experiment 3 indicated that children in the
Teach-to-Target group showed an aversion to math, whereas the HLT-taught children
exhibited engagement. HLT participants in Experiments 4 and 7 involving arithmetic
showed growth not only in correct answers but also in the use of more sophisticated
strategies. Indeed, although the Teach-to-Target intervention in the Experiment 7 had a
heavier dosage of target-level arithmetic instruction, the HLT-based instruction produced
significantly and (as measured by effect size) substantially more accurate solution at and
above the target level. This is striking in that the counterfactual children spent all their
instructional time at the target level, far more than the HLT children. Nevertheless, the HLT
children scored higher on items measuring that level (and those measuring levels above)
than the counterfactual children.

4.2. Results for Assumption 2

As Table 1 shows, the results of the three experiments that evaluated Assumption 2
similarly produced mixed results. Experiment 8 [70] indicated that using activities ordered
by an HLT was more efficacious than with using the same, albeit unordered, activities. That
is, the experiments testing Assumption 1 used mostly different activities. However, the
child in these experiments experiences the same activities. Thus, the results specifically
showed the importance of following the developmental progression.

However, Experiment 5 [71] and Experiment 6 [72,73] found that the HLT-based
intervention produced significant learning but not significantly better than that involving
the same unordered activities. The next two sections discuss possible reasons for the mixed
results.

5. Discussion of Theoretical Issues

Why—despite our own belief in LT-based instructional approaches—was it so diffi-
cult to corroborate the efficacy and underlying assumptions of such an approach? Four
theoretical factors might account for the inconsistent results.

5.1. Nature of the Relation between Successive Levels

Earlier levels in an HLT may support later levels either by facilitating the latter or
serving as a developmental prerequisite (a necessary condition) for the target knowledge.
As an example of a developmental prerequisite, consider two concepts in object counting:
The count-to-cardinal concept, also known as the cardinality principle (CP), entails under-
standing that the last number word said when counting a set indicates the total number
of items in that set (e.g., counting a set of five blocks as “one, two, three, four, five” and
recognizing that there are “five’ blocks in all). The cardinal-to-count concept serves as the
conceptual basis for counting out a specified number of items: to produce a given quantity,
count object objects to that number. Fuson [74] hypothesized that count-to-cardinal concept
(or CP) serves as developmental prerequisite for the cardinal-to-count concept: indicates
that a cardinal label of a set such as “five” indicates what the last number word would
be if the set were counted. In essence, the cardinal-to-count concept is the inverse of the
count-to-cardinal concept and serves as the rationale for the counting-out procedure. For
instance, “five” in the request “give me five blocks” specifies that the counting-out process
should stop when the count reaches five. With facilitative relations, a messy middle can be
expected. That is, though success on an earlier facilitative level increases the probability
of success on a later target knowledge, knowledge of any one facilitator may or may not
be evident before the target knowledge emerges. With modest facilitators particularly, a
child might skip one or even more levels, or appear to do so, and still learn higher target
knowledge. This might account for why, in Experiment 5 [71] and Experiment 6 [72,73], the
experimental intervention based on an HLT resulted in significantly improved patterning
knowledge but not significantly better than the counterfactual intervention, which involved
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the same unordered activities. Teaching the levels in order was not crucial for promoting
an advanced level of patterning knowledge.

For Experiment 3 [66], Experiment 4 [67], Experiment 7 [68], and Experiment 8 [70],
the experimental intervention based on an HLT resulted in significant improvement above
and beyond that of the counterfactual. Nevertheless, in these experiments, some control
participants achieved success on the target level without instruction on precursor levels.
Such results are consistent with an HLT that embodies strong facilitators, but not prerequi-
sites, for the target knowledge. (Both prerequisite or necessary and facilitative relationships
are postulated by Hierarchical Interactionalism [2].)

In Table 1, the evidence indicated that the HLT in Experiment 7 was nearly a necessity
for kindergartners with lowest entry level. These results suggest that the earliest levels
in the HLT are more critical than later levels and probably unwise to skip and/or that
the greater the distance between a child and the target level, the more important is the
adjustment of instruction to the child’s level.

For Experiment 10 [69], the HLT involved a hypothesized conceptual prerequisite
for a target concept and skill. With one exception (described in the fourth bullet below),
participants pretested at a level below the conceptual prerequisite had negligible or no
success on target tasks. The HLT-based experimental intervention resulted in significant
improvement on both conceptual and procedural fluency dependent measures above and
beyond the improvement of the counterfactual (Teach-to-Target intervention). Specific
findings include

• Five of the seven participants who received the HLT-based intervention, which in-
cluded prior training on the conceptual prerequisite, had (some) success on the target-
concept measure; six of seven, on the target procedural-fluency measure.

• The one HLT participant who was unsuccessful on both the conceptual and the
procedural-fluency task had negligible success learning the conceptual prerequisite.

• Seven of the eight participants who were trained on the target concept and skill but
not the prerequisite concept had (almost) no success learning the target knowledge.

• Finally, post hoc analysis indicated that the exceptional Teach-to-Target participant
who mastered both the target concept and skill not only exhibited the best pretest
performance of the sample but appeared to have learn the prerequisite concept during
the pretesting.

Overall, then, of the seven children who exhibited knowledge of the prerequisite
concept before the target training, six appeared to benefit from the target-level training
and exhibited some success on the measure of target understanding (see Table 2). Of
the eight children who did not exhibit knowledge of the prerequisite concept before the
target training, the target-level training resulted in no success on the measure of target
understanding in seven (Teach-to-Target) cases and negligible success in another (HLT
participant). The corresponding results for the target skill were all seven prerequisite
knowers achieved (some) success, whereas seven not-knowers had no success and one
had minimal success (see Table 3). The lack of a messy middle is strongly consistent with
prerequisite knowledge involving a necessary relation and, in such cases, instructional
order (including not skipping the lower level) is important.
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Table 1. Summary of the Research for the HLT Project.

Experiment: Domain Published Assumption Method
Statistically and

Practically
Significant b

Reason for Non-Significance Relation

Experiment 1
(n = 76 preschoolers):
Counting/subitizing/

cardinality

- 1
LT
vs.

TtT/Skip
No Methodology -

Experiment 2
(n = 180 pre-K):

Counting/subitizing/
cardinality a

- 1
LT
vs.

TtT/Skip
No Methodology -

Experiment 3
(n = 152 preschoolers):

Shape composition
[66] 1

LT
vs.

TtT/Skip

Yes
ES = 0.55
p = 0.016

-
Not necessary
but strongly
facilitative

Experiment 4
(n = 26 kindergartners):

Addition and subtraction
[67] 1

LT
vs.

TtT/Skip

Yes
Multiple qualitative

indicators of a gain of
24% or greater

-
Not necessary
but strongly
facilitative

Experiment 5
(n = 16 preschoolers):

Patterning pilot
[71] 2

LT
vs.

Unord

No
ES = 0.238 for
main variable,

p = 0.48

Type of relation,
faulty LT Somewhat facilitative

Experiment 6
(n = 48 preschoolers):

Patterning
[72,73] 2

LT
vs.

Unord

No
Unord scored higher on

some measures, ns

Type of relation,
faulty LT Somewhat facilitative

Experiment 7
(n = 291 kindergartners):

Early arithmetic
[68] 1

LT
vs.

TtT/Skip

Overall: Yes;
small for those with
highest entry level

Target:
Yes

-

Not necessary
but facilitative;

near necessary for those with
lowest entry level

Experiment 8
(n = 189 kindergartners):

Length measurement
[70] 2

LT vs.
REV vs.

BAU

Yes/No
ES = 0.32

(LT vs. REV)
-

Not necessary
but highly
facilitative

Experiment 9
(n = 20 preschoolers):

Cardinality
- 1

LT
vs.

TtT/Skip
No Methodology -

Experiment 10
(n = 15 preschoolers):

Cardinality
[69] 1

LT
vs.

TtT/Skip

Yes
ES = 1.3, p = 0.032

(procedural fluency)
ES = 1.68 p = 0.016

(conceptual understanding)

- Necessary
(or necessary and sufficient?)

Note. LT = HLT-based intervention. TtT/Skip = Teach-to-Target/Skip Level(s) counterfactual; Unord = same but unordered instructional activities counterfactual; BAU = business-as-
usual (passive) control condition. a The 180 children were assigned to one of the three sub-experiments depending on their initial (pretest) level of development. b Slavin and Smith [75]
caution that effect sizes for small-n studies, such as Experiments 4, 5, and 11, are more variable than those of large-n studies. Thus, the former produce less reliable and replicable
estimates of program impact than the latter. They further note that the most important source of this greater variability may be what Cronbach et al. [76] call “superrealization”.
Superrealization refers to high implementation fidelity due to better monitoring and more input by experimenters than would be available at scale. Slavin and Smith conclude that,
although this variable may not impact internal validity, it can appreciably affect external validity.
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Table 2. Knowledge of the hypothesized prerequisite (count-to-cardinal) concept before training ×
posttest performance on the target (cardinal-to-count) concept in Experiment 10.

Understanding of Target
Concept at Posttest

No Yes

Knowledge of the prerequisite
(count-to-cardinal) concept before

target training on the target
(cardinal-to-count) concept

Yes A
1

B
7

No C
8

D
0

Table 3. Knowledge of the hypothesized prerequisite (count-to-cardinal) concept before training ×
posttest performance on the target (counting-out) skill in Experiment 10.

Fluency of Target Skill at
Posttest

No or Little Modest or
Good

Knowledge of the prerequisite
(count-to-cardinal) concept before

target training on the target
(counting-out) skill

Yes A
0

B
8

No C
8

D
0

5.2. Qualitative Differences between Successive Levels

Even with a succession of prerequisite levels that involve necessary conditions, if
two successive levels are highly similar, children may spontaneously construct the higher
level from the lower level learned with the support of instruction. That is, with little
or no external help, students may generalize learning to the next level. Achieving the
lower level (via instruction) may effectively be a necessary and sufficient condition for
achieving the higher level. Alternatively, children might spontaneously construct a lower
but “skipped” level as they learn the level higher with the support of instruction, “filling
in” the knowledge of the skipped level [2,77]. In such cases, skipping instruction on the
next level and focus on the next higher level would be warranted at least for some students.

5.3. Number of Paths to Target Knowledge

Various scholars have questioned whether there is a single path for all key ideas—
whether an HLT can be considered the only or even the best path to a goal [2,5,77,78]. For
example, Lesh and Yoon [79] proposed that some knowledge domains might be character-
ized as the diametrically opposite of a linear, ladder-like LT, namely a web of knowledge.
With multiple pathways of facilitators, the middle ground between initial knowledge and
the target knowledge can be especially messy.

5.4. Validity of the LT

Some domains such as early patterning have been researched less than other domains
such as counting, number, and arithmetic development. Thus, the relations among levels
of knowledge or thinking of the former are less clear than those of the latter. Experiment
5 [71] entailed evaluating the LT for early knowledge of for repeating patterns summarized
in Figure 1.
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Figure 1. A Modified Version of the HLT for Initial Patterning Instruction.

One unresolved question of particular interest was: Where should translating a re-
peating pattern into letters fit in a patterning HLT? Logically, such a competence fits the
definition of Level 3 (Children can abstract a pattern and translate it into new media), which
in Sarama and Clements’ [2] original LT was combined with Level 4 (Children can identify
the core of a repeating pattern (the smallest portion of the pattern that repeats to create the
rest of the pattern). For the LT training, then translating repeating patterns was postponed
until after participants received Level-2 training. Interestingly, two popular early childhood
mathematics curricula—Building Blocks [80] and Mathematics Their Way [81]—regularly
use letters to label patterns from the beginning of patterning instruction. This approach
was used in the counterfactual training.

Baroody et al. [71] observed that children in both conditions struggled mightily with
translating patterns into different materials (e.g., translating the circle-square- circle-square-
circle-square pattern depicted above into triangles-hexagon- triangle-hexagon-triangle-
hexagon or—in a few cases—even a circle-square repeating pattern involving different
colors). In contrast, they quickly learned to translate repeating patterns into letters (e.g.,
translating �•�•�• into the plastic alphabet letters: ABABAB). Using letters to label the
elements of a pattern or its core, then, seems to be a distinct form of translating patterns—
qualitatively different from translating a pattern into other objects (see also [72]). As a
result, the counterfactual (“unordered”) intervention may have conferred two advantages:

1. The early use of letters to label the elements of a pattern may have fostered the Level-2
competencies (e.g., extending a repeating pattern) by counterfactual participants.

2. Early use of letters to label the core of a pattern may have helped some such partici-
pants achieve Level-4 competence (identifying the core of a repeating pattern). (Par-



Educ. Sci. 2022, 12, 195 11 of 19

enthetically, translating a pattern into different objects (listed as a Level-3 competence
in Figure 1) may be more challenging and facilitated by an explicit understanding the
concept of a core unit (listed as a Level-4 competence in Figure 1). This conjecture is
consistent not only with Baroody et al.’s [71] observations but with Fyfe et al.’s [82]
finding that using letters to identify unit cores was efficacious in promoting the ability
to translate a pattern into different objects. Although an implicit consideration of unit
may naturally help some children to translate a repeating pattern into different mate-
rials, more explicit instruction that entails systematic instruction that first involves
using letters to label the elements of a pattern (Level-2) and then the core of a pattern
may provide a better basis for most children to tackle this challenging task.)

Yilmaz et al. [73] reported eye-tracking data that indicated Level-2 children implicitly
attend to the core when, say, extending a pattern and only later construct the explicit
knowledge that permits success on the core-identification task used to assess Level 4. That
is, experiences constructing Level 2 implicitly draws attention to the core and can facilitate
explicit attention to the core during Level-4 training whether conducted simultaneously or
afterward. So, another reason for indistinct impact of HLT-based instruction and instruction
based on the same unordered activities is that existing patterning LTs, such as that in
Figure 1, may have been based on incomplete information—on research that did not
adequately examine children’s implicit patterning knowledge.

6. Discussion of Methodological Issues

Another barrier to confirming the efficacy of HLT-based instruction and its assump-
tions are the methodological challenges of such research. We first discuss five general
challenges and then illustrate these issues with a description of our efforts to study a partic-
ular domain (early cardinality development). These are by no means the only challenges.
However, we believe that their explication may increase the quantity and quality of future
research.

6.1. General Methodological Challenges
6.1.1. Issues with the Starting Level

When evaluating the efficacy and assumptions of HLT-based instruction, careful
attention must be paid in identifying a participant’s starting developmental level, ensuring
enough participants are at an appropriate starting level to achieve significant statistical
power, and equating the learning conditions on this variable. For example, Baroody
et al. [71] reported that, unlike type of intervention, starting level was significantly related
to learning the target knowledge (core identification). The two HLT and three unordered
participants who exhibited partial Level-2 competence at pretest all achieved success on
the target (Level-4) task at posttest. In contrast, among participants who were at Level 1 at
pretest, only three of the six HLT-like participants and one of the five non-HLT children
did so. Given that Level 3 should perhaps follow Level 4, the five participants who started
with partial knowledge of Level 2 were already close to the target level, whereas those who
started at Level 1 were a full level away from it. With a larger sample of children who start
at Level 1, then, type of intervention might have made a significant difference.

6.1.2. Sacrifice of Ecological Validity

Research requires trade-offs between internal and external validity (e.g., between con-
trols that permit a clear conclusion and results that can be generalized to actual classrooms).
The positive impact of the HLT-based instruction may be greater outside of a controlled
sequence of activities used in the present project. For example, in the experiments that
compared an HLT-based intervention with an intervention using the same unordered
activities [70–72], the former involved a fixed sequence of activities, regardless of a child’s
progress. This was necessary to equate coverage and dosage and eliminate these factors
as possible confounds or alternative explanations. However, HLTs are recommended as
resources to support more flexible instruction based on formative assessment [2,8]. That is,
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typically the use of HLTs involves immediately moving to the next higher level once a level
is attained and only after this level is attained.

6.1.3. Small Sample Size

A possible explanation for the insignificant finding of Experiment 5, for example, was
the small sample insufficient power to detect a real difference. However, a follow-up with
three the number of participants per group (Experiment 6) also yielded a non-significant
difference [72].

6.1.4. Entangling Lower with Higher of Levels of Instruction

An analysis of Experiment 1 revealed two inter-related reasons for the lack of a signifi-
cant difference between the HLT-based intervention and the Teach-to-Target intervention.
One was that the target-level activities form the Building Blocks curriculum used for
both interventions involved both target-level and lower-level competencies. Another is
that—despite their research protocol training—the trainers naturally did what educators
do, which was they help a child with both levels of competencies regardless of a child’s
assignment (having trainers teach only one condition would have introduced a possible
confound). In effect, the two types of intervention were not clearly distinct. A lack of
fidelity to both the HLT and counterfactual also plagued Experiment 2. The plan was to
have 180 children starting at the same level, but the population was so diverse that children
were assigned to three different levels and thus three instructional conditions. Despite
additional professional development, trainers found it difficult to accurately enact the six
different instructional conditions (often doing 3 or more each day with different children).

6.1.5. Imprecise Dependent Measures

The operational definition of target-level competencies needs to be precise. The
dependent measures for Experiment 1 and Experiment 2 (in Table 1)—the first two efforts
to examine a cardinality LT—involved tasks drawn from the TEMA-3 [83] and REMA [84].
Two ‘how many?’ tasks—cardinality rule with 8 items (after counting 8 items, asking a
child how many) and how many pennies (after counting 8 pennies)—served to gauge
prerequisite knowledge (Level 2, the count-to-cardinal concept, or CP). A give-n task (put 5,
7, and 10 boxes in a cart) served partly to gauged target-level knowledge (Level 4, cardinal-
to-count, producing a set). Unfortunately, these tasks do not precisely measure conceptual
understanding at Levels 2 and 4.

Whereas the count-to-cardinal concept or cardinality principle (CP) entails under-
standing that the last number word used to count a collection also indicates its total number
of items, Fuson [74] observed that many children can learn the cardinality rule (stating the
last number word is an acceptable response to the how many question) by rote—without
recognizing that it represents the total. Thus, children successful on the cardinality rule
with 8 items may or may not have constructed the hypothesized prerequisite (Level-2)
knowledge for Level 4.

Children successful on the give-n task (‘put 5 [then 7, and finally 10] boxes in a cart’)
almost certainly understand the Level 4 (cardinal-to-count) concept (a cardinal term such
as “seven” indicates what the last number word would be if a collection is counted).
This advanced cardinal concept is the basis for knowing when to stop the counting-out
process (e.g., put 7 boxes in the cart, stop counting out boxes when “seven” is reached).
However, the task involves executing a counting-out procedure that requires remembering
the requested number, counting items as they put in the cart, comparing a count to the
requested number. In brief, a child might understand the cardinal-to-count concept but
respond incorrectly because of a procedural slip up.

6.2. A Case in Point: Cardinality Development

Although some researchers agree with Fuson’s [74] hypothesis that ability to count
out a requested number of items and its conceptual rationale (Level 4 in Table 4) should
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build on earlier level of cardinal-number understanding (Levels 1 to 3 in Table 4 [8,85];
others do not [86,87].

Table 4. A possible learning progression of key aspects of pre-counting and counting-based cardinal
number knowledge and their type of mapping, conceptual basis, and direct measure [8,74,85].

Aspect of Cardinal Number Conceptual Basis Mapping Direct Measure

Pre-meaningful counting (verbal subitizing-based) cardinality development

Level 1A: number recognition
(n-knower levels)

Cardinal representation of a small
number

underlies immediate subitizing of 1, 2, or
3

Quantity-to-word
(via subitizing) How-many task

Level 1B: putting out a requested n
(also commonly called

n-knower levels)

Cardinal representation of small numbers
used to subitize when 1, 2 or 3 have been

put out

Word-to-quantity
(via subitizing) Give-n task

Counting-based cardinality development

Level 2: cardinality-principle
knower

[CP-knower] level) a

Count→cardinal concept or cardinality
principle (last number word = total)

Quantity-to-word
(via counting) How-many task

Level 3: applications of CP:
Number-constancy concepts

3A. Counting-based conservation of
cardinal identity: Addition or subtraction,

but not irrelevant physical
transformations, changes total

3B. Counting-based cardinal equivalence:
Sets with same number are equal despite

looking different

Quantity-to-word
over a quantity
transformation
Comparing two

quantity-to-word
mappings

1. Conservation of
cardinal identity

2. Cardinal
equivalence

Level 4: Counting out a requested n
Cardinal→count concept (a cardinal

number = the last number word used if a
set is counted)

Word-to-quantity
(via counting)

Predict last n word
and give-n tasks

a Meaningfully attaining Level 2 may be preceded by learning the last-word rule, which can be applied without
understanding to achieve success on the how-many task.

6.2.1. Experiment 9: Lessons Learned, Part 1

To evaluate the validity of the hypothesized LT (Table 4), the lessons learned in
Experiments 1 and 2 were then applied to Experiment 9. Specifically, a conservation of
numerical identity task was added to check whether correct responses on the ‘how many?’
task were due to a cardinality rule learned by rote or the meaningful count-to-cardinal
concept (cardinality principle). This task required a child to not only generate the cardinal
number for a collection of 5 or 6 by counting but apply this outcome meaningful—to
recognize whether a transformation affected the total (addition or subtraction of 1) or not
(change in appearance). The scoring of the give-n task was modified to distinguish between
errors that violate the cardinal-to-count concept (e.g., counting out all the available items or
counting out more than requested number) and minor errors that do violate the principle.

Overview of Experiment 9. This effort entailed randomly assigning 10 participants
to the HLT condition (4 boys, mean age = 3.55 years, 5 African American, 3 multiracial,
8 free/reduced lunch) and 10 in the Teach-to-Target condition (4 boys, mean age 3.8,
3 African American, 2 multiracial, 9 free/reduced lunch). An analysis revealed that both
groups improved significantly and substantially at delayed posttest on the give-n task
but that the HLT-Like group did not significantly improve more than the Teach-to-Target
group.

Methodological issues with Experiment 9. Three issues appeared to account for the non-
significant difference. Two involved the starting level. One compromising issue was that
children were included in Experiment 9 regardless of how far below the target level they
were developmentally. For the example, the lowest-functioning child in the experiment
could not initially subitize even one and two and had trouble counting one-to-one with
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collections beyond two. Despite focused remedial efforts, this HLT-assigned child did
not improve on these foundational competencies. This makes sense given the relatively
long time needed to construct verbal concepts of “one” and “two” [88,89]. Training on
the hypothesized prerequisite cardinality concept (count-to-cardinal concept) and, thus,
the more advanced target-level knowledge (cardinal-to-count concept and counting-out
procedure) had no impact.

A second issue with starting level was that, at pretest, half of the children included
in Experiment 9 could occasionally count out a collection of 5 or more upon request. That
is, although highly inconsistent in their performance on the give-n task, they sometimes
appeared to apply the cardinal-to-count concept (i.e., stopped their counting-out process at
the requested number).

A third issue was assessing the cardinal-to-count concept (Level 4) directly and reliably.
Despite the more lenient scoring of the give-n task, a performance failure due to the cogni-
tive demands of implementing the counting-out procedure might still have underestimated
understanding of the cardinal-to-count concept. For instance, even if a child understood
the concept, the demands on attention and memory required to remember the requested
number, count out items, and/or compare the count to the requested number might cause
a slip up [40].

6.2.2. Experiment 10: Lessons Learned, Part 2

Building on Experiments 1, 2, and 9, Experiment 10 was undertaken.
Methodological improvements to Experiment 10. Three modifications were implemented:
First, children who could not recognize 1 and 2 were excluded from the experiment as

developmentally unready.
Second, to better test the hypothesis of whether skipping a level makes a difference,

only children who had not already achieved Level 2 and who did not have more than
minimal success counting out 5 to 7 items were included.

Third, observations during the training phase of Experiment 10 suggested that a
stop-at-n task, which involved asking a child to stop a Muppet’s counting-out process
at the requested number, might serve as an effective measure of the cardinal-to-count
concept. A child who recognizes that the requested number represent the cardinal value
of the requested collection and should be the stopping point of the counting-out process
(i.e., understands the cardinal-to-count concept) should be successful on the stop-at-n
task. Unlike the give-n task, this task relieved children of the demands of counting out
a collection themselves (minimized cognitive demands and performance failure). The
stop-at-n task, then, was adopted as the dependent conceptual measure and the give-n task
was retained as in the dependent procedural fluency measure in Experiment 10.

Experiment 11: Results and limitations. As noted previously, the results of Experiment
10 clearly indicated that the count-to-cardinal concept (cardinality principle) is a develop-
mental prerequisite for the cardinal-to-count concept and counting-out collections beyond
the subitizing range. Unclear is whether the prerequisite Level 2 is a necessary condition
for Level-4 competencies, as hypothesized by Fuson [74], or a necessary and sufficient
condition, which is essentially equivalent to Sarnecka and Carey’s [87] hypothesis that the
concepts are indistinct or develop simultaneously. For a prerequisite involving a necessary
condition, all the data should be distributed among cells A, B, and C with cell D = 0, as it
is Table 2 [90]. For a necessary and sufficient condition, all the data should be distributed
between cells B and C with cells A and D = 0, as it is in Table 3.

Aside from the conflicting results, the problem is that the sample is too small to be sure
what the distribution would be in each table for the population of young children. (The
COVID pandemic interrupted data collection midstream.) There is another reason Sarnecka
and Carey’s [87] alternative hypothesis that the count-to-cardinal concept (CP) underlies
both meaningful one-to-one counting and fluency with counting out a specified number
of items (i.e., that the count-to-cardinal and the cardinal-to-count concepts are indistinct)
cannot be discounted. According to this alternative hypothesis, the HLT participants
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significantly and substantially outperformed the Teach-to-Target children, because the
former received training on the count-to-cardinal concept (CP) and the latter did not and,
thus, the former had a greater dosage of counting-based cardinality training overall.

One way to critically test Fuson’s [74] hypothesis against Sarnecka and Carey’s [87]
alternative hypothesis would be to track longitudinally whether an understanding of
count-to-cardinal and the cardinal-to-count concepts evolve sequentially or simultane-
ously. Another would be to train children who have achieved Level 1 in Table 1 (i.e., are
developmentally ready for Level 2) on the count-to-cardinal concept (CP). If the count-
to-cardinal concept (CP) is a necessary condition for the cardinal-to-count concept, as
Fuson hypothesizes, and the two concepts are clearly distinct (i.e., involve a significant
conceptual leap), then participants should significantly improve on the former but not the
latter and skipping Level 2 to achieve Level 4 would not be an option. (Currently, there
is too little evidence to determine whether the number-constancy concepts—extensions
of the count-to-cardinal concept—are a necessary or facilitative condition for cardinal-to-
count concept and counting out, thus it unclear whether Level 3 can be skipped.) If the
count-to-cardinal concept (CP) is indistinct from the cardinal-to-count concept as Sarnecka
and Carey hypothesize (i.e., the former is effectively a necessary and sufficient condition
for the latter), then theoretically participants should improve on both tasks to an equal
degree. If the count-to-cardinal concept is a necessary condition for the cardinal-to-count
concept but the two concepts are only somewhat distinct, then the results could be messy:
significantly more participants may or may not improve on the former than on the latter.
If—contrary to what the present results indicate—the count-to-cardinal concept (CP) is only
a facilitative condition for the cardinal-to-count concept, then Level 2 may be skippable in
achieving Level 4, and some portion of the comparison group trained only Level 4 may
achieve the cardinal-to-count concept. In brief, corroborating the efficacy and assumptions
of HLT-based instruction, in general, and the validity Fuson’s hypothesis, in particular, is
challenging for both theoretical and methodological reasons.

7. Conclusions

Overall, then, the evidence of the HLT Project corroborates the efficacy and basic
assumptions of an HLT-based approach. Nevertheless, as the case of testing Fuson’s
hypothesis [74] about cardinality development illustrates, much research still needs to be
performed to evaluate whether an HLT’s developmental progression consists of facilitative
levels or developmental prerequisites. Except in cases where an LT involves prerequisite
knowledge (i.e., at least a necessary condition) for a higher level that is qualitatively
different, a messy middle can be expected, and some children without a lower level of
knowledge can be expected to achieve a higher level of knowledge. This is consistent with
the theory upon which the LTs examined in the HLT Project are based, which does not
require that levels are prerequisites to be educational useful (and that different types of
developmental progressions exist [2]). Further, the theory recognizes that some children
can learn multiple contiguous levels of thinking in parallel. However, recall that the
HLT in Experiment 7 was nearly necessary for kindergartners with the lowest entry level.
This implies that at least for some children learning some topics, the greater the distance
between a child and the target level, the more important the adjustment of instruction to
the child’s level.

Different topics may have quite distinct conceptual structures. For example, consider
Rittle-Johnson et al.’s [91] view that existing LTs for early knowledge of for repeating
patterns might better be characterized as a “construct map”—a probabilistic continuum of
knowledge rather than distinct phases of knowledge. Indeed, in our patterning experiments
(Experiments 5 and 6), the evidence indicates a series of facilitative factors, refinement of
the patterning HLT (Figure 1), and methodology may yet identify one or more prerequisite
levels for later levels.

Further, Hierarchical Interactionalism theory [2] states that HLTs are hypothetical in
two ways. First, they must be realized with teachers and children. Second, they should
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continually be improved based on new information. Therefore, we interpret the null results
of the patterning studies (Experiments 5 and 6) as a valid caution that an LT approach is
only as good as the LT it uses. However, our analyses also indicate that the null results
were due to faults not so much in the LT approach itself but in the LT (which has already
been substantially revised, e.g., see LearningTrajectories.org). The more research on a given
topic, the more valid future versions of that topic’s LT.

In summary, creating and evaluating HLTs are challenging but worthwhile tasks, as the
HLT Project illustrates. Even the three Assumption 1 experiments that did not significantly
favor the HLT-based instruction for methodological reasons, and thus cannot be considered
a valid test, served as pilot studies to work out the intricate methodology needed for the
successful corroboration of the cardinality LT (in Table 4). HLT Project results also indicate
that the benefits justify meeting the challenges.
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