
����������
�������

Citation: Löffler, Christoph, Gidon T.

Frischkorn, Jan Rummel, Dirk

Hagemann, and Anna-Lena Schubert.

2022. Do Attentional Lapses Account

for the Worst Performance Rule?

Journal of Intelligence 10: 2.

https://doi.org/10.3390/

jintelligence10010002

Received: 8 September 2021

Accepted: 21 December 2021

Published: 24 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Intelligence
Journal of

Article

Do Attentional Lapses Account for the Worst Performance Rule?

Christoph Löffler 1,2 , Gidon T. Frischkorn 3 , Jan Rummel 1 , Dirk Hagemann 1 and Anna-Lena Schubert 2,*

1 Institute of Psychology, Heidelberg University, Hauptstr. 47-51, 66917 Heidelberg, Germany;
christoph.loeffler@psychologie.uni-heidelberg.de (C.L.); jan.rummel@psychologie.uni-heidelberg.de (J.R.);
dirk.hagemann@psychologie.uni-heidelberg.de (D.H.)

2 Department of Psychology, University of Mainz, Wallstr. 3, 55122 Mainz, Germany
3 Department of Psychology, University of Zurich, Binzmühlestr. 14, 8050 Zurich, Switzerland;

gidon.frischkorn@psychologie.uzh.ch
* Correspondence: anna-lena.schubert@uni-mainz.de

Abstract: The worst performance rule (WPR) describes the phenomenon that individuals’ slowest
responses in a task are often more predictive of their intelligence than their fastest or average
responses. To explain this phenomenon, it was previously suggested that occasional lapses of
attention during task completion might be associated with particularly slow reaction times. Because
less intelligent individuals should experience lapses of attention more frequently, reaction time
distribution should be more heavily skewed for them than for more intelligent people. Consequently,
the correlation between intelligence and reaction times should increase from the lowest to the highest
quantile of the response time distribution. This attentional lapses account has some intuitive appeal,
but has not yet been tested empirically. Using a hierarchical modeling approach, we investigated
whether the WPR pattern would disappear when including different behavioral, self-report, and
neural measurements of attentional lapses as predictors. In a sample of N = 85, we found that
attentional lapses accounted for the WPR, but effect sizes of single covariates were mostly small to
very small. We replicated these results in a reanalysis of a much larger previously published data set.
Our findings render empirical support to the attentional lapses account of the WPR.

Keywords: worst performance rule; attentional lapses; attentional lapses account; intelligence;
multilevel analysis; task-unrelated thoughts

1. Introduction

Reaction times (RTs) in elementary cognitive tasks typically correlate moderately with
general intelligence (Doebler and Scheffler 2016; Sheppard and Vernon 2008). Moreover,
if intra-individual RT distributions are divided into bins from the fastest to the slowest
RTs, the negative relations between mean RT within each bin and intelligence increase
from the fastest to the slowest parts of the distribution (Baumeister and Kellas 1968; Coyle
2003; Larson and Alderton 1990; Schubert 2019). Larson and Alderton (1990) named this
phenomenon the worst performance rule (WPR). The WPR suggests that inter-individual
differences in slower RTs explain more of the variance in individuals’ cognitive abilities
than faster RTs (see Figure 1 for an illustration of the typical WPR pattern). As pointed out
by Larson and Alderton (1990), a better understanding of this phenomenon is desirable as
it may be informative of the cognitive mechanisms underlying inter-individual differences
in intelligence.

The WPR has been observed in several studies (Diascro and Brody 1993; Fernandez
et al. 2014; Frischkorn et al. 2016; Kranzler 1992; Leite 2009; McVay and Kane 2012; Ramm-
sayer and Troche 2016; Schmiedek et al. 2007; Schmitz et al. 2018; Schmitz and Wilhelm 2016;
Unsworth et al. 2010), although there are a few studies that did not find evidence for a WPR
(Dutilh et al. 2017; Ratcliff et al. 2010; Salthouse 1993, 1998; Saville et al. 2016). A recent
meta-analysis addressed the question of the strength, consistency, and generalizability
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of WPR across 23 datasets (from 19 different studies and 3767 participants) and found
evidence in favor of the WPR (Schubert 2019).
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Figure 1. An example for the increasing magnitude in correlations between RT and mental abilities 
from fast to slow RT-bins. Data are based on the meta-analysis from Schubert (2019). 
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resulting in errors or delays during information processing (Jensen 1992). As the 
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1.1. The Attentional Lapses Account of the WPR and Its Examination 
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interfere with task completion by impairing task processing and goal maintenance. 
Accordingly, individuals who are able to shield their current thoughts against such task-
irrelevant external or internal distractors should show better task performance. Kane et 
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Identifying the underlying mechanisms of the WPR may help to identify the elemen-
tary processes producing inter-individual differences in intelligence, because whichever
process is measured particularly with the slowest RTs may also contribute to differences in
mental abilities. Different candidate accounts for explaining the occurrence of the WPR
have been proposed. Several authors suggested an attentional lapses account of the WPR
which states that the WPR occurs due to lapses of attention to which less intelligent people
are particularly prone (Jensen 1992; Larson and Alderton 1990; Unsworth et al. 2010). On
a neural level, this could be reflected by less intelligent individuals showing a higher fre-
quency of neural transmission errors (Coyle 2001; Miller 1994) or spending more processing
time on neural subthreshold and refractory periods, resulting in errors or delays during
information processing (Jensen 1992). As the attentional lapses account is currently the
most prominent account for explaining the WPR, we put this account at critical test in the
present study.

1.1. The Attentional Lapses Account of the WPR and Its Examination

According to the executive attention theory of working memory (Kane et al. 2008),
individual differences in executive attention predict differences in working memory capac-
ity (WMC) and higher cognitive abilities such as fluid intelligence. While performing any
type of (demanding) cognitive tasks, external distractors (such as a loud noise) and internal
distractors (such as thoughts about the last or next vacation) may interfere with task com-
pletion by impairing task processing and goal maintenance. Accordingly, individuals who
are able to shield their current thoughts against such task-irrelevant external or internal
distractors should show better task performance. Kane et al. (2008) suggested that certain
people are better at blocking out task-irrelevant information and maintaining current task
goals than others, in particular those people with high executive attention (see also Kane
et al. 2004). Individuals with lower executive attentional control, however, should perform
worse in cognitive ability tests, because they are not able to keep their attention adequately
focused on a task.

The consequence of such executive attention failures is that people who are not able to
focus their attention on the task at hand experience attentional lapses while performing
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a task. Empirically, this will result in slower correct responses or in fast response failures
(Unsworth et al. 2010). From an individual differences perspective, one would therefore
expect that individuals with a higher propensity for attentional lapses occasionally show
very slow but correct responses or a higher error rate. In fact, previous research has
shown that self-reported attentional lapses were moderately associated with individual
differences in the right tail of the RT distribution, that is, individuals who reported higher
rates of attentional lapses showed more positively skewed RT distributions and hence more
frequent slow responses (McVay and Kane 2012). In addition, self-reported attentional
lapses predicted error rates in simple experimental tasks such as the sustained attention to
response task (McVay and Kane 2009; Smallwood and Schooler 2006).

If individual differences in attentional lapses are related to differences in cognitive
abilities such as fluid intelligence and if attentional lapses lead to slow responses, it is in
consequence not surprising that slower responses are more strongly related to intelligence
than fast responses (i.e., the phenomenon of the WPR). In contrast to faster responses, slower
RTs reflect attentional lapses as an additional process, which results in the typical pattern of
the WPR. Additional analyses by McVay and Kane (2012), in which they demonstrated that
individual differences in self-reported attentional lapses partly mediated the association
between slowest RTs and WMC, provided first evidence supporting this hypothesis.

1.2. Multiverse Manifestation and Measurement of Attentional Lapses

Attentional lapses are a multi-faceted construct (Robison et al. 2020) and that is the
reason why the measurement of attentional lapses is not straightforward. There are differ-
ent possibilities to operationalize participants’ attentional states (McVay and Kane 2012;
Unsworth et al. 2010). Most of the measurements—which we used in this study—were
adapted from mind wandering research and possess face validity to the construct of at-
tentional lapses. Possible manifestations of attentional lapses can be found in participants’
self-reported attentional states, their response behavior, or psychophysiological measures.

Many studies measured attentional lapses as participants’ self-reported mental states
(Smallwood and Schooler 2015). During an ongoing task, participants are typically asked
whether their thoughts are on- or off-task. In consequence, if their thoughts are not on
the ongoing task, they are experiencing task-unrelated-thoughts (TUTs; Smallwood and
Schooler 2006), which are considered as attentional drifts or attentional lapses (McVay and
Kane 2010; Watkins 2008). Individuals tend to show a larger variability in those RTs in
which they report TUTs, but they do not consistently show shifts of mean RTs (Leszczynski
et al. 2017; McVay and Kane 2009, 2012; Seli et al. 2013, 2014; Thomson et al. 2014). These
results suggest that attentional lapses may lead to an increase in the variability of RTs due
to occasional failures in an experimental task.

Another method to measure the subjective frequency of attentional lapses are ques-
tionnaires that measure participants’ attentional states during everyday life experiences
and their personal tendencies for attentional lapses in everyday situations. Individuals who
reported a higher tendency for attentional lapses also tended to report a higher frequency
of TUTs during experimental tasks (Mrazek et al. 2013; Schubert et al. 2020). This suggests
that both measurements assess—at least to some degree—the same underlying construct.

As a more objective alternative, it has been proposed to assess attentional states with
behavioral measures such as the metronome response task (MRT; Seli et al. 2013). This task
measures attentional lapses based on intraindividual variability in participants’ tapping
response to a continuous metronome beat. It has been suggested that individuals’ tapping
variance may reflect their attentional states (Seli et al. 2013). Seli et al. (2013, 2014) showed
that self-reported attentional lapses are related to increases in tapping variability on the
metronome beat in this task.

Beyond behavioral and self-report measures, former research identified several elec-
trophysiological correlates of attentional lapses. The P3 is a component of the event-related
potential (ERP) that occurs about 300 ms after stimulus onset at parietal electrodes and is
associated with a wide range of higher-order cognitive processes such as stimulus evalua-
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tion and memory updating (Polich 2007; Verleger 2020). It has been repeatedly associated
with self-reported attentional lapses: Several studies found reduced P3 amplitudes during
trials in which participants reported not having been focused on the task (Kam and Handy
2013; Smallwood et al. 2008). The same pattern of results was reported by Barron et al.
(2011), who found a reduced P3 amplitude in participants who experienced more atten-
tional lapses in comparison to more focused participants. In addition, attentional lapses
have been shown to affect sensory processing, as smaller visual P1 amplitudes have been
observed for trials in which participants reported attentional lapses (Baird et al. 2014; Kam
et al. 2011; see also Kam and Handy 2013). The P1 is a component of the event-related po-
tential that occurs about 100 ms after stimulus onset at occipital electrodes. These findings
suggest that attentional lapses affect the neurocognitive processing of information and that
they are accompanied by a reduction of amplitudes of ERP components associated with
stimulus perception and evaluation.

Furthermore, several studies reported that attentional lapses were associated with
changes in the time-frequency domain, in particular with increases in inter-stimulus alpha
power and increases in stimulus-locked theta power. Alpha activity is known to reflect an
internally oriented mental state (Hanslmayr et al. 2011) and has, for example, been shown
to increase during episodes of mental imaging (Cooper et al. 2003) and to be suppressed
during sensory stimulation (Berger 1929; Thut et al. 2006). Episodes during which attention
is not fully oriented towards the actual task have therefore been associated with greater
alpha power (Baldwin et al. 2017; Compton et al. 2019; O’Connell et al. 2009). Arnau et al.
(2020) further disentangled the time-course of this association and found alpha power
to increase overall, but particularly at lateral parietal and occipital electrodes during the
inter-trial-interval before participants reported TUTs. This internal focus of attention was
redirected to the primary experimental task once an imperative stimulus (e.g., the fixation
cross) was presented.

Theta power, especially event-related frontal-midline theta power, is associated with
executive control and regulation processes (Cavanagh et al. 2012; Cavanagh and Frank
2014). Previous research has suggested that theta power may decrease when attentional
lapses occur and may be subsequently upregulated as a compensatory mechanism once
attentional drifts are noticed (Arnau et al. 2020; Atchley et al. 2017; Braboszcz and Delorme
2011). This redirection of attention towards the primary task may be initiated by either
meta-awareness regarding one’s attentional state (Braboszcz and Delorme 2011; Smallwood
et al. 2007) or by external cues such as the presentation of the fixation cross or the next
experimental trial (Arnau et al. 2020).

To achieve a most comprehensive analysis in the present study, we combined these
heterogeneous approaches and applied a multiverse strategy for capturing participants’
attentional states with different operationalizations in a multimethod approach. There-
fore, we combined the listed self-report measurements with the listed behavioral and
psychophysiological measures.

1.3. Identifying Occurrences of the WPR

In the present study, we analyzed the WPR before and after controlling for individual
differences in attentional lapses by applying a recently proposed multilevel approach to the
WPR (Frischkorn et al. 2016). Most WPR studies reported only the correlations of the mean
or median RTs in the performance bands with intelligence, which is merely a description of
the WPR rather than an inferential statistical examination of the phenomenon. If studies
tested increasing correlations over RT bands for significance, they used rank-correlations
(e.g., Kranzler 1992; Larson and Alderton 1990) or comparisons of correlation coefficients
from dependent samples with Fisher’s Z-values (e.g., Rammsayer and Troche 2016). Both
statistical methods have certain weaknesses.

One weakness of rank-correlations is that they only quantify the extent of monotonicity
in the increase of negative covariances or correlations between RTs and intelligence over
the different bins. If this increase is quite monotonic, a rank-correlation close to one will
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be found no matter how large the increase is. By using the rank-correlation as a method
to test the WPR, it is not possible to quantify the slope of the increase of correlations over
bins of the RT distribution, which is needed to quantify the size of the WPR. The second
weakness of rank-correlations is that they ignore the estimation uncertainty of correlations
if these correlations are first estimated and then subsequently entered as observed variables
into rank-correlations. This sequential approach results in a possible overestimation of the
significance of the WPR (Skrondal and Laake 2001). Moreover, tests assessing the difference
between dependent correlations suffer from low statistical power, possibly underestimating
the WPR. For these reasons, we used the recently proposed multilevel account to test the
WPR more adequately, i.e., in a single estimation step and with higher statistical power
(Frischkorn et al. 2016).

There are two possible ways to measure the worst performance pattern by using either
unstandardized (covariances) or standardized (correlations) coefficients in the multi-level
models. On the one hand, covariances reflect the unstandardized relation between two
variables, which means that an increase in magnitude of covariances can have two reasons:
They can either reflect an actual increase of the relation between both variables or they can
reflect increases in inter-individual variances in at least one of the two variables. On the
other hand, increasing correlations represent increases in the relationships between two
variables, because correlations are controlled for inter-individual variances. To understand
attentional lapses’ influences on the RT variances and their effects on the relation between
RT and intelligence, we used both unstandardized and standardized coefficients in the
present analyses. In order to obtain a higher resolution of the course of the WPR and the
influence of attentional lapses on the WPR, we analyzed the RT distribution on trial-by-trial
basis with multilevel models and did not apply a binning procedure as, e.g., Frischkorn
et al. (2016) did.

The aim of the present study was to assess if individual differences in the frequency
of attentional lapses could account for the WPR. Due to the multiverse nature of atten-
tional lapses, we used behavioral, self-report, and electrophysiological methods to assess
individual differences in the frequency of attentional lapses. In addition, we used the
previously proposed multilevel account of the WPR (Frischkorn et al. 2016) to quantify and
test any moderating effect of attentional lapses on the strength of the worst performance
effect. Based on the attentional lapses account, we assumed that individual differences
in attentional lapses explain—at least partially—the emergence of the WPR. Hence, we
expected the slope of the WPR to be significantly reduced if we controlled RTs for individual
differences in attentional lapses.

2. Study 1
2.1. Materials and Methods

The study was approved by the ethics committee of the faculty of behavioral and
cultural studies of Heidelberg University. At the beginning of an experimental session,
participants signed an informed consent.

2.1.1. Participants

We recruited a sample of N = 100 general population participants via the local news-
paper, via our own university homepage, via a pool of potentially interested participants
in psychological studies, and by distributing flyers in Heidelberg. All volunteers were
admitted if they were between 18 and 60 years old and had no history of mental illnesses.
Two participants were removed because they did not complete the experiment. In conse-
quence of the outlier analysis (see below), 13 more participants were removed from further
analyses. The remaining sample (N = 85) consists of 29 males and 56 females. Participants’
mean age was 30.21 years (SD = 12.33). All participants either stated that German was their
mother tongue or that they spoke German on a level comparable to native speakers. The
educational degrees were distributed in the following way: As highest educational level,
49 participants had a high school diploma (German Abitur), 30 had a university degree,
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and six had an educational degree lower than a high school diploma. All participants
had normal or corrected to normal vision. They received 30 € and personal feedback as
compensation for their participation.

2.1.2. Materials
Berlin Intelligence Structure Test (BIS)

To measure participants’ intelligence, we used the short version of the Berlin Intelli-
gence Structure Test (BIS-4, booklet 2: Jäger et al. 1997). The short version of the BIS is a
particularly suitable instrument for measuring cognitive abilities in a relatively short time
(about 50–60 min). Moreover, the short version of the BIS is a heterogeneous test battery for
different abilities and includes 15 different tasks. Based on the theory by Jäger (1984), the
test consists of four operation-related (processing speed, memory, creativity, processing
capacity) and three context-related (verbal, numerical, figural) components of intelligence.
Furthermore, the test allows the calculation of a general intelligence (g) score. We used the
sum scores across all subtests as an independent variable.

Five participants had already completed the same test within the last year at our
department. Because there may be a training effect between the two measurement occa-
sions within one year (Scharfen et al. 2018), we used their BIS-scores from the previous
study for all further analyses. The mean test score of the whole sample (N = 85) was
1498.29 (SD = 80.02) which corresponds to a converted mean IQ score of 94.58 (SD = 16.12).
Cronbach’s α showed a good internal consistency for the test scores (α = .79).

Choice RT Task: Switching Task

We measured RTs in a switching task, which was based on a task used by Sudevan
and Taylor (1987). An unpublished reanalysis of a previous study in which we used this
task (Frischkorn et al. 2019) suggested that it yields a significant worst performance effect.

While participants were working on this task, they had to decide whether a presented
digit was smaller or larger than five or whether it was an odd or an even number. This
task is constructed based on a 2 × 2 design and consists of four different experimental
conditions. Which rule currently applied depended on the color in which the stimuli were
presented (red = less/more condition, green = odd/even condition). The digit of a single
trial could be either presented in the color of the former trial (=repeat condition) or in the
other color (=shifting condition). The stimulus set included the digits between one and
nine, excluding five.

The task was programmed in MATLAB (The MathWorks Inc., Natick, MA, USA) with
the open source software package Psychtoolbox version 3.0.13 (Kleiner et al. 2007). We
implemented restrictions that the same digits could never appear twice in a row as well
as the same color could never appear more than three times in a row. Participants were
instructed to answer as correctly and as fast as possible. On the keyboard, they had to press
“L” to indicate that a digit was either larger than five or even and they had to press “D” to
indicate that a digit was either smaller than five or odd.

All stimuli were presented in the middle of the screen on a black background (Figure 2).
At the beginning of each trial, a gray fixation cross was shown for 512–768 ms. Following
the fixation cross, a blank screen was presented as inter stimulus interval for 1024–1278 ms.
Subsequently the digit followed and disappeared 1024–1278 ms after the participants
responded. The stimulus disappeared after three seconds if the participants did not
respond. At the end of each trial a blank screen was presented again as an inter-trial
interval of 1000–1500 ms.

Participants completed 40 practice trials (ten trials task pure less/more, ten trials task
pure odd/even, and 20 trials including task shifting) during which they received feedback.
After that, they worked on the experimental trials, which consisted of ten blocks with
64 trials each. Participants took self-paced breaks between the blocks.
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Online Thought-Probing Procedure

We administered an online thought-probing procedure by monitoring TUTs with a binary
either/or question (see Weinstein 2018). This method is a subjective self-report in which the
participants are intermittently asked what their current state of mind is (on task/off task)
while they are working on a task. This report is one of the most frequently used methods for
capturing online mind wandering at the moment of occurrence (Weinstein 2018).

Participants were randomly asked about TUTs between every fifth and tenth trial. The
question was: “Where have you been with your thoughts right now?” Participants could
either answer “on task” or “not on task” by pressing the right or left arrow key on the
keyboard. On average, participants were probed 91.62 times (SD = 2.16) for TUTs while
they worked completed 640 trials of the experimental task. On-task-reports were coded as
0 and off task reports were coded as 1 in our data.

Questionnaire of Spontaneous Mind Wandering (Q-SMW)

We used a nine-items measure of spontaneous mind wandering to assess trait mind
wandering. For this we combined five items of the Mind Wandering Questionnaire (MWQ;
Mrazek et al. 2013) and four items of a scale measuring spontaneous mind wandering
(Carriere et al. 2013) into one questionnaire. Participants could answer these questions on a
seven-point Likert scale from “almost never” (coded as 1) to “almost always” (coded as 7).
Cronbach’s α showed a good internal consistency (α = .81). Because the original items were
in English, they were translated into German by two people and translated back into English
by another person. We present two items as examples to show their original wording and
their context: “I have difficulty maintaining focus on simple or repetitive work” (Mrazek
et al. 2013); “I find my thoughts wandering spontaneously” (Carriere et al. 2013).

Metronome Response Task (MRT)

We used the MRT as a more objective behavioral assessment of attentional lapses. This
task was developed by Seli et al. (2013) as a new method measuring mind wandering that
does not rely on self-reports. In the MRT, participants had to answer to the rhythmic beat
of a metronome. A larger variability in responses (measured as the standard deviation of
discrepancy) is supposed to indicate a higher frequency of attentional lapses, as lapses in
executive control are thought to increase behavioral variability.

Participants heard a rhythmic metronome beat every 1600 ms for 400 times while they
were looking at a black screen. They were instructed to press the spacebar on the keyboard
simultaneously to the sound/rhythmic beat. We calculated the standard deviation of
participants’ response discrepancy from the metronome beat after discarding the first five
trials as a measure of attentional lapses.
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Electrophysiological Correlates of Attentional Lapses

The EEG was recorded during the switching task. Based on previous findings, we
chose mean amplitudes of lateral occipital P1 (time window: 100–140 ms after stimulus on-
set), central parietal P3 (time window: 300–630 ms after stimulus onset), pre-fixation cross
parieto-occipital alpha power (from 1000 to 200 ms before the onset of the imperative fixa-
tion cross) from central and dorsolateral electrodes, and post fixation cross fronto-central
theta power (from 0 to 500 ms after the onset of the imperative fixation) as electrophysio-
logical covariates representing attentional lapses.

2.1.3. Procedure

After participants signed an informed consent, they completed the intelligence test
under the supervision of the experimenter. This took between 50 and 60 min. After
that, electrodes were administered to the scalp and participants were seated in a sound-
attenuated, dimly lit cabin. Subsequently, participants worked on the switching task,
working memory tasks (not included in the present manuscript), and the MRT in the
same order. At the end of the session, participants completed the Q-SMW as well as a
questionnaire for the assessment of demographic data. The whole procedure lasted about
3.5 h.

2.1.4. EEG Recording

While participants worked on the switching task the EEG was recorded with 32 equidis-
tant Ag/AgCl electrodes (32Ch-EasyCap, EASYCAP, Herrsching, Germany) and amplified
by a BrainAmp DC amplifier (Brain Products, Gilching, Germany). For more information
on electrode positions, see Figure S1 in the Supplementary Materials. We used the aFz
electrode as the ground electrode. All electrodes were initially referenced to Cz and offline
re-referenced to an average reference. For the whole time we kept impedances of all elec-
trodes below 5 kΩ. The EEG signal was recorded continuously with a sampling rate of
1024 Hz (high-pass 0.1 Hz).

2.1.5. Data Analyses

For data preparation and analyses we used the statistics software R—version 4.0.0
(R Core Team 2021). The following packages were used in R: For data processing and easier
data management the package “tidyverse”(Wickham et al. 2019), for estimating Cronbach’s
α the package “psych” (Revelle 2020), for estimating multilevel models the package “lme4”
(Bates et al. 2015) and the “optimx” algorithm (Nash and Varadhan 2011), for estimating
the degrees of freedom in the multilevel models the package “lmerTest” (Kuznetsova et al.
2017), and for estimating the effect-sizes the package “effectsize” (Ben-Shachar et al. 2020).
For preprocessing and quantification of EEG measures, we used EEGLAB (Delorme and
Makeig 2004) and ERPLAB (Lopez-Calderon and Luck 2014) open source toolboxes on
MATLAB 2018a (The MathWorks Inc., Natick, MA, USA).

Analysis of Behavioral and Self-Report Data

Responses faster than 150 ms and incorrect responses were discarded. Furthermore,
the two trials following an online thought probe were excluded from the dataset, because
thought probes may interrupt the ongoing task (Steindorf and Rummel 2020). Next, we
conducted an intraindividual outlier analysis of the remaining trials and discarded all trials
with RTs that deviated more than 3 SDs from the mean of the intraindividual logarithmic
RT distribution. We conducted a careful outlier analysis, because outlier trials should not
have any influence on the occurrence of the WPR (Coyle 2003).

In addition, participants with extremely low (sum score ≤ 1316) or high (sum score ≥ 1747)
BIS performance were removed from further analyses. These cut-off values correspond to
z-values <−3 and >3, which would be considered as clear outliers. This led to the exclusion
of five datasets from further analyses. Moreover, we removed one additional participant
because they had a mean RT that deviated more than 3 SDs from the sample mean.
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To get the full information of the whole RT distribution, we decided not to summarize
individual RTs in several bins, but to use information of every trial within each participant.
Therefore, after the outlier analyses, we sorted all remaining trials in ascending order
according to their RTs. All participants with at least 400 correct responses were included to
ensure a sufficient and comparable number of trials across participants on the one hand
and to minimize the number of participants with fewer trials who had to be excluded
from the analyses on the other hand. This led to a final sample of 85 participants. We
used the middle 400 trials of each participant’s RT distribution and removed the remaining
trials symmetrically from both ends of each intraindividual RT distribution. Single trial
RTs served as the dependent variable in the following analyses. However, in the slowest
15 percent of the trials, the increases in the magnitude of the covariances accelerated
whereas the negative relations became smaller (see Figure 3 and also General Discussion).
As this course does not correspond to the definition of the WPR, which assumes a monotonic
increase of correlations, we analyzed only the fastest 85 percent of the trials (340 trials).
Further, we centered the data to the middle trial of each participant’s RT distribution and
rescaled the trial numbers in the range from −2 to 2. The central trial with the rescaled
value 0 is equivalent to the trial with the number 170 and the trials with the values −2
and 2 correspond to the fastest trial 1 and the slowest trial 340. This is important for the
interpretation of the b-weights in the multilevel models, both for the main effects and the
interaction terms.
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Preprocessing of Electrophysiological Data for Event-Related Potentials (ERPs)

Only correct trials were included. EEG data were filtered with an offline band-pass
filter of 0.1–30 Hz. Bad channels were identified based on probability, kurtosis, and
spectrum of the channel data. Data were down sampled to 512 Hz. Then, the stream of
EEG data was divided into epochs of 1200 ms including the baseline window of 200 ms
before stimulus onset. We conducted an independent component analysis (ICA) to identify
and remove ocular artifacts and generic discontinuities based on visual inspection and the
ADJUST algorithm (Mognon et al. 2011).

To ensure that experimental conditions of the switching task were evenly distributed
within each participant, we identified each participant’s experimental condition with the
lowest number of trials and randomly drew the same number of trials from each of the other
three experimental conditions. For example, when a participant had only 60 experimental
trials in the odd/even-repeat condition, 60 trials each from the other three experimental
conditions were randomly drawn to balance task demands. Subsequently, we calculated
the ERP for each participant by averaging across trials and experimental conditions.

One participant’s EEG data set was lost for technical reasons, resulting in a final
sample of 84 persons for electrophysiological analyses.

Preprocessing and Time-Frequency Decomposition of Electrophysiological Data

For the time frequency analyses, most of the preprocessing steps were equal to the ERP
preparation. However, data were segmented into longer epochs of 4000 ms, starting 2000 ms
before the onset of the fixation cross. Also, identical to the sample composition for ERP
analyses, for time-frequency analyses the total sample size consisted of N = 84 participants.

Time frequency decomposition was performed with complex Morlet wavelets with
frequencies ranging from 1 to 20 Hz in 20 linearly spaced steps. To specify the width of
the Gaussian distribution, the number of n cycles was set to 4. This was chosen to provide
a good trade-off between temporal and frequency resolution. Decibel-normalized alpha
power was calculated for each participant in the time window from 1000 to 200 ms before
the onset of the fixation cross as the mean power of the frequency bands between 8 to 12 Hz
recorded at parieto-occipital electrode sites. This time window was chosen to examine
variations in alpha power in an attentionally undemanding phase (within the inter-trial
interval) before an imperative stimulus appears, which catches participants’ attentional
focus back to the task at hand. To measure an internally directed attentional focus before
the fixation cross was presented, the baseline window for inter-trial alpha power was
set between 700 ms and 1000 ms after fixation cross onset. This allowed us to contrast
alpha power of an attentionally undemanding phase to an attentionally focused phase.
Decibel-normalized theta power was calculated for each participant in the time window
from 0 to 500 ms after fixation cross onset as the mean power of the frequency bands
between 4 to 7 Hz at fronto-central electrodes sites to examine differences in theta power
after an imperative stimulus appeared and attentional resources had to be allocated. Theta
power was averaged across frequencies and fronto-central electrode sites. The baseline
window for task-evoked theta power was set between 1000 ms and 200 ms before the
fixation cross was presented to assess attention-allocation following the presentation of
the imperative stimulus. We selected the time-windows for both time-frequency domains
based on findings of Arnau et al. (2020) who analyzed data from a subsample of Study 1.

Analyses of the Worst Performance Rule

In this study the WPR was examined with multilevel models based on the recommen-
dations by Frischkorn et al. (2016). We were interested to test differences in covariances
and correlations. Therefore, we followed the recommendations by Frischkorn et al. (2016)
and used unstandardized as well as standardized coefficients for multilevel analyses to
examine the increase of the magnitude in covariances and correlations between RT and
intelligence across the RT distribution.
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To get the full information of the whole RT distribution, we applied trial-by-trial
analyses. To evaluate differences in the relations of intelligence and RT between faster and
slower responses, we used the ascending number of the sorted trials to predict increases in
RTs from the fastest to slowest trials. We included individual differences in intelligence as a
between-subject predictor. A significant interaction in the multilevel model between trial
number and intelligence would indicate that the relationship between RTs and intelligence
changed across the RT distribution. In particular, the WPR implies a stronger negative
relationship between RTs and intelligence in slower compared to faster trials. This was our
baseline model.

To evaluate the effects of attentional lapses on response behavior in an ongoing task
and their moderating implications on the WPR, we controlled for different combinations of
attentional lapses indicators (behavioral, self-report, and electrophysiological measures).
Therefore, we regressed the RTs for each corresponding sorted trial on these indicators.
Afterwards we used the residuals of this regression as a new dependent variable. We
then employed a stepwise procedure to test if controlling for attentional lapses reduced or
removed the WPR. First, we tested if we still found a significant WPR after controlling for
individual differences in attentional lapses. For this purpose, we again applied our baseline
model, but instead of raw RTs, we used the residualized RTs as the new dependent variable.
A non-significant WPR interaction between trial number and intelligence indicated a
possible reduction of the slope of the WPR by attentional lapses. Because the difference
between a significant and a non-significant result is not necessarily significant (Gelman and
Stern 2006), we conducted further multilevel analyses to confirm this decrease statistically.
For this purpose, we modified the multilevel models and included a dummy-coded within-
subjects level-2 factor “control”. This factor indicated whether participants’ RTs were
controlled for individual differences in attentional lapses (control = 1) or not (control =
0). If the interaction of trial number and intelligence changed as a function of this control
factor—that is, if the three-way interaction between intelligence, trial number, and the
control factor was significant—this would indicate that the size of the WPR changed after
controlling for attentional lapses. We then used model comparisons based on the Akaike
information criterion (AIC; Akaike 1998) to formally check if the introduction of this three-
way-interaction (between the level-1 factor trial number, the level-2 factor control, and the
between-subjects factor intelligence) improved substantially the model fit. Differences > 10
in AIC would indicate substantial differences in model fits (Burnham and Anderson 2002).
For all analyses, we report degrees of freedom rounded to the nearest integer in case of
non-integer numbers.

2.2. Results

The preprocessed data supporting the findings of Study 1 and the code for the sta-
tistical analysis used in this manuscript are available via the Open Science Framework
(https://osf.io/5pafg/, accessed on 23 December 2021). Access to raw data of Study 1 will
be granted upon request.

2.2.1. Descriptive Results

For descriptive statistics of all variables see Table 1. All variables showed acceptable
to very good reliabilities, estimated with Spearman-Brown corrected odd-even correla-
tions or Cronbach’s alpha. Sample sizes differed slightly between the behavioral and the
electrophysiological covariates, because EEG data from one participant were lost due to a
technical error. For the correlations between all variables see Table 2. The closer the trial
numbers were to each other, the higher their RTs were related.

https://osf.io/5pafg/
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Table 1. Descriptive statistics of all variables.

Mean SD Reliability N

ACC 96 2 — 85
RT 836.69 154.06 .99 85

Intelligence 1498.29 80.02 .79 85
IQ 94.58 16.12 .79 85

TUT 26.07 19.24 .96 85
Q-SMW over all 37.64 8.88 .81 85
Q-SMW/item 5.38 1.29 — 85

MRT 73.49 29.45 .99 85

P1 amplitude 0.94 1.34 .96 84
P3 amplitude 3.91 2.97 .99 84
Alpha power 1.20 0.94 .92 84
Theta power 0.00 0.84 .72 84

Note: ACC = percent of correct responded trials, RT = reaction time in ms (340 trials of each subject were
included), Intelligence = sum score of all scales of the Berliner Intelligence Structure Test, IQ = the intelligence
sum score transformed to an IQ score, TUTs = percentage of task-unrelated-thoughts, Q-SMW = mean score in
the questionnaire measuring spontaneous mind wandering, MRT = response variability in ms in the metronome
response task, P1 = mean amplitude of the occipital P1 in microvolts, P3 = mean amplitude of the centro-parietal P3
in microvolts, Alpha = mean parieto-occipital alpha power in decibel before an imperative stimulus was presented,
Theta = mean fronto-central theta power in decibel after an imperative stimulus was presented, reliability: either
estimated with the Spearman-Brown corrected correlation coefficients based on an odd-even split (RT, TUTs, MRT,
P1 amplitude, P3 amplitude) or with Cronbach’s α (Intelligence test score, Q-SMW, Alpha power). Theta power
reliability was estimated by the correlation between the two corresponding electrodes.

Table 2. Correlations between all variables.

1 2 3 4 5 6 7 8 9

1. Mean RT
2. SD RT .86 ***
3. Intelligence −.29 ** −.30 **
4. TUT −.12 −.27 * .15
5. Q-SMW −.11 −.04 .09 .30 **
6. MRT .31 ** .32 ** −.27 * −.03 −.11
7. P1 amplitude −.11 −.06 .03 −.02 .06 −.22 *
8. P3 amplitude .03 .03 −.05 .01 −.07 −.02 .27 *
9. Alpha power −.18 −.16 .03 −.11 −.13 .06 .06 .02
10. Theta power −.18 −.19 .18 .09 .09 .03 −.09 −.16 −.05

Note: Mean RT = mean reaction times (340 trials of each subject were included), SD RT = standard deviation of
reaction times (340 trials of each subject were included), TUT = mean rate of task-unrelated thoughts, Q-SMW =
mean score in the questionnaire for spontaneous mind wandering, MRT = response variability in the metronome
response task, P1 amplitude = mean amplitude of occipital P1, P3 amplitude = mean amplitude of centro-parietal
P3, Alpha power = mean pre-fixation cross alpha power, Theta power = mean post fixations cross theta power,
* p < .05, ** p < .01, *** p < .001.

2.2.2. Descriptive Analyses of Covariance and Correlation Patterns over the RT Distribution

On a descriptive level, we found increases of the magnitude in covariation from the
fastest, cov trial.1 = −10.93, to the slowest trials, cov trial.340 = −83.01, as well as increases
in the magnitude of negative correlations, r trial.1 = −.14, and r trial.340 = −.31. The
magnitude in covariances from the fastest to the slowest trial increased monotonically
(see Figure 3A), whereas the correlations peaked in their magnitude after approximately
85 percent of the trials (maximum correlation: r trial.346 = −.31). Afterwards, the magnitude
of correlations decreased again (see Figure 3B). This right tail of the RT distribution is
particularly interesting, because it reveals a simultaneous increase in covariations and a
decrease in correlations in the slowest 15 percent of RT distribution. Together, this pattern
of results indicates that the inter-individual variance in RTs increased substantially in the
right tail of the RT distribution, for unknown reasons, without an accompanying increase
in the relationship between RTs and intelligence. Because this pattern of results was highly
surprising and violates the core prediction of the WPR to observe a monotonic increase
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in both covariances and correlations across the whole RT distribution, we excluded the
slowest 15 percent of the trials from all further analyses. However, we will discuss this
unexpected finding and its implications in the General Discussion.

2.2.3. The Worst Performance Rule with Unstandardized Coefficients (Covariances)

We analyzed the data with multilevel analyses to test if covariances between RT
and intelligence revealed a significant worst performance pattern from faster to slower
trials (Table 3). This analysis revealed a significant main effect of intelligence, b = −44.18,
t(85) = −2.77, p = .007, which indicated that more intelligent participants showed faster RTs
than less intelligent ones. Moreover, we found a significant worst performance interaction
between intelligence and trial number, b = −14.93, t(85) = −2.85, p = .005, which confirms
the presence of a statistically robust increase of the magnitude in covariances between RTs
and intelligence over the RT distribution in our data. The worst performance interaction
showed a medium effect size of η2part = 0.09. This result can be interpreted as follows:
In the central trial with the sorting number of 170 (it corresponds to trial number 0 after
rescaling between −2 and 2), a participant with an intelligence test score one SD above
the mean was about 44 ms faster in their responses than an average intelligent participant.
However, in a slow trial (trial number 255, which corresponds to the rescaled trial number
1), the same participant was even 59 ms faster than an average intelligent participant,
whereas their RT difference was relatively negligible in a fast trial (trial number 85, which
corresponds to the rescaled trial number −1), with only a difference of about 29 ms. Taken
together, our baseline model indicated a significant WPR on the level of covariances. In the
next steps we examined the influences of several behavioral and self-reported measures of
attentional lapses on the unstandardized WPR.

Table 3. Baseline multilevel model of the WPR on an unstandardized level.

RT On b-Weight (Standard Error) df t-Value Random
Effect SD p

Intercept 835.82 (15.86) 85 52.62 146.45 <.001
intelligence −44.18 (15.98) 85 −2.77 .007
trial number 146.99 (5.20) 85 28.26 47.95 <.001

trial number ×
intelligence = WPR −14.93 (5.23) 85 −2.85 .005

Note: N = 85. 340 trials of each participant were included for analysis. Data were centered to the trial with the
sorted number of 170 and afterwards rescaled between −2 and 2. A significant interaction between trial number
and intelligence represents a significant increase of the magnitude in covariation according to the WPR.

2.2.4. Do Individual Differences in Behavioral and Self-Reported Measures of Attentional
Lapses Account for the WPR with Unstandardized Coefficients (Covariances)

In the next step, we analyzed if the increase of the magnitude in covariation disap-
peared after controlling for behavioral and self-report measurements of attentional lapses
(TUT rates, Q-SMW scores, RT variability in the MRT). Therefore, we controlled participants’
RTs for individual differences in attentional lapses. Afterwards, we tested in multilevel
analyses if the covariances between RT and intelligence still revealed a significant worst
performance pattern. Figure 4A shows the descriptive course of covariances between RT
and intelligence over the sorted trials before and after controlling for behavioral and self-
reported attentional lapses. The two-way interaction between trial number and intelligence
was no longer significant after controlling for individual differences in behavioral and
self-report measures of attentional lapses, b = −8.88, t(85) = −1.82, p = .073 (Table S1 in the
Supplementary Materials).
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Figure 4. Course of the covariances over the RT distribution before and after controlling for the
influence of the attentional lapses covariates. The figure describes the worst performance pattern in
covariances before (red lines) and after (other lines) the different covariates or their combinations
were partialized out of the RT variable (labeled in the boxes on the side of the dashes in the figure
legend). (A) shows the results of the behavioral and self-reported covariates in the full sample of
N = 85. (B) shows the results of the electrophysiological covariates in the subsample of N = 84.

To test if the changes in the WPR after controlling for individual differences in atten-
tional lapses were significant, we merged both data sets (not controlled and controlled for
attentional lapses) together and introduced a dummy-coded level-2 factor named “control”
for moderation analyses in our multilevel model (Table 4). Hence, the RT variable in this
multilevel model either reflected raw RTs or the residuals of those RTs after controlling for
the influence of the covariates. A significant interaction between intelligence, trial number,
and the control factor indicated that the increase of the magnitude in covariation between
intelligence and RTs from faster to slower trials changed significantly after controlling for
attentional lapses. This three-way interaction between intelligence, trial number, and the
control factor was indeed significant, b = 6.05, t(57630) = 25.70, p < .001. The effect size of
the three-way interaction revealed a small effect, η2part = 0.01.

To additionally determine whether including the three-way interaction significantly
improved the model fit, we compared our model to a more parsimonious model without
this three-way interaction. Model comparison revealed a significantly better fit for the
model with the three-way interaction as indicated by smaller AIC values, ∆AIC = 655.
Taken together, these results indicate that the behavioral and self-reported attentional
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lapses covariates together explained substantial parts of the worst performance pattern in
covariances. To assess more specifically which behavioral and self-reported indicator of
attentional lapses was most relevant, we examined the specific influence of each behavioral
and self-report covariate on the WPR using the same procedure.

Table 4. Full multilevel model, which tests the effect of attentional lapses covariates (TUTs + Q-SMW
+ MRT) on the WPR on an unstandardized level.

RT On b-Weight (Standard Error) df t-Value Random Effect SD p

intercept 835.82 (15.40) 85 54.29 96.56 <.001
intelligence −44.18 (15.49) 85 −2.85 .005
trial number 146.99 (4.91) 85 29.91 47.38 <.001

control −835.82 (0.27) 57630 −3091.39 <.001
trial number × intelligence = WPR −14.93 (4.94) 85 −3.02 .003

intelligence × control 15.10 (0.27) 57630 55.53 <.001
trial number × control −146.99 (0.23) 57630 −627.78 <.001

trial number × intelligence × control 6.05 (0.24) 57630 25.70 <.001

Note: N = 85. For each participant, 340 trials were included in the analysis. Data were centered to the trial with
the sorted number of 170 and rescaled between −2 and 2. Control is a dummy coded factor, which represents raw
RTs or RTs residualized by the corresponding attentional lapses covariates. A significant three-way interaction
between trial number, intelligence and control represents a moderating influence of the covariates on the covariance.

Task-Unrelated Thoughts (TUTs)

If we controlled for TUTs, we still observed a significant worst performance interaction
in the baseline model, b = −12.98, t(85) = −2.55, p = .013 (Table S2 in the Supplementary
Materials). Nevertheless, the significant three-way interaction between intelligence, trial
number, and the control factor in the full model indicated that TUTs had an effect on the
worst performance pattern, b = 1.95, t(57630) = 12.24, p < .001 (Table S3 in the Supplementary
Materials). Model comparison revealed a better fit for the full model with the three-way
interaction, ∆AIC = 147. The effect size was very small, η2part = 0.00. Taken together, these
results indicate that self-reported TUTs accounted for small parts of the WPR in covariances.

Questionnaire of Spontaneous Mind Wandering (Q-SMW)

If we controlled for Q-SMW scores, we still observed a significant worst performance
interaction in the baseline model, b = −14.73, t(85) = −2.81, p = .006 (Table S4 in the Supple-
mentary Materials). The three-way interaction between intelligence, trial number, and the
control factor in the full model was not significant, indicating that the worst performance
pattern did not change after controlling for Q-SMW scores, b = 0.20, t(57630) = 1.34, p = .179,
η2part = 0.00 (Table S5 in the Supplementary Materials). Consequently, model comparison
did not indicate a better fit for the full model with the three-way interaction, ∆AIC = 0.
Taken together, these results indicate that Q-SMW scores did not contribute to the WPR
in covariances.

Metronome Response Task (MRT)

After controlling for the RT variability in the MRT, we still observed a significant worst
performance interaction in the baseline model, b = −10.57, t(85) = −2.09, p = .039 (Table S6 in
the Supplementary Materials). The significant three-way interaction between intelligence,
trial number, and the control factor in the full model indicated a smaller worst performance
pattern after controlling for RT variability in the MRT, b = 4.36, t(57630) = 19.60, p < .001
(Table S7 in the Supplementary Materials). Also, model comparison revealed a better fit for
the full model with the three-way interaction, ∆AIC = 380. Effect size estimation revealed a
small effect, η2part = 0.01. Taken together, these results indicate that RT variability in the
MRT accounted for some parts of the WPR in covariances.
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2.2.5. Do Individual Differences in Electrophysiological Measures of Attentional Lapses
Account for the WPR with Unstandardized Coefficients (Covariances)

Figure 4B shows the descriptive course of covariances between RT and intelligence
over the sorted trials before and after controlling for the electrophysiological covariates
representing attentional lapses. The baseline multilevel model indicated a significant
interaction between trial number and intelligence in this subset, b = −15.21, t(84) = −2.88,
p = .005, η2part = 0.09 (Table S8 in the Supplementary Materials).

ERP Analyses

If we controlled for individual differences in mean occipital P1 and mean centro-
parietal P3 amplitudes, the two-way interaction between trial number and intelligence
remained significant in the baseline model, b = −14.99, t(84) = −2.84, p = .006 (Table S9 in the
Supplementary Materials). We observed no significant three-way interaction between intel-
ligence, trial number, and the control factor in the full model, indicating that the size of the
WPR did not change after controlling for the ERP mean amplitudes, b = 0.22, t(56952) = 1.42
p = .156, η2part = 0.00 (Table S10 in the Supplementary Materials). Consequently, model
comparison did not reveal a better fit for the full model with the three-way interaction,
∆AIC = 1. Taken together, these results indicate that the mean occipital P1 amplitude and
the mean parietal P3 amplitude did not account for the WPR in covariances.

Time-Frequency Analyses

If we controlled for individual differences in alpha and theta power, the two-way
interaction between trial number and intelligence remained significant in the baseline
model, b = −13.14, t(84) = −2.55, p = .013 (Table S11 in the Supplementary Materials).
Still, the significant three-way interaction between intelligence, trial number, and the
control factor in the full model indicated a decrease in the worst performance pattern after
controlling for alpha and theta power, b = 2.06, t(56952) = 9.98 p < .001 (Table S12 in the
Supplementary Materials). Model comparison revealed a better fit for the full model with
the three-way interaction, ∆AIC = 98. However, this effect was very small, η2part = 0.00.
Taken together, these results indicate that the time-frequency covariates accounted for small
parts of the WPR in covariances. To detect the unique influence of the two different time-
frequency covariates on the WPR, we estimated the models for both covariates separately.

Alpha-Power

After controlling for individual differences in alpha power, the two-way interaction be-
tween trial number and intelligence remained significant in the baseline model, b = −14.96,
t(84) = −2.87, p = .005 (Table S13 in the Supplementary Materials). More importantly, there
was no significant three-way interaction between intelligence, trial number, and the control
factor in the full model, indicating that the size of the WPR did not change after controlling
for alpha power, b = 0.24, t(56952) = 1.41 p = .159, η2part = 0.00 (Table S14 in the Supple-
mentary Materials). Model comparison did not reveal a better fit for the full model with
the three-way interaction, ∆AIC = 0. Taken together, these results indicate that individual
differences in inter-trial alpha power did not account for the WPR in covariances.

Theta-Power

After controlling for individual differences in theta power, the two-way interaction be-
tween trial number and intelligence remained significant in the baseline model, b = −13.48,
t(84) = −2.57, p = .012 (Table S15 in the Supplementary Materials). The significant three-
way interaction between intelligence, trial number, and the control factor in the full model
indicated a significant change of the worst performance pattern after controlling for theta
power, b = 1.72, t(56952) = 9.73, p = .001 (Table S16 in the Supplementary Materials). Model
comparison also showed a better fit for the model with the three-way interaction, ∆AIC = 96,
but the effect size of the three-way interaction was very small, η2part = 0.00. Taken together,
these results indicate that theta power accounted for small parts of the WPR in covariances.
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The Combined Effect on the Unstandardized Worst Performance Pattern of All Predictors
with a Substantial Contribution (TUTs, MRT, Theta-Power)

After controlling for individual differences in covariates with a unique contribution
to the explanation of the WPR, we examined their combined influence. The two-way
interaction between trial number and intelligence was no longer significant in the baseline
model, b = −7.76, t(84) = −1.59, p = .116 (Table S17 in the Supplementary Materials). The
significant three-way interaction between intelligence, trial number, and the control factor
in the full model indicated a substantial change of the worst performance pattern after
controlling for all three predictors, b = 7.45, t(56952) = 28.68 p < .001 (Table S18 in the
Supplementary Materials). Model comparison revealed a significantly better fit for the full
model with the three-way interaction, ∆AIC = 815. The estimation of the effect size indicated
a small effect, η2part = 0.01. All in all, these results indicate that TUT rates, variability
in the MRT, and theta power together fully explained the worst performance pattern in
covariances.

2.2.6. The Worst Performance Rule with Standardized Coefficients (Correlations)

On the level of correlations, we did not find a significant worst performance pattern
in the baseline multilevel model, b = −0.02, t(85) = −1.10, p = .276 (Table S19 in the
Supplementary Materials). We also did not find a significant worst performance interaction,
b = −0.02, t(84) = −0.91, p = .359, in the subset with psychophysiological covariates (Table
S28 in the Supplementary Materials). The worst performance interaction revealed a small
effect size of η2part = 0.01. We observed a small descriptive increase in the magnitude of
negative correlations from the first to the last trial of ∆r = .08 (Figure 3B).

2.2.7. Do Individual Differences in Behavioral and Self-Reported Measures of Attentional
Lapses Account for the WPR with Standardized Coefficients (Correlations)

Because there was no significant worst performance interaction in the baseline mul-
tilevel model with standardized coefficients and we found no suppressor effect of the
covariates on this interaction, we will not report the baseline models without the effect of
any covariates (they can be found in Tables S20, S22, S24, S26, S29 and S31 in the Supplemen-
tary Materials). The significant three-way interaction between intelligence, trial number,
and the control factor in the full model indicated a change in the worst performance pattern
after controlling for the behavioral and self-reported covariates, b = 0.01, t(57630) = 8.70,
p < .001 (Table S21 in the Supplementary Materials). Model comparison revealed a better
fit for the full model with the three-way interaction, ∆AIC = 73. However, the effect size of
η2part = 0.00 suggested that this effect was very small. Taken together, the behavioral and
self-reported attentional lapses covariates together explained very small parts of the (not
significant) worst performance pattern in correlations. To assess more specifically which
behavioral and self-reported indicator of attentional lapses was most relevant for this effect,
we additionally examined the individual influence of each of these covariates on the WPR
in correlations by using the already known procedure (Figure 5A).

Task-Unrelated Thoughts (TUTs)

The significant three-way interaction between intelligence, trial number, and the con-
trol factor in the full model indicated a smaller worst performance pattern after controlling
for TUTs, b = 0.01, t(57630) = 9.49, p < .001 (Table S23 in the Supplementary Materials).
Model comparison revealed a better fit for the full model with the three-way interaction,
∆AIC = 88. The effect size of η2part = 0.00 indicated a very small effect of TUTs on the WPR.
Taken together, these results indicate that self-reported TUTs accounted for a very small
part of the WPR in correlations.
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Questionnaire of Spontaneous Mind Wandering (Q-SMW)

The three-way interaction between intelligence, trial number, and the control factor in
the full model was not significant, indicating that the worst performance pattern did not
change after controlling for Q-SMW scores, b = 0.00, t(57630) = 1.39, p = .165, η2part = 0.00
(Table S25 in the Supplementary Materials). Consequently, model comparison did not
indicate a better fit for the full model with the three-way interaction, ∆AIC = 0. Taken
together, these results indicate that Q-SMW scores did not contribute to the WPR in
correlations.

Metronome Response Task (MRT)

The significant three-way interaction between intelligence, trial number, and the con-
trol factor in the full model indicated a smaller worst performance pattern after controlling
for RT variability in the MRT, b = 0.00, t(57630) = 3.47, p < .001 (Table S27 in the Supple-
mentary Materials). Model comparison revealed a better fit for the full model with the
three-way interaction, ∆AIC = 10. We found only a very small effect of the MRT on the
WPR, η2part = 0.00. Taken together, these results indicate that RT variability in the MRT
accounted only for a very small part of the WPR.

2.2.8. Do Individual Differences in Electrophysiological Measures of Attentional Lapses
Account for the WPR with Standardized Coefficients (Correlations)
ERP Analyses

There was no significant three-way interaction between intelligence, trial number, and
the control factor in the full model, indicating that the size of the WPR did not change if
we controlled for the ERP amplitudes, b = 0.00, t(56952) = −0.32 p = .749, η2part = 0.00
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(Table S30 in the Supplementary Materials). Consequently, model comparison did not show
a better fit for the full model with the three-way interaction, ∆AIC = 2. Taken together, these
results indicate that mean occipital P1 and centro-parietal P3 amplitudes could not account
for the WPR in correlations (see Figure 5B).

Time-Frequency Analyses

The three-way interaction between intelligence, trial number, and the control factor
in the full model indicated that there was no difference in the worst performance pattern
after controlling for the combined influence of mean alpha and theta power, b = 0.00,
t(56952) = 1.17 p = .243, η2part = 0.00 (Table S32 in the Supplementary Materials). Model
comparison also did not show a better fit for the full model with the three-way interaction,
∆AIC = 1. Taken together, these results suggest that the time-frequency covariates could not
account for the WPR in correlations.

2.3. Discussion

Our findings provided some evidence for the attentional lapses account of the worst
performance rule. We found a significant increase in the magnitude of covariances between
intelligence and RTs from the fastest to the slowest RTs (i.e., a WPR). This increase was less
strong when we controlled for inter-individual differences in several of the self-reported
attentional lapses measures. Notably, after combining different attentional lapses measures
and controlling for these, the WPR disappeared. Thus, inter-individual differences in the
propensity of attentional lapses did fully explain the WPR in the present data set on the level
of covariances. Nevertheless, it has to be stressed that the combined effect of attentional
lapses on the WPR was very small (η2part = 0.01). It is possible that we were only able to
detect this small effect of attentional lapses on the WPR due to the high statistical power of
the multi-level account and the trial-by-trial analyses.

However, there was no significant WPR on the level of correlations. Nevertheless,
descriptively, there was still an increase in the negative correlations with a magnitude
of about r = −.08, which is consistent with former research investigating the WPR on a
descriptive level (e.g., Fernandez et al. 2014). Again, the increase in the magnitude was
reduced after controlling for self-reported attentional lapses but the present data do not
address the question of the extent to which attentional lapses can account for the WPR on
the level of correlations, as we did not find a significant WPR on that level. Apparently, the
statistical power was rather low for a detection of an effect with the magnitude of the WPR
on the correlational level. Thus, one reason for why we did not observe a significant WPR
on the correlational level probably was our somewhat low sample size. We tackled this
problem with our second study.

2.3.1. Influence of Covariates on the WPR in Covariances

Different covariates of attentional lapses showed a significant influence on the WPR
and controlling for them reduced the increasing magnitude in covariances. In particular,
controlling for self-reported attentional lapses led to a reduction of the worst performance
pattern and provided evidence for the attentional lapses account. However, we found
some unexpected relations between self-reported attentional lapses and participants’ mean
RTs/RT variability as well as between TUTs and intelligence. These correlations between
the measures were not in line with former findings and contrary to theoretical predictions.
In detail, individuals who reported more attentional lapses, measured by TUTs, showed
faster RTs and less RT variability as well as higher intelligence test scores in our data.
The attentional lapses account, in contrast, states that individuals with lower cognitive
abilities should experience more attentional lapses and should be slower in their responses.
Also, individuals with lower cognitive abilities should show more variability of their
responses within a certain task. Previous studies showed typically the opposite direction
of correlations compared to our findings (e.g., Kane et al. 2016; McVay and Kane 2009,
2012; Randall et al. 2014; Robison et al. 2020; Welhaf et al. 2020). Possible reasons for
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these surprising correlations may be the size or composition of our sample and will be
discussed below.

Besides self-reported attentional lapses, one of the objective measures (i.e., the RT
variability in the MRT) also contributed to the explanation of the WPR. The MRT is typically
used as an alternative, more objective measure of attentional lapses (Anderson et al. 2021;
Seli et al. 2013). However, Figures 4 and 5 show that the MRT explained not only the
slope of the WPR but also large parts of the covariances and correlations over the whole
RT distribution. It is plausible that the MRT and the assigned decision making task for
assessing the WPR possess some overlaps. Performances in both tasks were measured
via RTs, which are determined by different processes, such as the encoding of stimuli
and the preparation of the motor response. Thus, controlling for MRT variability in our
reaction time task means that we also have controlled for some variance resulting from
these processes. This could be the reason for the similar reduction of the covariances and
correlations over the whole RT distribution after controlling for the MRT.

It must be noted that several of our covariates did not contribute to the WPR. This
was especially surprising in case of the Q-SMW, as the underlying construct (i.e., mind
wandering tendencies) are supposed to be strong predictors of attentional lapses. In
the present sample, questionnaire scores were moderately correlated with self-reported
attentional lapses during the task. This is consistent with earlier studies showing that mind
wandering trait questionnaires predict the frequency with which attentional lapses are
experienced while participants work on an experimental task (Mrazek et al. 2013; Schubert
et al. 2020). Mind wandering is, however, a broad construct covering a range of attentional
phenomena. This may explain why the thought-probing measure of attentional lapses but
not the global mind wandering questionnaire explained parts of the WPR.

On the electrophysiological level, the mean amplitudes of the lateral-occipital P1 and
the centro-parietal P3 as well as mean parieto-occipital inter-trial alpha power showed no
effects on the WPR. Only mean stimulus-evoked fronto-central theta power changed the
course of covariances over the RT distribution. It is surprising that the electrophysiological
covariates did not change the worst performance pattern, because former studies found
relations of the centro-parietal P3 to TUTs (Kam and Handy 2013; Smallwood et al. 2008),
to sustained attention (O’Connell et al. 2009), and to the allocation of cognitive resources
(Allison and Polich 2008; Kok 2001). Likewise, former studies demonstrated that attentional
lapses and neural processing of stimuli via the occipital visual P1 are related (Baird et al.
2014; Kam et al. 2011). Also, inter-trial alpha power, which reflects internally directed men-
tal states and which was shown to be strongly predictive for the experience of attentional
lapses (Arnau et al. 2020), could not explain the WPR. Altogether, it seems that the chosen
electrophysiological covariates did not account for the WPR, except for the very small effect
of mean theta power.

2.3.2. Influence of Covariates on the WPR in Correlations

Self-reported attentional lapses and intra-individual RT variability of the MRT ac-
counted for the WPR on the level of correlations. Descriptively it seemed that the MRT
explained large parts of the correlations, but the effect of the MRT on the WPR in the
multilevel models was slightly smaller compared to the effect of self-reported attentional
lapses. This underlines the just discussed proposition that the MRT accounts for RT proper-
ties unrelated to the slope of the WPR. In contrast to the analyses of the covariances, on
the level of correlations mean fronto-central theta power could not account for the worst
performance pattern. Again, all other covariates revealed no effect on WPR.

2.3.3. Low Correlation and Unpredicted Correlations with Attentional Lapses Measures

There were hardly any correlations between different attentional lapses measures
or their psychophysiological correlates. It is well known that individual occurrences of
attentional lapses depend on personal and context-related variables, which means that the
construct of attentional lapses shows a multiverse structure (Robison et al. 2020).
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Nevertheless, beyond the multiverse structure of the attentional lapses construct, the
low correlations should also be considered as challenging for attentional lapses research.
The absence of relations between different attentional lapses measures raises the question
of construct validity. If we try to capture a certain ability or a state of attention with a
multimethod approach, these measures should all reflect a common latent construct. This
assumption should be empirically reflected in—at least—small correlations between those
measures. A problem of attentional lapses research is the vague definition of attentional
lapses, which leads to more degrees of freedom in its operationalization. Future research
should further examine the construct validity of attentional lapses.

In contrast to former findings (e.g., Kane et al. 2016; McVay and Kane 2009, 2012;
Randall et al. 2014; Robison et al. 2020; Welhaf et al. 2020) and to predicted relations, we
found that TUTs and cognitive abilities as well as RT and RT variability measures were not
related or that their correlations pointed in the unpredicted direction.

2.3.4. Interim Conclusion

Generally, each attentional lapses indicator explained unique parts of the worst perfor-
mance pattern. When we examined the common influence of different attentional lapses
covariates on the WPR, the WPR disappeared fully on the level of covariances (Figure 4). On
a descriptive level, we also observed a clear change in the pattern of correlations from the
fastest to the slowest RTs (Figure 5). Our findings are in line with the idea that attentional
lapses have different facets, which should be captured by different indicators (Robison
et al. 2020). Due to the multiverse structure, measures of attentional lapses do not need to
converge (e.g., Mrazek et al. 2013; Schubert et al. 2020; Seli et al. 2013). We found the same
pattern in our results with weak or absent correlations between the different measures of
the attentional states (Table 2). This underscores the necessity of the multimethod approach,
which we chose in the present study by assessing attentional lapses with self-reports, objec-
tive indicators, and psychophysiological measures to capture individual differences in this
construct as comprehensively as possible, which is as a major advantage of our study.

Nevertheless, despite the clear descriptive worst performance pattern in correlations
in our study and despite the recent meta-analysis by Schubert (2019), who reported robust
evidence for the presence of the WPR, we did not find a significant WPR on the level of
correlations. There are several possible explanations for this. First, the sample size in this
study was small and consequently the statistical power was too low to detect a significant
WPR in our multilevel models given the small effect size. Additionally, the multilevel
approach, proposed by Frischkorn et al. (2016), considers the uncertainty in correlation
estimates. In a small sample, the confidence intervals of the estimators are quite large, and
therefore the differences in correlations may not have become significant in our analyses.
A larger sample size would minimize the uncertainty in the estimators (Schönbrodt and
Perugini 2013).

Second, the absence of the WPR may also be attributed to the heterogeneity of our
sample. It is known that student samples differ in many psychological variables compared
to general population or even representative samples (Hanel and Vione 2016). In addition,
age may have affected participants’ response behavior in self-reported attentional lapses
and RTs. For example, previous studies found fewer instances of attentional lapses in
older people as compared to younger people (e.g., Arnicane et al. 2021; Frank et al. 2015;
Krawietz et al. 2012; Maillet et al. 2018, 2020; Maillet and Schacter 2016). Furthermore, it is
well established that older participants respond slower compared to younger participants
(e.g., Verhaeghen and Salthouse 1997). As we have recruited an age-heterogeneous sample,
age differences may have obscured our covariance structure. We found no evidence for an
age-related decline in the frequency of reported attentional lapses in our sample (r = −.14,
p = .201), but older participants showed slower responses (r = .26, p = .016).

Third, the measurement took place in a highly controlled laboratory situation. In order
to achieve a clear measure of brain activity with the EEG, participants were individually
seated in a shielded cabin so that any kind of noise was reduced to a minimum. Conse-



J. Intell. 2022, 10, 2 22 of 36

quently, participants of our study probably experienced fewer distractions than in standard
behavioral laboratory studies. It is possible that the special laboratory situation of our
study influenced the occurrence and experience of attentional lapses and in consequence
the magnitude of the WPR.

Because of the mentioned shortcomings of our first study (low power resulting from
the small sample size, heterogeneity of the sample, and unexpected correlations between
intelligence, RTs or RT variability and self-reported attentional lapses), we reanalyzed an
already published data set with our approach to test whether the results and descriptive
patterns would replicate in an independent larger and more homogenous student sample.
In Study 2, we were particularly interested if we would find a significant WPR (and a
reduction thereof when controlling for inter-individual differences in attentional lapses) on
the correlational level when the statistical power was increased.

3. Study 2
3.1. Materials and Methods

To replicate our results in an independent sample, we reanalyzed the data set from
two previously published studies by Kane et al. (2016) and Welhaf et al. (2020). From
these previous studies it is already known that the correlations between TUTs, RTs, and
intelligence are in accordance with expectations, which we consider an advantage of
this data set. The data for Study 2 are available via the Open Science Framework. Use
https://osf.io/9qcmx/ (accessed on 5 February 2021) to access the raw data and use
https://osf.io/5pafg (accessed on 23 December 2021) to get access to additional data,
which are not provided via the previous link.

3.1.1. Participants

At three measurement occasions, Kane et al. (2016) recruited a total sample of 545 un-
dergraduates, aged between 17 and 35 years, from the University of North Carolina at
Greensboro and Minority-Serving state university. For the present analyses, the number
of available data-sets differed between the tasks (arrow-flanker N = 481, letter-flanker
N = 426, number-stroop N = 481, sustained attention to response task [SART] N = 486). In
consequence of outlier analyses, different numbers of participants remained for each task
(see Data Preparation below for specific information). We analyzed the data with the same
analysis strategy as used in Study 1. The mean age of the analyzed subsample was 18.92
(SD = 1.91), 66.94 percent of the sample were female. Five participants did not disclose
their gender.

3.1.2. Materials
Sustained Attention Task (SART)

Participants had to press the space bar in go-trials (89% of 675 trials) and to withhold their
response in no-go-trials (11% of 675 trials). Go-trials were indicated by words of the category
“animals” and no-go trials were indicated by words of the category “vegetables”. We used RTs
of go-trials as dependent variable, consistent with the analyses by Welhaf et al. (2020).

Letter-Flanker

Participants had to decide whether the presented target letter “F” appeared normally
or backwards. The letter was presented amid six distractors on the horizontal line. In total,
participants had to respond in 144 trials, which consisted of 24 neutral trials (the target
letter was presented amid dots), 48 congruent trials (the target and the distractors were
the same letters and pointed in the same direction), 24 trials of an incongruent condition
(the target and the distractors were the same letters, but only five out of the six distractors
pointed in the same direction as the target), 24 stimulus-response incongruent trials (the
target and the distractors were the same letters but pointed in the opposite directions),
and 24 stimulus-stimulus incongruent trials (the distractors consists of the letters “E” and
“T”, which were additionally tilted by 90 and 270 degrees). We used the RTs of correctly
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solved congruent and neutral trials as dependent variable, consistent with the analyses by
Welhaf et al. (2020).

Arrow-Flanker

Participants had to decide whether a centrally presented arrow pointed to the right or
to the left. The arrow was presented amid four distractors on the horizontal line. In total
participants had to respond in 192 trials, which consisted of 48 neutral trials (the target was
presented amid dots), 48 congruent trials (the target and the distractors pointed in the same
direction), 48 stimulus-response incongruent trials (the target and the distractors pointed in
the opposite directions), and 48 stimulus-stimulus incongruent trials (the distractor arrows
pointed upwards). We used the RTs of correctly solved congruent and neutral trials as
dependent variable, consistent with the analyses by Welhaf et al. (2020).

Number-Stroop

In each trial, two to four digits were presented in a row. Participants had to count
the quantity of presented digits, while they had to ignore their meaning. They responded
by pressing one of three labeled keys. The condition could be congruent, if the quantity
of presented digits was equal to their meaning (e.g., 4444 or 333), or incongruent, if the
quantity of presented digits differed from their meaning (e.g., 2222 or 44). Twenty percent
of the 300 trials were incongruent trials. We used the RTs of correctly solved congruent
trials as dependent variable, consistent with the analyses by Welhaf et al. (2020).

Working Memory Capacity

In Study 2 we used WMC as an independent variable to measure cognitive abilities.
This is unproblematic, because the WPR was also observed in the relations between RTs
an WMC (McVay and Kane 2012; Schmiedek et al. 2007; Unsworth et al. 2010; Welhaf et al.
2020). Furthermore, WMC is highly related to intelligence (Conway et al. 2002; Kane et al.
2005; Kyllonen and Christal 1990; Oberauer et al. 2005) and therefore a suitable alternative
measure of cognitive abilities beside intelligence. Moreover, individual differences in
attentional lapses should account for individual differences in both WMC as well as
intelligence (Kane et al. 2008; Shipstead et al. 2016). WMC was measured with six different
tasks. Four of these tasks required maintaining serially presented memory items while
participants had to repeatedly engage in an unrelated secondary task (Operation-Span,
Sentence-Span, Symmetry-Span, and Rotation-Span). Participants’ responses were coded as
correct if they recognized memory items in their correct serial position. The two remaining
tasks measuring WMC required participants’ ability for updating previously memorized
items (Running-Span-Task and Updating-Counters). Participants’ responses were coded
as correct if they recognized the updated memory items. For more detailed information
on the tasks, see Kane et al. (2016). We used the latent WMC scores calculates by Welhaf
et al. (2020). These were estimated with confirmatory factor analyses and full information
maximum likelihood was used to account for missing data when the factor scores were
computed.

Online Thought-Probing Procedure

At each online thought probe, participants were asked: “What are you thinking
about?” and had to answer by pressing one of eight keys which most closely matched their
thought content. They could choose between: (1) The task—on-task thoughts; (2) Task
experience/performance—thoughts about one’s own task performance; (3) Everyday
things—thoughts about routine things; (4) Current state of being—thoughts about one’s
own current physical or emotional state; (5) Personal worries—thoughts about one’s wor-
ries and concerns; (6) Daydreaming—fantastic thoughts, which are decoupled from reality;
(7) External environment—thoughts about the immediate external environment; (8) Other—
thoughts which do not fit in one of the other seven categories. Kane et al. (2016) as well as
Welhaf et al. (2020) coded all answers of the categories 1 and 2 as on-task and all answers
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of the categories 3 to 8 as off-task thoughts (TUTs). We used the rate of these TUTs as a
measure of attentional lapses. The attentional lapses covariate contained 45 thought probes
from the SART, 20 from the Number-Stroop task, 20 from the Arrow-Flanker task, and
12 from the Letter-Flanker task, as well as 12 from an otherwise-not further reported and
analyzed 2-back task.

3.1.3. Data Preparation and Analyses

Within each task, we removed participants with fewer than 50 percent of correctly
answered trials. In the next step, the two trials following thought probes, responses faster
than 150 ms and slower as 3000 ms, incorrect responses, and trials of the non-analyzed
conditions were discarded within each task. Afterwards, we removed all participants who
showed higher logarithmical accuracy z-scores than 3 SDs from the sample mean within
each task. After that, we conducted an intra-individual outlier analysis and discarded
all trials with RTs that deviated more than 3 SDs from the mean of the intra-individual
logarithmized RT distribution within each task. Finally, within each task, we removed the
participants with higher mean RT z-scores than 3 SDs from the sample mean.

We sorted all of the remaining trials within each participant in each task in the ascend-
ing order according to their RTs. All participants with at least 60 remaining trials in the
arrow-flanker task, 50 remaining trials in the letter-flanker task, 170 remaining trials in the
number-stroop task, as well as at least 200 remaining trials in the SART were included to
ensure a sufficient and comparable number of trials on the one hand and to minimize the
number of participants with fewer trials who had to be excluded from the analyses on the
other hand. In consequence of this minimal amount of trials criterion, we removed different
numbers of participants within each task from further analyses. This led to a final sample
of 463 participants in the arrow-flanker task (28 participants were removed as outliers),
416 participants in the letter-flanker task (10 participants were removed as outliers), 460 par-
ticipants in the stroop task (21 participants were removed as outliers), and 441 participants
in the SART (45 participants were removed as outliers). We used the middle trials of each
participant’s RT distribution in each task and removed the remaining trials symmetrically
from both ends of the intraindividual distribution. Multilevel analyses were conducted
in the same way as in Study 1. We included all of the four tasks in one model and added
the task as an additional effect-coded level-3 factor. The factor levels of the task-factor
were contrasted to the SART. All multilevel models were estimated using the “nlminb”
optimizer, except for the two full models in which the WPR was controlled for TUT rates,
because those two models only converged with the “L-BFGS-B” optimizer algorithm.

3.2. Results
3.2.1. Descriptive Analyses

Descriptive statistics are shown in Table 5 and the correlations between all relevant
variables are shown in Table 6. Mean RTs as well as RT variability of the four different
tasks were highly correlated. In contrast to Study 1, the correlations between TUTs and RTs,
TUTs and RT variability, as well as between TUTs and cognitive abilities (in this case WMC)
pointed in the hypothesized directions. For WMC, reliability estimation across the working
memory tasks revealed an acceptable internal consistency with Cronbach’s α= .78.

Table 5. Descriptive statistics of all RT variables in Study 2.

Mean SD Reliability N

RT AF 461.03 49.65 .99 463
RT LF 532.35 85.93 .99 416

RT Stroop 508.34 49.86 .99 460
RT SART 510.62 81.94 .99 441

Note: RT AF = reaction time in the arrow-flanker task, RT LF = reaction time in the letter-flanker task, RT
Stroop = reaction time in the number-stroop task, RT SART = reaction time in the SART, reliabilities were estimated
with Spearman-Brown corrected odd-even split correlations.
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Over the RT distributions, we found the same pattern of correlations in most of the
four tasks as we did in Study 1. After about 85 percent of the selected range of the RT distri-
butions, the negative increases in the magnitude of the covariances accelerated, whereas
the magnitude of the negative correlations decreased at this point (Figure 6). These de-
scriptive findings were consistent over the different tasks and replicated our unexpected
results from Study 1. For the comparability to the results of Study 1, we only analyzed the
fastest 85 percent of each participant’s trials. Every participant contributed 51 trials from the
arrow-flanker task, 43 trials from the letter-flanker task, 145 trials from the number-stroop
task, and 170 trials from the SART to the multilevel models. Again, in each task, we centered
the data to participants’ central trials and rescaled the trial numbers between −2 and 2.
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Figure 6. The increasing magnitude of negative correlations and covariances over RT distributions.
The courses of the covariances in the four different tasks are shown on the left side (A,C,E,G). The
courses of the correlations in the four different tasks are shown on the right side (B,D,F,H). The
dashed lines represent the 85 percent thresholds. Only the left parts of the dashed lines were analyzed
in the following multi-level analyses.
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Table 6. Correlations between all variables.

1 2 3 4 5 6 7 8 9

1. Mean RT AF
2. SD RT AF .65 ***
3. Mean RT LF .53 *** .42 ***
4. SD RT LF .34 *** .40 *** .73 ***
5. Mean RT Stroop .63 *** .40 *** .49 *** .33 ***
6. SD RT Stroop .31 *** .48 *** .30 *** .32 *** .52 ***
7. Mean RT SART .11 * −.04 .12 * .05 .24 *** .02
8. SD RT SART .13 ** .18 *** .14 ** .16 ** .23 *** .28 *** .21 ***
9. WMC −.20 *** −.22 *** −.19 *** −.20 *** −.23 *** −.25 *** −.01 −.23 ***
10. TUT .12 * .20 *** .19 *** .26 *** .16 ** .22 *** −.02 .21 *** −.23 ***

Note: Mean RT AF = mean reaction times in the arrow-flanker task, SD RT AF = standard deviation of reaction
times in the arrow-flanker task, Mean RT LF = mean reaction times in the letter-flanker task, SD RT LF = standard
deviation of reaction times in the letter-flanker task, Mean RT Stroop = mean reaction times in the number-stroop
task, SD RT Stroop = standard deviation of reaction times in the number-stroop task, Mean RT SART = mean
reaction times in the SART, SD RT SART = standard deviation of reaction times in the SART, TUT = task unrelated
thoughts, WMC = working memory capacity, * p < .05; ** p < .01, *** p < .001.

3.2.2. The Worst Performance Rule with Unstandardized Coefficients (Covariances)

On the level of unstandardized coefficients, the baseline multilevel model indicated a
significant interaction between trial number and WMC, b = −4.46, t(496) = −6.53, p < .001
(Table S33 in the Supplementary Materials). The worst performance interaction revealed
a medium effect size of η2part = 0.08. There were significant interactions between the
factor task and the worst performance effect (interaction with arrow-flanker task: b = 1.31
t(182674) = 5.14, p < .001; no interaction with letter-flanker task: b = 0.17, t(182657) = 0.61,
p =.543; interaction with number-stroop task: b = 1.18, t(182711) = 6.28, p < .001), suggesting
that the strength of the WPR varied between tasks. Separate follow-up analyses for each of
the four tasks revealed that a significant worst performance interaction was present in each
of the four tasks (all ps < .001).

After controlling for individual differences in attentional lapses, we still observed a
significant two-way interaction between trial number and WMC in the baseline model,
b = −3.44, t(496) = −5.20, p < .001 (Figure 7 left side, Table S34 in the Supplementary
Materials). The significant three-way interaction between WMC, trial number, and the
control factor in the full model indicated a small but significant change of the worst
performance pattern after controlling for attentional lapses, b = 0.94, t(365374) = 5.07, p < .001
(Table S35 in the Supplementary Materials). Also, model comparison revealed a significantly
better fit for the full model with the three-way interaction in comparison to a model without
the three-way interaction, ∆AIC = 38. Effect size estimation found a very small effect,
η2part = 0.00. We found no effects of the task on the three-way interaction, which indicates
that the influence of TUTs on the worst performance pattern was comparable for all tasks
(all four-way interactions were not significant, all ps > .192). Taken together, these results
indicate that TUTs accounted for a small part of the worst performance pattern in multilevel
models with unstandardized coefficients.
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Figure 7. Course of the covariances and correlations over the RT distributions before and after
controlling for the influence of the attentional lapses covariates. The courses of the covariances in the
four different tasks are shown on the left side (A,C,E,G). The courses of the correlations in the four
different tasks are shown on the right side (B,D,F,H). The figure describes the worst performance
pattern before (green and blue lines) and after (red lines) the TUTs covariate were partialized out of
the covariance.

3.2.3. The Worst Performance Rule with Standardized Coefficients (Correlations)

On the level of standardized coefficients, the baseline multilevel model indicated a
significant interaction between trial number and WMC, b = −0.04, t(499) = −5.13, p < .001
(Table S36 in the Supplementary Materials). The worst performance interaction revealed
a small effect size of η2part = 0.05. Again, we observed interactions between the task
factor and the WPR (interaction with arrow-flanker task: b = 0.01, t(182643) = 3.28, p =.001;
interaction with letter-flanker task: b = 0.02, t(182.633) = 5.41, p < .001; no interaction with
number-stroop task: b = 0.00, t(182687) = 1.79, p =.074) but baseline models for all tasks
showed significant worst performance interactions (all ps < .017).

After controlling for individual differences in attentional lapses, we still observed a
significant two-way interaction between trial number and WMC in the baseline model,
b = −0.03, t(499) = −4.05, p < .001 (Figure 7 right side, Table S37 in the Supplementary
Materials). The significant three-way interaction between WMC, trial number, and the
control factor in the full model indicated a small but significant change of the worst
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performance pattern after controlling for attentional lapses, b = 0.01, t(365373) = 3.42,
p = .001 (Table S38 in the Supplementary Materials). Also, model comparison revealed a
significantly better fit for the full model with the three-way interaction in comparison to
a model without the three-way interaction, ∆AIC = 19. Effect size estimation revealed an
effect close to zero, η2part = 0.00. We found no effects of the task factor on the tree-way
interaction, which indicates that the influence of TUTs on the worst performance pattern
was comparable for all tasks (all four-way interactions were non-significant, all ps >.538).
Taken together, these results indicate that TUTs accounted for very small parts of the worst
performance pattern in the multilevel models with standardized coefficients (i.e., the WPR
on the correlational level).

3.3. Discussion

The results of Study 2 substantiated the main results of Study 1 that attentional lapses
can explain the increasing magnitude of covariation of the WPR to a significant degree. The
large sample size and the greater homogeneity of the sample (students; mean age = 18.92,
SD = 1.91) are the main characteristics different from the Study 1 sample. In Study 2, we
found a significant WPR in our multilevel models, both on the level of covariances as well
as on the level of correlations. We found a larger effect of attentional lapses on the WPR
on the level of covariances than on the level of correlational analyses. This confirms the
choice of our strategy to examine the WPR on both levels and suggests that attentional
lapses contribute not only to the relation between RTs and cognitive abilities, but also to
the variance in RTs, which is independent of cognitive abilities. As in Study 1, the single
measure of self-reported attentional lapses explained only a small part of the WPR. The
WPR remained significant after controlling for TUTs, independent of whether we analyzed
covariances or correlations. We therefore conclude that TUTs as the sole measurement of
attentional lapses explain a small part of the worst performance pattern and substantial
parts of the WPR remain unexplained.

Taken together, we found significant worst performance patterns in the data and
replicated our multilevel model findings of Study 1 in a large and age-homogenous sample.
As already known from former findings by Kane et al. (2016) and Welhaf et al. (2020), the
relations between all variables (TUTs, WMC, RTs) were consistent with previous research
and our predictions. Self-reported attentional lapses, measured as TUTs, explained some
significant—albeit very small—part of the WPR.

4. General Discussion

We analyzed two independent data sets and found support for Larson and Alderton’s
(1990) idea that attentional lapses can explain parts of the worst performance pattern (Lar-
son and Alderton 1990). According to our results, the contribution of attentional lapses to
the WPR varied for each of the covariates and the effects of the single covariates appeared
to be very small, which in turn led to a small but significant reduction of the WPR. Consid-
ering the multiverse structure of attentional lapses, we combined different covariates and
examined their common influence on the WPR. The influence of self-reported attentional
lapses and an objective attentional lapses indicator together led to a full explanation of the
phenomenon. In Study 1, we found a significant reduction of the worst performance pattern
in covariances and a significant decrease of the worst performance slope in correlations.
To address statistical power issues and to replicate our findings, we applied the same
analysis strategy in a larger independent student sample in Study 2. The results of this
replication study were in line with our former findings and also statistically significant on
both levels. Taken together, we found evidence for the attentional lapses account, which
claims that the origin of the WPR is based on inter-individual differences in the experience
of attentional lapses.

Across both studies, we found that controlling for attentional lapses affected the WPR
more strongly on the level of covariances than on the level of correlations. This result has
important theoretical implications, because it indicates that the occurrence of attentional
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lapses affects the inter-individual variance in the right tail of the RT distribution. In other
words, inter-individual differences in attentional lapses affected the amount of between-
subject variability in the right tail of the RT distribution and could thus account for a large
part of the WPR on the level of covariances. On the level of correlations, however, they
only accounted for a small part of the WPR, because here the WPR was calculated based
on standardized measures (i.e., controlled for between-subject variability in RTs). The
idea that between-subject variability may differ across RT bands is not new (see Coyle
2003; Larson and Alderton 1990). The present study demonstrates that these differences
in between-subject variability across RT bands are not merely a statistical artifact, but
substantially related to individual differences in elementary attentional processes.

However, there is an alternative and simpler mathematical explanation that could
account for the different results on the level of covariances and correlations. We found that
RTs in faster and in slower trials are highly correlated. In consequence, it is plausible that
fast responses are nearly proportional to slow responses. Furthermore, the nature of slower
RTs is that their variance is larger in comparison to faster responses. Consequentially,
we would assume that individual differences in RTs would fan out and the variance of
individual differences become larger in slower RTs. Given that the intelligence score of
each individual remains the same while the RT variance increases over the RT distribution,
the covariance between intelligence and RTs grows monotonically larger towards slower
RTs. In contrast, correlations would not necessarily increase in the same pattern, because
they are standardized. Considering this pure mathematical explanation of the different
results in covariances and correlations, one could either conclude that covariances are more
sensitive than correlations or that correlations are more reliable than covariances.1

Our results are in line with Coyle’s (2003) claim that the WPR is not driven by outlier
or extreme values. Depending on the task, we extracted a certain number of trials out
of the middle of participants’ RT distributions. Additionally, we applied a careful intra-
and inter-individual outlier analysis. In both studies, we found a robust increase of the
magnitude in covariances that is consistent with the WPR. Moreover, we found a significant
WPR effect on the standardized/correlational level in Study 2. In contrast, we did not
find this significant worst performance pattern in the correlations in Study 1. Possible
reasons for this may be the already discussed low statistical power and small sample size.
However, we clearly observed a similar course of correlations over the RT distribution in
both studies (see Figures 3 and 6). Notably, several previous studies used a descriptive
approach for specifying the WPR. Although a test of significance is certainly warranted to
test the existence of the WPR against chance (see Frischkorn et al. 2016), it is not uncommon
to rely on descriptive evidence for the investigation of the WPR.

Effect sizes of the moderating role of the attentional lapses covariates on the WPR
were small. Some of these estimates were η2part < 0.01, especially in the analyses with
standardized coefficients, which should be interpreted as very small effects. The reason
why those small effects were significant is that those interaction terms were tested with
a very large number of degrees of freedom, due to the trial-by-trial analyses and the
repeated-measures design. As a consequence, the standard errors became very small and
small b-weights reached the significance level more quickly. This may be considered as
curse and blessing at the same time. On the one hand, we had enough power to detect
small influences of attentional lapses on the WPR; on the other hand, statistical tests may
have been overpowered, leading to the adoption of irrelevant effects as an explanation
for the WPR. That is, the multilevel approach to the WPR is a powerful instrument that
bears the risk of overpowering. An alternative approach could be to use Fisher’s Z-test
(e.g., Edwards 1976) as a more conservative method, which has less statistical power but
requires a problematic two-stage estimation processes to assess the statistical significance
of the WPR.

However, especially in study 2 some significant parts of the worst performance pattern
remained unexplained after controlling for attentional lapses. It is important to conclude
that some parts of the increasing magnitude in covariances and correlations between RTs
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and intelligence could not be explained by attentional lapses. There could be additional
reasons for the origin of the WPR.

4.1. Alternative Accounts of the Worst Performance Rule

Beyond the attentional lapses account, there are two prominent alternative explana-
tions of the WPR. They cannot be rule out as alternative explanations by our findings. To
some degree these accounts are additional explanations for the remaining unexplained
parts of the worst performance patterns and to some other degree they complement each
other and can even be transferred into each other.

The drift diffusion model account claims that inter-individual differences in the evidence
accumulation process could explain the WPR (Ratcliff et al. 2008). The drift diffusion
model is a mathematical model that describes binary decision making as a random walk
process through which evidence is accumulated until one of two decision thresholds is
reached (Ratcliff 1978). The basic diffusion model consists of four parameters, namely
the drift rate, which describes the strength and direction of the evidence accumulation
process, the boundary separation, which describes how much information needs to be
accumulated before a decision is being made, the starting point, which describes biases in
decision making, and the non-decision time, which encompasses the time needed for all
non-decisional processes such as encoding and response execution. The drift rate parameter
in particular has been repeatedly shown to be associated with individual differences in
mental abilities, working memory capacity, and intelligence (Ratcliff et al. 2010, 2011;
Schmiedek et al. 2007; Schubert et al. 2015). More intelligent individuals show higher
drift rates across several tasks (Schmiedek et al. 2007; Schubert et al. 2015, 2016). In their
simulation study, Ratcliff et al. (2008) showed that the drift rate parameter of the diffusion
model is more negatively related to slower quantiles compared to faster quantiles of the RT
distribution, which means that the drift rate parameter and its underlying processes were
better described by slower compared to faster RTs. The drift rate parameter is typically
considered as a measure of the speed of information uptake. Hence, it is possible that the
speed of information uptake is more validly measured in slower responses, which in turn
would lead to higher negative correlations between RT and intelligence in slower than
in faster responses. The higher validity of slower responses for the speed of information
uptake could be an alternative explanation of the WPR. In other words, one could say that
individual differences in the speed of evidence accumulation (measured by drift rates)
may also account for the pattern of the WPR, as they give rise to individual differences
in slowest RTs and are also strongly related to individual differences in cognitive abilities.
However, drift rates are likely affected by a number of lower-level cognitive processes that
may also include attentional processes. The drift diffusion model account of the WPR is
not necessarily irreconcilable with the attentional lapses account. In this sense, it is also
possible that attentional lapses are related to differences in the evidence accumulation
process (see also Boehm et al. 2021).

Another explanation of the WPR focuses on its statistical characteristics (Sorjonen et al.
2020, 2021). With simulated data, Sorjonen et al. showed that the WPR is a special case
of the correlation of sorted scores rule (Sorjonen et al. 2020, 2021). This rule states that the
correlation between a sorted measure of performance (e.g., binned mean RTs or trial-wise
sorted RTs) and intelligence will depend on the direction of the correlation between the
variability in performance (e.g., intra-individual standard deviation in RTs) and intelligence.
Because of the negative correlation between intra-individual standard deviation in RTs
and intelligence, the rule predicts the emergence of the WPR. If there were a positive
correlation between intra-individual variability in the respective performance measure and
intelligence, the rule would instead predict a best performance rule. It is well-established
that more intelligent individuals show a smaller standard deviation in RTs (Doebler and
Scheffler 2016), which was also the case in our sample. We found negative correlations
between the variance in RTs and cognitive abilities, r = −.30, p = .003, in Study 1, and from
r = −.20 to r = −.25, all ps < .001, in Study 2. Hence, the WPR could also be (statistically)
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accounted for by the correlation of sorted scores rule. In turn, the correlation of sorted
scores rule does not rule out the attentional lapses account of the WPR, because it is possible
that the larger intra-individual RT variability in individuals with lower cognitive abilities
results as the consequence of their more frequent experience of attentional lapses.

4.2. The Curious Course in Very Slow RTs

A novel and surprising finding in this study was the observed decrease in the mag-
nitude of negative correlations and the simultaneous accelerated increase in the mag-
nitude of negative covariances, respectively, in the slowest 15 percent of the responses
(Figures 3 and 6). Apparently, some unknown process unrelated to intelligence increased
the variance in RTs in the right tail of the RT distribution, which puts the WPR in a different
light. Our observations are consistent with the meta-analysis of Schubert (2019), who
described a logarithmic trend of the increases in the magnitude of negative correlations.
This meta-analysis found that the increases in the magnitude of negative correlations is
largest from the fastest to the mean performances and flattens from the mean to the slowest
performances. Because of this observation, it was suggested to rename the WPR as the
not-best performance rule, which is arguably a more appropriate name for this phenomenon.
Welhaf et al. (2020)2 replicated the not-best performance rule. With our trial-by-trial anal-
yses, it was possible to draw a more detailed picture of this phenomenon and we found
Schubert’s (2019) observed logarithmic trend of correlations over the RT bins. There was
an unexpected decline in the negative correlations in the slowest trials. Surprisingly, the
increase in covariances accelerated at the same time. Based on these observations, we
can conclude that some unknown process unrelated to cognitive abilities gave rise to RT
variance in the slowest responses. The observed decline in correlations is also consistent
with many previous studies that revealed a decrease or stagnation in the magnitude of
the negative correlations in the slowest RT bins (Fernandez et al. 2014; Ratcliff et al. 2010;
Salthouse 1998; Saville et al. 2016; Schmitz et al. 2018). Taken together, it seems that our
observation is not an isolated case but a replicable phenomenon. Further studies may
address the reasons for this conundrum.

5. Conclusions

Taken together, our results support the attentional lapses account of the WPR. Using
multilevel models, we demonstrated that different single measures of attentional lapses
accounted for some parts of the increasing magnitude in covariances and correlations
between intelligence and RTs from the fastest to the slowest responses. The combined influ-
ence of several self-reported and objective attentional lapses measures accounted fully for
this phenomenon, which in turn underlines the multiverse nature of the attentional lapses
construct. Our results suggested that the WPR is caused by inter-individual differences in
attentional lapses. Thus, it seems that individual differences in attentional control processes
are an important factor contributing to individual differences in cognitive abilities.
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