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Abstract: Based on recent findings in cognitive neuroscience and psychology as well as computational
models of working memory and reasoning, I argue that fluid intelligence (fluid reasoning) can amount
to representing in the mind the key relation(s) for the task at hand. Effective representation of relations
allows for enormous flexibility of thinking but depends on the validity and robustness of the dynamic
patterns of argument–object (role–filler) bindings, which encode relations in the brain. Such a
reconceptualization of the fluid intelligence construct allows for the simplification and purification of
its models, tests, and potential brain mechanisms.
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1. Introduction

Intelligence (general cognitive ability) constitutes one of the central constructs in psy-
chology, originating from the late nineteenth century (e.g., Galton 1883; Gilbert 1894). Its
main purpose is twofold. On the one hand, intelligence research attempts to explain the
enormous variability in intellectual powers found in any human population (and, recently,
even in dogs; Arden and Adams 2016). On the other hand, this research needs to explain the
considerable stability of these powers in individuals, meaning that their scores on one kind
of intellectual test strongly correspond to their scores on other kinds of test (a phenomenon
called positive manifold). The structure of human intelligence (various general and specific
abilities and their mutual relations) as well as its predictive power have been a topic of
vivid debate (e.g., Carroll 1993; Horn and Cattell 1966; Jäger 1982; Kovacs and Conway
2016; Spearman 1927; Thomson 1919; Thurstone 1938; Van Der Maas et al. 2006; Vernon
1964), suggesting that intelligence constitutes a complex entangled multilevel construct
(McGrew 2009) reflecting the brain structure and function (Deary et al. 2010; Haier 2016).

However, as a comprehensive measurement of intelligence with diverse batteries of
tests (knowledge use, verbal and memory skills, visual and auditory processing, mental
speed, etc.) is not feasible, the research on cognitive abilities frequently focuses on fluid
intelligence (Cattell 1963), also called fluid reasoning (Carroll 1993) or reasoning ability
(Kyllonen and Christal 1990). According to the Cattell–Horn–Carroll model of abilities
(McGrew 2009), fluid intelligence has been best-reflected by novel reasoning problems
solved in a deliberate and controlled way, which cannot be automatized. In this model, fluid
intelligence comprises at least three narrow abilities, namely deductive (called also general
sequential), inductive, and quantitative reasoning. Whether these three abilities rely on
separable processes, or stem from a single mechanism, such as mental model construction
and verification (Johnson-Laird 2006) or Bayesian inference (Oaksford and Chater 2007),
remains an open question; however, the fact that deductive and inductive subfactors
typically correlate almost perfectly (Wilhelm 2005) suggests the latter case. Other authors
also differentiated content types of fluid intelligence, specifically its verbal, numerical, and
figural facets (Jäger 1982). Evidence is stronger for content than process facets (Lakin and
Gambrell 2012; Schulze et al. 2005), suggesting that a specific test content involves also a
respective ability beyond fluid reasoning (e.g., figural and spatial tasks may also require
visual processing ability). In practice, content is frequently confounded with task type,
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as most of deductive tests are verbal, most of the inductive tests are figural–spatial, and
quantitative tests by definition need to rely on numerical material (Wilhelm 2005). Figural
inductive tests seem to be administered most.

The rationale for operationalizing cognitive ability as fluid intelligence is threefold at
least. First, compared to all other abilities, fluid intelligence most strongly loads general
intelligence factor (g), with loadings reaching unity (Arendasy et al. 2008; Gustafsson 1984;
Kan et al. 2011), at least in homogenous samples (Kvist and Gustafsson 2008). Second, fluid
intelligence tests display especially high validity and reliability, which have been refined
for a century (Cattell 1949; Raven 1938). Third, considerable efforts have been devoted
to understanding the processes captured by fluid reasoning tests (e.g., Carpenter et al.
1990). Therefore, even though in principle studying only fluid intelligence could narrow
our understanding of a broader concepts of intellect, in this paper I will focus on fluid
intelligence as a very feasible and valid way to study general human cognitive ability.

The goal of this work is to provide a selective discussion of existing knowledge on the
cognitive mechanisms potentially responsible for individual differences in fluid intelligence.
Based on available evidence and plausible models, I propose that effective solving of a
fluid intelligence task in the mind can amount to representing the key task relation(s) in
a valid and robust way, by linking respective elements with the roles that these elements
play in the relation(s), using flexible patterns of bindings.

2. Psychometric Studies on Fluid Intelligence

Just after the advent of cognitive psychology—a discipline devoted to the understand-
ing of architecture and mechanisms of human cognition using precise experimentation
(Neisser 1967)—researchers began to search for elementary cognitive processes (ECPs)—the
ones captured by tasks lasting from hundreds of milliseconds to several seconds—that
could predict intelligence (Hunt et al. 1975; Jensen and Munro 1979). Initial efforts com-
prised applying a selected cognitive task (e.g., a short-term memory task, a visual search
task, a forced choice task) and correlating its scores with the scores on a selected intelligence
test (e.g., Raven’s Progressive Matrices, Cattell CFT-3, Wechsler’s Adult Intelligence Scale).
Typically observed correlations were relatively low (10% of variance shared), very rarely
approaching 50% variance (e.g., Neubauer 1990). Around the 1990s, progress in psycho-
metrics indicated that the use of single tasks strongly underestimated the relationships
between ECPs and intelligence. The task batteries tapping into a construct, by means of
various tasks as well as latent variable modeling, allowed for achieving higher reliability by
filtering out unwanted sources of variance (e.g., method-specific). This research identified
several ECPs related with intelligence.

Processing speed, measured by response times on forced choice tasks, by performance
on clerical tasks, and by inspection time, has been considered as a promising candidate from
the 1970s onwards (Jensen and Munro 1979; Salthouse 1993; see Jensen 2006). However,
subsequent meta-analyses suggested that processing speed indices moderately correlate
with intelligence (Doebler and Scheffler 2016; Schubert 2019; Sheppard and Vernon 2008),
and studies showed that this moderate contribution is fully mediated by other factors
(Conway et al. 2002; Jastrzębski et al. 2021; Troche and Rammsayer 2009; for a defense of
the speed account, see Schubert and Frischkorn 2020).

Since the 1980s (e.g., Stankov 1983), various forms of attention have been associated
with intelligence, but reported correlations with intelligence were also low (Schweizer 2010;
Unsworth et al. 2010). Even though not predicted by attention functioning per se, in the
1990s intelligence was linked with control over attention (attention control), understood
as the mechanism responsible for focusing on task-relevant information, while blocking
distraction and interference (Engle et al. 1999), or more generally as goal-related processing
(Diamond 2013). Although some studies reported significant correlations between attention
control and fluid intelligence (Unsworth et al. 2014), this line of research noted problems
with the reliability and validity of presumed measures of attention control (Draheim et al.
2021; Hedge et al. 2018). Moreover, correlations with intelligence pertained to a single test
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of attention control (the anti-saccade task) and barely to its other established measures
(Chuderski et al. 2012; Frischkorn and von Bastian 2021; Rey-Mermet et al. 2019).

Moreover, in the 1990s, interest in sensorimotor discrimination, initially considered at
the dawn of intelligence research (Galton 1883), was revived (Deary 1994). However, despite
early positive evidence that the efficiency of discriminating stimuli in visual, auditory, and
even tactile modalities can predict intelligence (Deary et al. 2004; Li et al. 1998; Meyer et al.
2010), finally its contribution was low and fully mediated by working memory (Jastrzębski
et al. 2021; Troche et al. 2014).

Working memory capacity (WMC), considered in intelligence research around that
time, is reflected in the number of briefly maintained and then recalled/recognized items;
typically, these are items difficult to articulate or presented under additional load and/or
encoding requirements. WMC appears to be the strongest predictor of intelligence (e.g.,
Colom et al. 2008; Engle et al. 1999), explaining from two- to three-quarters of its variance
(Oberauer et al. 2005). Other types of memory, such as long-term (Unsworth 2019) and
associative memory (Williams and Pearlberg 2006), yielded much weaker contributions, so
WMC seems special for intelligence.

One could summarize the existing correlational research on ECPs and fluid intelli-
gence as bringing us closer to understanding the cognitive mechanisms underlying the
latter construct. Specifically, some potential mechanisms (bare attention and stimulus
discrimination) can be discarded, others (processing speed, attention control, and possibly
long-term memory) should still be considered but require additional research, whereas
active maintenance of and access to task-related information, as reflected by WMC, looks
as if it is a fundamental mechanism for fluid intelligence. While I agree that correlational
studies provided a multitude of results, I see at least three problems in their unequivocal
interpretation, and thus applicability for an advancement of fluid intelligence theory.

3. Theoretical Limits of Psychometric Studies

First, the strength of relationships between fluid intelligence and its relatively strong
predictors, especially working memory, might have been overestimated. For instance,
measurement of distinct cognitive abilities may confound their true relations with some
contextual factors (e.g., motivation, boredom, testing settings, etc.) that can boost shared
variance. In line with this, when Chuderski and Jastrzębski (2018) controlled motivation,
anxiety, openness to experience, and age in a relatively large psychometric study, an
initially almost-isomorphic relationship between broad working memory factor and fluid
intelligence factor equaling r = .94 dropped to r = .74, that is, as much as 38% of initially
shared variance could actually be explained by other factors.

Moreover, although most fluid intelligence tests were initially designed as power tests,
typical testing conditions (large samples, long procedures) entice researchers to cut original
administration times. That only affects the tests’ reliability a little, but may hugely alter their
validity (Lu and Sireci 2007), for example, increasing the role of attention and immediate
memory, while decreasing the impact of longer-lasting processes such as counterexample
construction, solution verification, and schema learning—all identified as crucial stages of
deductive and inductive reasoning (Holyoak 2012; Johnson-Laird 2006). Moreover, under
high time pressure, the late test items, which require the most advanced reasoning, are
rarely attempted by participants (Estrada et al. 2017). Indeed, when Chuderski (2013)
manipulated the administration time of two intelligence tests, their shared variance with
a working memory factor dropped from 100% for strictly limited time to only 36% for
virtually unlimited time (see also Chuderski 2015a; Ren et al. 2018). Under strict time
pressure, the variance in the most difficult test items was virtually null. When the truly
shared variance between fluid intelligence and working memory in fact falls below 50%
instead of approaching unity, then the connection of these two constructs, even though still
substantial, is no longer close-to-perfect and leaves room for alternative explanations of the
fluid intelligence underpinnings.
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Second, no cognitive task developed so far can capture a unique “elementary cognitive
process”. Claiming that a given task captures a given elementary process, researchers incor-
rectly transfer the task intended requirements, as typically defined by the task instruction,
onto their interpretation (naive model) of the information flow during solving the task,
based on coarse-grained psychological concepts. At the same time, theoretical results from
computational modeling in psychology and neuroscience show that this information flow
needs to be described in terms of much finer-grained entities and their transformations.
The picture is also complicated by the fact that the models proposed so far largely differ in
how they describe such flow on the fine-grained level.

For example, the well-known Stroop task is typically defined in psychometrics as an
attention-control task, or a response-inhibition task, which requires blocking word reading
while focusing attention on color naming (as asked by the task instructions). In computa-
tional cognitive neuroscience, a number of Stroop-like task models have been developed,
which assume entities that can hardly match the above high-level description, including
such terms as “energy”, “utility”, “activation”, “dimensional uncertainty”, and “inhibitory
conductance”, to name only a few. Moreover, these models assume differing mechanisms
responsible for effective color naming, including activation spread among concepts, lem-
mas, and word forms (Roelofs 2003), action utility learning (Lovett 2005), reinforcement
learning (Holroyd et al. 2005), conflict adaptation (Botvinick et al. 2001), conflict-based
Hebbian learning (Verguts and Notebaert 2008), contingency learning (Schmidt 2013), and
outcome-action prediction (Alexander and Brown 2011) as well as some combination of
these (Chuderski and Smoleń 2016). No model assumes explicitly the processes of word-
reading inhibition and attention control over color naming. Moreover, no model assumes
one central controlling process of attention control, but rather a complex interaction of
diverse information flows (with adaptation and learning being important components).
Finally, typical models include entities occupying various levels of abstraction, such as
low-level associations (e.g., connection weights) linking higher-level objects (e.g., lemmas,
production rules). As most of these models quite validly predict data from Stroop-like task
experiments, we should accept that at least to some extent they capture the neurocognitive
machinery generating the resulting behavior. Yet, they definitely do not match the naive
models developed in psychometrics. So, it is fair to say that we do not know yet what
exactly our minds do when they perform the Stroop task and multiple other ECP (e.g., the
anti-saccade and vigilance) tasks; therefore, any unitary psychometric interpretation of
them would be dubious.

An analogous situation pertains to working-memory tasks, with the one exception
that they are even more complex than attention control tasks. Actually, from a perspective
of cognitive modeling, a, let’s say, complex-span task (e.g., the operation span, which
requires verification of a series of arithmetic equations and later recalling their solutions in
a serial order) is comparably complex, as are some reasoning tasks presumably tapping
fluid intelligence (e.g., number series, Latin square task, etc.). Moreover, there is an
ongoing debate about what limits WMC: is it the number of available slots to maintain
separate memory objects (Vogel et al. 2001); the number of the objects’ features that can be
concurrently maintained (Fougnie and Alvarez 2011); the number of relations among objects
and features (Clevenger and Hummel 2014); the size of the entire structure of such relations
(Brady et al. 2011); some continuous resource that can feed memory representations (Bays
2015); interference among overlapping memory representations (Oberauer and Lin 2017);
or an inability to desynchronize too many dynamic oscillatory patterns (Horn and Usher
1991; Raffone and Wolters 2001), to name only a few accounts. One consequence of the low
consensus on the actual mechanisms underlying WMC (see Cowan 2022; Oberauer et al.
2018) is the fact that quite-distinct tasks have been applied to measure one and the same
WMC construct (see Wilhelm et al. 2013), as well as one and the same working-memory
task (e.g., the change-detection task; Vogel et al. 2001) being used to reflect many constructs
beyond WMC, such as iconic memory (with rapid stimuli presentation; Sligte et al. 2010)
and attention control (with a need to ignore some stimuli; Draheim et al. 2021). Due to our
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poor understanding of WMC, even the strong WMC–intelligence correlations help us little
in advancing a theory of fluid intelligence.

Third, it seems that the fact that correlational studies are correlational has been ne-
glected when researchers draw conclusions from the correlations they observe. Even
though each statistical handbook notes that correlation between X and Y can, in principle,
be caused either by X or Y, or by their reciprocal interaction, as well as by another (typically
unknown) variable Z (or more such variables), a superficial simplicity of ECPs relative to
intelligence tests (shorter trials and simpler stimuli) as well as an implicit but ill-conceived
reductionist stance has led many researchers to draw causal conclusions that intelligence
varies because of ECPs. However, given the findings in cognitive modeling and cognitive
neuroscience, it is likely that both X and Y are caused (or, better to say, modulated; Buzsaki
2006) by a large number of Zs—which can be understood as parameters of the cognitive
system (Oberauer 2016), in part emerging from the underlying structural and functional
brain architecture (Barbey 2018; Haier 2016). It is likely that intelligence tests can capture a
larger number of such parameters, or capture them more reliably, than can tasks intended
to capture ECPs. So, even though for most researchers it would sound heretical, instead of
ECPs underpinning intelligence, it is equally plausible that it is intelligence, understood
as a set of neurocognitive parameters validly captured by fluid intelligence tests, which
translates onto the scores on ECPs (as suggested by Spearman 1927). At least, current
psychometric studies can say little on the causality underpinning ECPs and intelligence.

To summarize this section, since neither experimental manipulation of individual
intelligence levels nor fine-grained measurement and interpretation of the neurophysiology
underlying these levels are possible at the current stage of scientific development, most
research on fluid intelligence has had to resort to psychometric analyses of the correlational
patterns between intelligence tests and various cognitive tasks. This is an inevitable research
tool that has provided a highly informative (even though far from conclusive) “map” of
relationships between cognitive constructs. However, this very tool seems strongly limited
in the depth of fluid intelligence explanation it can yield.

In the next sections, I shortly review two alternatives, more process-oriented ap-
proaches to developing a theory of fluid intelligence, which may offer insights beyond
those offered by the psychometric approach. The first approach examines experimen-
tally the properties of established fluid intelligence tests, trying to discover the crucial
requirements of these tests—what minimal cognitive task is sufficient to capture the same
variance in fluid intelligence that is captured by the tests used to date. It seems that little
is required—just to validly represent a relatively simple relation. The second approach
analyzes neurocomputational models of deductive and inductive reasoning in order to
identify the sources of intrinsic limitation in representing relations.

4. What Is Needed for a Task to Become a Fluid Intelligence Test?

Typical fluid intelligence tests involve identifying abstract rules governing relatively
complex figural stimuli patterns and selecting the response option that best matches these
rules. Probably the most widely applied test is Raven’s Advanced Progressive Matrices
(RAPM; Raven et al. 1983), which presents the 3 × 3 matrices of geometric patterns, with
a bottom-right pattern missing. RAPM requires inducing this missing pattern from the
structure of the row- and column-wise variation among the remaining patterns, including
permutation, increase in number or value, and logical relations such as AND, OR, and
XOR. Depending on the type and number of rules (Carpenter et al. 1990) and the number of
figural elements (perceptual complexity; Primi 2002), accuracy on consecutive RAPM items
decreases from 90% to 10%. However, which RAPM features make it such a good fluid
intelligence test (i.e., correlating so strongly with other such tests)? When analyzed in more
detail, RAPM involves at least: abstracting the key geometric transformations from the
perceptual input, which first must be identified (not easy in the case of overlaid complex
figures); discovering the rules governing these transformations; constructing the missing
element and/or inspecting the response options in search of a cue; actively maintaining the
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rules; and, finally, comparing the most plausible options in order to select the correct one.
Are all of these processes (and perhaps others) necessary? Although there are only several
reliable studies addressing this question, the answer is no: most of the above requirements
are completely dispensable when measuring fluid intelligence.

Crucially, discovery of rules seems irrelevant for capturing fluid intelligence. Notably,
in many other established fluid intelligence tests, including geometric analogies, paper fold-
ing, and necessary arithmetic operations (all very close to RAPM in the multidimensional
scaling model of Snow et al. (1984)), the rules are trivial or revealed to participants. In line
with this, in a convincing study, Carlstedt et al. (2000) administered three fluid intelligence
tests in either the blocked order (one test applied after another) or with all the test items
mixed. They assumed that in the blocked order the participants quickly discovered and
learned all the rules required by a given test due to the homogeneous sequence of items,
whereas in the mixed order discovery of the test rules was much more demanding, as the
rules varied enormously. However, the blocked order, in which the participants already
knew the rules for the middle and late items of each test, yielded higher loadings on the
general intelligence factor than did the mixed item order.

Also studies of RAPM did not find that rule discovery matters. Loesche et al. (2015)
applied RAPM either in a typical administration requiring rule discovery or after intensive
training on rules, finding that in two out of three experiments the correlation with WMC
(a proxy for cognitive ability in that study) increased after rule training (in the third
experiment, the correlation was comparable). Thus, the need to discover rules might
distort fluid intelligence measurement instead of improving it (see also Levacher et al.
2022). Although an initial work (Wiley et al. 2011) reported stronger RAPM item-wise
correlations with the complex-span task, when the specific combination of rules was used
for the first time throughout the RAPM test, compared to when it was repeated, suggesting
a role for rule discovery, these correlations were overall very weak. Two later studies
that observed stronger correlations (due to using the WMC factor instead of a single task)
reported comparable correlations for new vs. old rule combinations (Smoleń and Chuderski
2015; Little et al. 2014). Finally, using a design that prevented potential confounds, Harrison
et al. (2015) found that the correlation with WMC is actually higher for the old-combination
items than for the new ones. Therefore, rule discovery seems to contribute little to fluid
intelligence measurement.

These findings were supported by the statistical models that separated the item-
position effect, assumed to reflect the learning of test rules from item to item, from the
“pure” reasoning ability (i.e., with the item-position effect eliminated). Both for RAPM
(Lozano 2015) and another fluid intelligence test (Schweizer et al. 2018), the item-position
effect was not related significantly to other markers of cognitive ability. Even more, some
studies (Hayes et al. 2015; Lozano and Revuelta 2020) suggested that the item-position
effect in RAPM is not related to rule learning at all but mainly reflects more basic practice
effects of optimizing perceptual and spatial strategies in the test.

Loesche et al. (2015) observed, additionally, that after rule training the participants
more often used the constructive strategy during coping with the RAPM items, as opposed
to the response-elimination strategy (see Bethell-Fox et al. 1984; Vigneau et al. 2006). In the
former strategy, the participants analyze the matrix trying to fully reconstruct the missing
pattern and then look for its potential match among the response options. In the latter
strategy, the participants develop only a partial pattern using the most salient cues and
then use it to eliminate the most obviously incorrect options (and select from the remaining
ones), toggling back and forth between the matrix and the response options. Therefore,
large perceptual complexity and substantial variation in response options (a case of RAPM)
actually can help to bypass the presumed cognitive requirements of the test, by facilitating
the use of perceptual cues and simpler heuristics that allow to choose correct solutions
above chance. Consequently, the test variants in which correct and incorrect response
options were hardly distinguishable (Arendasy and Sommer 2013; Chuderski 2015b; Jarosz
and Wiley 2012), or the responses had to be constructed from scratch (Becker et al. 2016),
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showed increased validity as fluid intelligence measures. In consequence, perceptual
complexity and the number of response options contributes little—tests lean on perceptual
content and excluding response options (so responses have to be construed; e.g., Jastrzębski
et al. 2022; Thissen et al. 2018) seem to promote the uniform solution strategy and capture
fluid intelligence more precisely (Levacher et al. 2022).

Besides the perceptual complexity and response-option diversity of a fluid reasoning
test, it is interesting what level of the problem’s scope and abstraction is actually required
to tap fluid intelligence. Chuderski (2019) examined these questions in a series of six
experiments using the transitive-reasoning task (Goodwin and Johnson-Laird 2008). By
systematically simplifying the task, it was tested how trivial and concrete variants of
it can still be apt measures of fluid intelligence (see Shokri-Kojori and Krawczyk 2018).
The original task variant presented an abstract problem: “Three pairs of objects bound
by relations ‘<’ or ‘>’ unequivocally define the monotonic linear order of four symbols.
Organize the symbols in your mind into the valid order”. For example, the pairs could be
“A > B”, “C < B”, or “C > D”, and the response to be selected could be either “D < A” or
“D > A”. To respond correctly (“D < A”), all the pairs had to be integrated. This variant
yielded low accuracy and strongly correlated with the fluid intelligence factor (r = .55).
However, this correlation remained strong (r = .67) in a variant in which the participants
were not given an abstract instruction to organize the symbols into the linear order, but
only to decide which relation with the reversed symbols was the same as the relation in one
of presented pairs (e.g., “B > A” or “B < A”?). The correlation held strong (r = .58) when no
concept of relation was mentioned, but the participants were just asked to identify exactly
the same pair as one presented (e.g., “A > B” or “A < B”?), and dropped only a little (to r =
.46) when the task was to simply match the three-symbol string including a middle slash
(e.g., does “A/B” match “A/B” or “A\B”?). The correlation only disappeared when the
task was to match unbound pairs of symbols (is “AB” the same as “AB” or “BA”). It was
concluded that full-blown abstract reasoning is not needed to capture fluid intelligence,
and as little as a single trivial binding of simple information in the mind is critical.

These findings were compatible with the results on the so-called relation-monitoring
task developed by Oberauer (1993), which required responding when the stimuli on the
screen satisfied a simple predefined relation. In one task variant, people observed a con-
stantly changing matrix of symbol strings and decided whether the three strings in one row,
column, or diagonal line ended with the same symbol. The task, thus, required identifying
relations among the symbols, while imposing relatively low storage requirements (all
information was constantly available on-screen) and involving no form of reasoning (infor-
mation did not need to be transformed in any way). Despite the task’s simplicity, several
of its variants have been shown to capture fluid reasoning comparably to the hallmark
reasoning and the working-memory tests (Bateman et al. 2019; Chuderski 2014; Jastrzębski
et al. 2020; Oberauer et al. 2008).

Finally, Jastrzębski et al. (2020) found that the factor that loaded the above mentioned
task of comparing the “>” and “<” relations, the relation-monitoring task in which three
symbols in a row or column had to be mutually different, as well as a novel simple task
that required mapping two nodes between two structurally isomorphic but perceptually
different graphs (Jastrzębski et al. 2022), was statistically indistinguishable from the factor
that loaded typical fluid intelligence tests such as RAPM, Cattell’s CFT-3, and figural
analogies. The two factors shared over 90% of variance, suggesting that the rank order
of fluid intelligence can be reproduced with tasks devoid of perceptual complexity, rule
discovery, abstraction, and multiple-response alternatives. Actually, these tasks involved
neither complex rules nor multiple-rule integration, required no inference steps, and
captured faster cognitive processes (response delivered in several seconds), as compared to
typical matrix and analogical-reasoning tests (up to a minute required for a response). In
their essence, each of these tasks required the processing of a single predefined relation that
bound simple elements, such as symbols with their positions and letters with the “<” or “>”
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relation sign, as well as nodes and arrows in a graph. This is an important clue regarding
what fluid reasoning can be about.

5. Computational Models Which Process Structures and Relations

Another source of insight on what is crucial for fluid intelligence comes from the
computational models of structured information processing developed in cognitive neu-
roscience and cognitive psychology. In cognitive neuroscience, the rhythmic activation of
neuronal groups encoding task elements was proposed as a mechanism underlying the
brain processing of ordered and structured information. Probably the most widely cited
iEEG study of the rat brain (O’Keefe and Recce 1993) showed that as a rat approached
food, it used the subsequent firing of distinct hippocampal neurons in the gamma band,
synchronized with the rat’s theta rhythm, to encode the consecutive steps on its route.
Such a phase precession has recently also been reported for people (Qasim et al. 2021).
Siegel et al. (2009) showed that a monkey was able to remember two pictures in the correct
order, only if the sequential spiking pattern was present in its frontal cortex and the order
of the spikes matched the order of presentation of the corresponding pictures (for recent
analogous evidence regarding humans, see Bahramisharif et al. 2018).

Inspired by O’Keefe and Recce’s (1993) findings, Lisman and Idiart (1995) developed
a computational model in which the lists of items in human short-term memory were
encoded analogously, as rats encode consecutive locations—by a sequence of gamma cycles
desynchronized by a global inhibitory signal, which forced each item representation to
peak in a distinct phase of the theta cycle (see also models by Chuderski et al. 2013; Horn
and Usher 1991; Koene and Hasselmo 2007; Raffone and Wolters 2001). The model showed
that only a few elements can be held in order at one time, due to intrinsic limitations of
neural oscillatory synchronization and desynchronization.

Recent EEG (see Sauseng et al. 2019) and transcranial stimulation research (see
Hanslmayr et al. 2019) supported this category of short-term-memory models. Analo-
gous evidence for phase synchronization was reported for directing visual attention to
consecutive objects (see Jensen et al. 2021). Even for response latency and hit rate, research
showed that rhythmic asynchronous variation (so-called behavioral oscillations) can be
aligned to items (Pomper and Ansorge 2021). Overall, the studies suggest that the brain
encodes structures by dynamically organizing activation patterns in time, including the
coupling of subsequent elements to phase (Cohen 2011).

In cognitive modeling, multiple models of problem-solving and reasoning assumed
that representing and transforming relations, as well as mapping their structures across
situations, is the core process (called structure mapping; Gentner 1983) leading to valid
solutions and conclusions. These models described two tasks most strongly involving
fluid reasoning (explicitly called relational reasoning; Holyoak 2012): analogical reasoning
(Forbus et al. 1994; Halford et al. 2010; Keane et al. 1994) and inductive reasoning in matrix
problems (e.g., the RAPM test; Carpenter et al. 1990; Lovett and Forbus 2017). Crucially,
a group of reasoning models represented the key relational structures using rhythmic
patterns of activations (see Shastri and Ajjanagadde 1993), providing convergence with the
above-mentioned cognitive neuroscience studies on short-term memory and attention.

For example, the LISA model of analogy-making (Hummel and Holyoak 1997, 2003)
mapped and transferred the relations and their arguments between a familiar and a novel
situation by means of discovering the structural and semantic correspondences between the
two situations. LISA’s most important feature was that relations and their arguments had
to be represented in the model’s working memory, which was limited to several role–object
pairs. More complex relations had to be divided into smaller fragments (mapping was
incremental). Each role of a relation was a distinct oscillation, and an object was bound in
phase to the role it played. In contrast, the relation’s predicate oscillated for the total time
of oscillation of all its pairs, binding them into the complete relation (see Figure 1). The
relation cycle was associated with the theta rhythm, while the cycles for particular pairs
reflected gamma oscillations (Knowlton et al. 2012). With more capacious working memory,
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LISA was able to process more complex analogies. The model was also adapted to explain
the development of relational reasoning in children (Doumas et al. 2008).
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As LISA has never been used for explicit simulations of the individual differences in
reasoning performance, Chuderski and Andrelczyk (2015) developed an oscillatory model
of a figural analogies test in which variation in the parameters governing the oscillations of
bindings between consecutive figures and respective geometric transformations allowed
for reconstruction of the distribution of analogical reasoning scores in the human sample,
including the types of errors made by high- vs. low-performing participants. Rasmussen
and Eliasmith (2014) developed a model, based on a spiking-neurons architecture, which
used the dynamic patterns of activity to model reasoning on RAPM. This model simulated
performance differences between younger and older participants. All these models consti-
tute the proof of concept that representing relations with flexible patterns of bindings can
both explain the processing in the fluid (i.e., relational) reasoning tasks and the individual
differences therein.

6. Fluid Intelligence and Relational Representations

On the basis of the findings described above, I propose that fluid reasoning can amount
to representing in the mind the key relation(s) for the task at hand in a valid and robust way. Such
relations could be encoded in the brain by an asynchronous pattern of a required number
of correct role–filler bindings. I start to elaborate the above proposal by qualifying more
precisely its main three elements: relations, valid, and robust.

Relation is defined as a labeled, ordered list (tuple) of arguments. A label identifies
a relation and allows other entities to refer to it (e.g., a relation can be an argument for
some other relation). In cognitive science and psychology specifically, arguments are more
commonly called relational roles, and their values are called fillers (Doumas and Hummel
2005; Halford et al. 2010; Holyoak 2012). Each relational role is grounded in the human
conceptual system, which provides knowledge on what fillers can play that role and what
they can “do”. A label is associated with a relation’s intension. A relation divides the
Cartesian product of all possible fillers that can be assigned to the roles in the relation
into the subset, for which the relation is satisfied (“true”), and its complement, for which
the relation is not satisfied (“false”). An ability to represent relations in the mind allows
humans to abstract from perceptual and semantic properties of fillers (such properties can
be misleading in abstract, formal reasoning; see Markman and Gentner 1993), supporting
the compositionality and productivity of human thinking (Hofstadter 2001).

However, in order to do so, mental representations of relations need to be valid, that is,
they must include the correct bindings between respective fillers and their roles as well as
preserve these bindings during consecutive mental operations. First, fillers need to satisfy
the categorial constraints for particular roles (Keane et al. 1994)—for instance in the relation
Gave (giver, recipient, gift), the role of giver assumes a person or a group. The relation’s
instance Gave (Tom, Ann, cat) clearly satisfies this constraint; but, in a creative story on a
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magic cat in which the constraints can be violated, it would also be acceptable that Gave
(cat, Tom, Ann). However, as many fluid intelligence tests are semantically lean (include
meaningless symbols or shapes), the above categorial constraints help little in processing
relations. Second, and more important, the relation representation must be structurally
consistent within the entire system of relations a person holds (Halford et al. 2010), so when
considering the relation Received (recipient, giver, gift), the actors and objects must play
the corresponding roles as in Gave, that is, Received (Ann, Tom, cat). Third, the categorial
and structural properties of relations together allow for making multiple inferences. For
instance, knowing that “A is above B” and “C is below B”, one can infer that “A is on top”,
“C is at bottom”, “B is between them”, etc.

Simple fluid intelligence tests may capture fluid reasoning so aptly because they
require a valid relation representation. For instance, in the relation-monitoring task, such
a representation must include only the last symbols bound correctly to the consecutive
matrix positions (e.g., first, second, third column), such as Row1 (Ψ, Φ, Ω). Following the
structural consistency principle, it needed to be transformed (in a process sometimes called
relational integration; Oberauer et al. 2008) into some form of representation that explicitly
reflects three symbol differences, for instance Diff (Ψ 6= Φ, Φ 6= Ω, Ψ 6= Ω).

The condition that relation representation has to be robust means simply that this
representation has to be accessible, as long as it is required during coping with a task. For
instance, the relation Row1 cannot break down before the relation Diff is construed (but
can be dispensed afterwards). Failure to access the key relation, either because of failure to
construe it or to maintain it after construal, likely leads to a failure on the task.

The power to represent relations in a valid and robust way potentially provides
an individual with crucial flexibility in dealing with cognitive tasks, because relational
representations can encode arbitrary knowledge structures of any form. Especially, they
enable novel structures, including ones which are not possible in the real word (“a mouse
bigger than an elephant”), underlying innovative and creative thinking. This very flexibility
stems from the fact that relational roles can, in principle, be paired with any fillers (see
Doumas and Hummel 2005). Moreover, dynamic bindings can potentially encode diverse
types of structures (e.g., lists, stacks, trees, networks), because relational roles can easily
define particular placeholders in a specific structure (“a node”, “a root”, etc.). Finally, the
intrinsic trade-offs between the size (many asynchronous bindings) vs. stability/precision
(only one or two bindings, but each of them binding together rich information) can be
potentially resolved by adapting the internal organization of bindings to the requirements
of a task. For instance, in some situations (e.g., a change-detection task) it is more important
to encode a large number of objects, even at the risk of losing some of them, while in some
other situations (e.g., attention-control tasks), it is crucial to focus on a single maximally
undistorted representation for as long as possible (see the adjustable-attention hypothesis
by Cowan). Dynamic bindings seem to allow all that flexibility.

The effective maintenance of relation representations may drive individual differences
in fluid reasoning, because evidence from cognitive neuroscience and cognitive modeling
suggests that processing relations in a valid and robust way is very difficult for such a
biological system as the human brain. Specifically, if the oscillatory models of working
memory and reasoning are right, the relation representation requires the maintaining of
an arbitrary and precise pattern of dynamics: representation of a given relational role
and corresponding filler must be maintained in synchrony, while consecutive role–filler
bindings must be active asynchronously. Both data from brain recordings (Bahramisharif
et al. 2018; Qasim et al. 2021) and computational models (Chuderski and Andrelczyk 2015;
Usher et al. 2001) suggest that maintaining such patterns is a demanding process that
may become unstable with three or more bindings. The individual differences in fluid
intelligence may, thus, stem from whether one succeeds or fails to process simple relations
in a valid form (e.g., without missing or mixing roles and fillers) for the entire interval
during which this relation is needed.
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The above proposal should not be treated as a novel theory of fluid intelligence, just
as a working hypothesis. In the present state of cognitive (neuro)science, we still await
more precise data and models on how humans process relations, which are not easily
extractable from the black box of the human mind. Even though psychometrics (new
simple fluid intelligence tests), brain imaging (a growing evidence for the role of rhythmic
neural patterns in cognition), and cognitive modeling (development of the models of
relational reasoning yielding insight into the underlying mechanisms) provided initial cues
for the conceptualization of fluid intelligence in terms of flexible relational representations,
future research is needed to develop a causal theoretical model explaining how dynamic
patterns in the brain could translate into relational representations, which themselves would
translate into the processing of cognitive tasks (including fluid intelligence tests) that, in
turn, translates into academic, professional, socioeconomic, and life status. However, even
not being such a theory, the current proposal helps to purify the fluid intelligence construct
and develop new ways of its scientific pursuit.

Even though a direct method to observe how relations are represented in the brain is
still lacking (but we can already identify simple list structures encoded by phase precession
(Qasim et al. 2021)), several kinds of less direct evidence could either support or undermine
the role of relation representation for fluid intelligence. On the psychometric level, as the
work by Jastrzębski et al. (2020, 2022) can count only as initial evidence, it should be system-
atically examined whether novel relation-processing tests can substitute for the traditional
tests in the fluid intelligence measurement (e.g., explaining the same variance, surpassing
competitor predictors such as working-memory tasks) and can equally strongly predict
phenomena known to relate substantially to fluid intelligence (e.g., academic achievement,
learning). On the cognitive level, computational models that allow variation in relation rep-
resentation effectiveness should be able to replicate main findings from the reasoning ability
literature (distributions of scores, pattern of errors, interrelations between various tasks,
developmental patterns, etc.), even though successful simulations can never act as a decisive
proof. On the neural level, assuming that temporal patterns of bindings are encoded via
their coupling to the phase of some brain rhythm, certain parameters of coupling (yet to be
identified) are expected to more strongly predict scores on both simple relation-processing
and typical fluid intelligence tests, as compared to alternative brain markers (for initial
evidence pertaining to the delta-gamma coupling see Gągol et al. 2018). Finally, the holy
grail of intelligence research is cognitive training capable of increasing individual intelli-
gence levels; however, a recent second-order meta-analysis refuted that visible far-transfer
effects can be achieved by working-memory training (Sala et al. 2019). The plausibility of
the relation-representation hypothesis would be strongly supported if, instead, the training
programs based on trivial relation-processing tasks resulted in persistent increases in fluid
intelligence, operationalized at the latent level (for initial evidence of a successful relation
processing training in adolescents, see McLoughlin et al. 2020).

Similar relation-based proposals present in the literature as well as their differences
with the current proposal need to be highlighted. A concept of relation appeared a century
ago in Spearman’s (1927) idea of eduction of relations and correlates (analogous discriminating
and perceiving relations was also considered by Cattell (1943)). However, the psychometric
evidence cited above suggests that neither identification of the valid relation when the
values of its arguments are known (rule discovery) nor assigning the valid values to the
arguments for the known relation (relation instantiation) is crucial for capturing fluid
intelligence. Instead, a more basic process of relation representation is considered here:
even when both the relation and its arguments are provided by the task, it is still demanding
for the brain to maintain the resulting pattern of bindings for a required duration. Moreover,
this representation is necessary for processes that are conceptually simpler than eduction of
relations, such as bare validation of a relation—checking whether the current assignment of
fillers to roles satisfies that relation, or even just reporting a relation—recalling an ordered
list of elements in the complex-span task.
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As compared to Oberauer’s (1993; Oberauer et al. 2008) idea of relational integration, and
an analogous conception of construction of relational representations by Halford et al. (2015),
which saw the crucial source of fluid intelligence differences in the process of integrating
basic elements of relations into more complex relational structures, which may succeed or
fail, the current proposal focuses primarily on the very maintenance of those basic elements,
as it can be demanding even in the absence of the need for relational integration. However,
Duncan et al. (2017) showed that a fluid intelligence test with reduced rule integration
(each rule could be processed separately) became feasible even for low IQ participants,
implying the key role of relational integration (compositionality, in their terms). It is likely
that both these sources of variance, mutually entangled to a large extent, do concurrently
contribute to fluid intelligence, as suggested by initial research that contrasted these two
sources (Shokri-Kojori and Krawczyk 2018). Definitely, more detailed research is needed
here.

As to Halford et al.’s (1998) idea of relational complexity—the maximum number of
independent variables or relation arguments that one can grasp simultaneously without
segmentation and chunking, which limits the reasoning process one can handle (Andrews
and Halford 2002), the current proposal is also somewhat more basic: according to it, indi-
vidual differences in fluid intelligence can also emerge from failures to robustly maintain
relations lower in relational complexity than the maximum possible complexity of relation
an individual can process.

Finally, relational frame theory (Hayes et al. 2001), which describes how relational pro-
cessing and behavior can emerge from operant conditioning (so-called arbitrarily applicable
relational responding), seems compatible with the current proposal, yet it is formulated in a
much more abstract way. Moreover, this theory primarily pertains to the development of
relational processing, instead of the adult differences in it.

In short, the present proposal claims that neither the process of integrating the bindings
into the complete relational representation nor the available relational complexity of such a
representation are crucial for individual differences in fluid reasoning, even though they
may contribute to some of its variance. By contrast, such differences primarily reflect
the validity and robustness of the more basic role–filler bindings representing relations.
Inability to maintain, validly and robustly, such bindings in the brain/mind, as a result,
limits the construal and processing of relation representations, even simple ones.

7. Conclusions

In this work, I focused on the importance of relation representation and processing for
the construct of fluid intelligence. I argued that when inessential features of fluid intelli-
gence tests are abstracted away, the process captured by these tests amounts to representing
the key relation(s) in the valid and robust way. Based on my review of neurocognitive data
and models, this ability may itself be rooted in the parameters determining the maintenance
of arbitrary patterns of dynamic bindings linking consecutive arguments of a relation with
the roles played by them. These arbitrary, dynamic bindings potentially allow substantial
flexibility of (relational) thinking. How valid and robust representations of relations one
can maintain due to valid and robust bindings, may determine a fluid intelligence level
one displays. Validation of this proposal requires novel precise data and models, with the
future integration of findings from cognitive neuroscience and psychology with compu-
tational models of working memory and reasoning. The proposal can potentially help to
reconceptualize fluid intelligence towards a more process-oriented construct (theory), as
compared to the traditional correlational approaches considered to date. Although such a
complex phenomenon as fluid intelligence definitely cannot be reduced to a single factor,
the idea of relation representation may purify this very phenomenon and stipulate new
lines of research.
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Jastrzębski, Jan, Michał Ociepka, and Adam Chuderski. 2022. Graph Mapping: A novel and simple test to validly assess fluid reasoning.
Behavior Research Methods, 1–13. [CrossRef]

Jensen, Arthur R. 2006. Clocking the Mind: Mental Chronometer Individual Differences. Amsterdam: Elsevier.
Jensen, Arthur R., and Ella Munro. 1979. Reaction time, movement time, and intelligence. Intelligence 3: 121–26. [CrossRef]
Jensen, Ole, Yali Pan, Steven Frisson, and Lin Wang. 2021. An oscillatory pipelining mechanism supporting previewing during visual

exploration and reading. Trends in Cognitive Sciences 25: 1033–44. [CrossRef] [PubMed]
Johnson-Laird, Phillip N. 2006. How We Reason? Oxford: Oxford University Press.
Kan, Kes-Jan, Rogier A. Kievit, Conor Dolan, and Han van der Maas. 2011. On the interpretation of the CHC factor Gc. Intelligence 39:

292–302. [CrossRef]
Keane, Mark T., Tim Ledgeway, and Stuart Duff. 1994. Constraints on analogical mapping: A comparison of three models. Cognitive

Science 18: 387–438. [CrossRef]
Knowlton, Barbara J., Robert G. Morrison, John E. Hummel, and Keith J. Holyoak. 2012. A neurocomputational system for relational

reasoning. Trends in Cognitive Sciences 16: 373–81. [CrossRef]
Koene, Randal, and Michael Hasselmo. 2007. First-in-first-out item replacement in a model of short-term memory based on persistent

spiking. Cerebral Cortex 17: 1766–81. [CrossRef]
Kovacs, Kristof, and Andrew R. A. Conway. 2016. Process overlap theory: A unified account of the general factor of intelligence.

Psychological Inquiry 27: 151–77. [CrossRef]
Kvist, Ann V., and Jan-Eric Gustafsson. 2008. The relation between fluid intelligence and the general factor as a function of cultural

background: A test of Cattell’s Investment theory. Intelligence 36: 422–36. [CrossRef]
Kyllonen, Patrick, and Raymond E. Christal. 1990. Reasoning ability is (little more than) working memory capacity? Intelligence 433:

389–433. [CrossRef]
Lakin, Joni M., and James L. Gambrell. 2012. Distinguishing verbal, quantitative, and figural facets of fluid intelligence in young

students. Intelligence 40: 560–70. [CrossRef]
Levacher, Julie, Marco Koch, Johanna Hissbach, Frank M. Spinath, and Nicolas Becker. 2022. You can play the game without knowing

the rules—But you’re better off knowing them: The influence of rule knowledge on figural matrices tests. European Journal of
Psychological Assessment 38: 15–23. [CrossRef]

Li, Shu-Chen, Malina Jordanova, and Ulman Lindenberger. 1998. From good senses to good sense: A link between tactile information
processing and intelligence. Intelligence 26: 99–122. [CrossRef]

Lisman, John E., and Marco A. P. Idiart. 1995. Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267: 1512–14.
[CrossRef]

http://doi.org/10.1016/j.intell.2014.10.005
http://www.ncbi.nlm.nih.gov/pubmed/25395695
http://doi.org/10.3758/s13428-017-0935-1
http://www.ncbi.nlm.nih.gov/pubmed/28726177
http://doi.org/10.1037/h0023816
http://doi.org/10.1162/neco.1991.3.1.31
http://doi.org/10.1037/0033-295X.104.3.427
http://doi.org/10.1037/0033-295X.110.2.220
http://www.ncbi.nlm.nih.gov/pubmed/12747523
http://doi.org/10.1016/0010-0285(75)90010-9
http://doi.org/10.1037/xge0001005
http://doi.org/10.1016/j.intell.2020.101489
http://doi.org/10.3758/s13428-022-01846-z
http://doi.org/10.1016/0160-2896(79)90010-2
http://doi.org/10.1016/j.tics.2021.08.008
http://www.ncbi.nlm.nih.gov/pubmed/34544653
http://doi.org/10.1016/j.intell.2011.05.003
http://doi.org/10.1207/s15516709cog1803_2
http://doi.org/10.1016/j.tics.2012.06.002
http://doi.org/10.1093/cercor/bhl088
http://doi.org/10.1080/1047840X.2016.1153946
http://doi.org/10.1016/j.intell.2007.08.004
http://doi.org/10.1016/S0160-2896(05)80012-1
http://doi.org/10.1016/j.intell.2012.07.005
http://doi.org/10.1027/1015-5759/a000637
http://doi.org/10.1016/S0160-2896(99)80057-9
http://doi.org/10.1126/science.7878473


J. Intell. 2022, 10, 51 16 of 18

Little, Daniel R., Stephan Lewandowsky, and Stewart Craig. 2014. Working memory capacity and fluid abilities: The more difficult the
item, the more more is better. Frontiers in Psychology 5: 239. [CrossRef] [PubMed]

Loesche, Patrick, Jennifer Wiley, and Marcus Hasselhorn. 2015. How knowing the rules affects solving the Raven progressive matrices
test. Intelligence 48: 58–75. [CrossRef]

Lovett, Andrew, and Kenneth Forbus. 2017. Modeling visual problem solving as analogical reasoning. Psychological Review 124: 60–90.
[CrossRef] [PubMed]

Lovett, Marsha C. 2005. A strategy-based interpretation of Stroop. Cognitive Science 29: 493–524. [CrossRef] [PubMed]
Lozano, José H. 2015. Are impulsivity and intelligence truly related constructs? Evidence based on the fixed-links model. Personality

and Individual Differences 85: 192–98. [CrossRef]
Lozano, Jose H., and Javier Revuelta. 2020. Investigating operation-specific learning effects in the Raven’s Advanced Progressive

Matrices: A linear logistic test modeling approach. Intelligence 82: 101468. [CrossRef]
Lu, Ying, and Stephen G. Sireci. 2007. Validity issues in test speededness. Educational Measurement: Issues and Practice 26: 29–37.

[CrossRef]
Markman, Arthur B., and Dedre Gentner. 1993. Structural alignment during similarity comparisons. Cognitive Psychology 25: 431–67.

[CrossRef]
McGrew, Kevin S. 2009. CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric

intelligence research. Intelligence 37: 1–10. [CrossRef]
McLoughlin, Shane, Ian Tyndall, and Antonina Pereira. 2020. Convergence of multiple fields on a relational reasoning approach to

cognition. Intelligence 83: 101491. [CrossRef]
Meyer, Christine. S., Priska Hagmann-von Arx, Sakari Lemola, and Alexander Grob. 2010. Correspondence between the general ability

to discriminate sensory stimuli and general intelligence. Journal of Individual Differences 31: 46–56. [CrossRef]
Neisser, Urlic. 1967. Cognitive Psychology. Englewood Cliffs: Prentice-Hall.
Neubauer, Aljoscha C. 1990. Speed of information processing in the Hick paradigm and response latencies in a psychometric intelligence

test. Personality and Individual Differences 11: 147–52. [CrossRef]
Oaksford, Mike, and Nick Chater. 2007. Bayesian Rationality: The Probabilistic Approach to Human Reasoning. Oxford: Oxford University

Press.
Oberauer, Klaus. 1993. Die Koordination kognitiver Operationen. Eine Studie zum Zusammenhang von “working-memory” und

Intelligenz. Zeitschrift für Psychologie 201: 57–84.
Oberauer, Klaus. 2016. Parameters, not processes, explain general intelligence. Psychological Inquiry 27: 231–35. [CrossRef]
Oberauer, Klaus, Stephan Lewandowsky, Edward Awh, Gordon D. A. Brown, Andrew Conway, Nelson Cowan, Christopher Donkin,

Simon Farrell, Graham J. Hitch, Mark J. Hurlstone, and et al. 2018. Benchmarks for models of short-term and working memory.
Psychological Bulletin 144: 885–958. [CrossRef] [PubMed]

Oberauer, K., and Hsuan-Yu Lin. 2017. An interference model of visual working memory. Psychological Review 124: 21–59. [CrossRef]
[PubMed]

Oberauer, Klaus, Ralf Schultze, Oliver Wilhelm, and Heinz-Martin Süß. 2005. Working memory and intelligence—Their correlation
and their relation: Comment on Ackerman, Beier, and Boyle. Psychological Bulletin 131: 61–65. [CrossRef]

Oberauer, Klaus, Heinz-Martin Süß, Oliver Wilhelm, and Werner W. Wittman. 2008. Which working memory functions predict
intelligence? Intelligence 36: 641–52. [CrossRef]

O’Keefe, John, and Michael L. Recce. 1993. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus
3: 317–30. [CrossRef] [PubMed]

Qasim, Salman E., Itzhak Fried, and Joshua Jacobs. 2021. Phase precession in the human hippocampus and entorhinal cortex. Cell 184:
3242–55. [CrossRef]

Pomper, Urlich, and Urlich Ansorge. 2021. Theta-rhythmic oscillation of working memory performance. Psychological Science 32:
1801–10. [CrossRef]

Primi, Ricardo. 2002. Complexity of geometric inductive reasoning tasks: Contribution to the understanding of fluid intelligence.
Intelligence 30: 41–70. [CrossRef]

Raffone, Antonino, and Gezinus Wolters. 2001. A cortical mechanism for binding in visual memory. Journal of Cognitive Neuroscience 13:
766–85. [CrossRef]

Rasmussen, Daniel, and Chris Eliasmith. 2014. A spiking neural model applied to the study of human performance and cognitive
decline on Raven’s Advanced Progressive Matrices. Intelligence 42: 53–82. [CrossRef]

Raven, John C. 1938. Progressive Matrices. London: Lewis.
Raven, John C., John. H. Court, and Jean Raven. 1983. Manual for Raven’s Progressive Matrices and Vocabulary Scales (Section 4: Advanced

Progressive Matrices). London: H. K. Lewis.
Ren, Xuezhu, Tengfei Wang, Sumin Sun, Mi Deng, and Karl Schweizer. 2018. Speeded testing in the assessment of intelligence gives

rise to a speed factor. Intelligence 66: 64–71. [CrossRef]
Rey-Mermet, Alodie Miriam Gade, Alessandra S. Souza, Claudia C. von Bastian, and Klaus Oberauer. 2019. Is executive control related

to working memory capacity and fluid intelligence? Journal of Experimental Psychology: General 148: 1335–72. [CrossRef] [PubMed]
Roelofs, Ardi. 2003. Goal-referenced selection of verbal action: Modeling attentional control in the Stroop task. Psychological Review 110:

88–125. [CrossRef]

http://doi.org/10.3389/fpsyg.2014.00239
http://www.ncbi.nlm.nih.gov/pubmed/24711798
http://doi.org/10.1016/j.intell.2014.10.004
http://doi.org/10.1037/rev0000039
http://www.ncbi.nlm.nih.gov/pubmed/28004959
http://doi.org/10.1207/s15516709cog0000_24
http://www.ncbi.nlm.nih.gov/pubmed/21702782
http://doi.org/10.1016/j.paid.2015.04.049
http://doi.org/10.1016/j.intell.2020.101468
http://doi.org/10.1111/j.1745-3992.2007.00106.x
http://doi.org/10.1006/cogp.1993.1011
http://doi.org/10.1016/j.intell.2008.08.004
http://doi.org/10.1016/j.intell.2020.101491
http://doi.org/10.1027/1614-0001/a000006
http://doi.org/10.1016/0191-8869(90)90007-E
http://doi.org/10.1080/1047840X.2016.1181999
http://doi.org/10.1037/bul0000153
http://www.ncbi.nlm.nih.gov/pubmed/30148379
http://doi.org/10.1037/rev0000044
http://www.ncbi.nlm.nih.gov/pubmed/27869455
http://doi.org/10.1037/0033-2909.131.1.61
http://doi.org/10.1016/j.intell.2008.01.007
http://doi.org/10.1002/hipo.450030307
http://www.ncbi.nlm.nih.gov/pubmed/8353611
http://doi.org/10.1016/j.cell.2021.04.017
http://doi.org/10.1177/09567976211013045
http://doi.org/10.1016/S0160-2896(01)00067-8
http://doi.org/10.1162/08989290152541430
http://doi.org/10.1016/j.intell.2013.10.003
http://doi.org/10.1016/j.intell.2017.11.004
http://doi.org/10.1037/xge0000593
http://www.ncbi.nlm.nih.gov/pubmed/30958017
http://doi.org/10.1037/0033-295X.110.1.88


J. Intell. 2022, 10, 51 17 of 18

Sala, Giovanni, N. Deniz Aksayli, K. Semir Tatlidil, Tomoko Tatsumi, Yasuyuki Gondo, and Fernand Gobet. 2019. Near and far transfer
in cognitive training: A second-order meta-analysis. Collabra: Psychology 5: 18. [CrossRef]

Salthouse, Timothy. 1993. Relations between running memory and fluid intelligence. Intelligence 43: 1–7. [CrossRef] [PubMed]
Sauseng, Paul, Charline Peylo, Anna L. Biel, Elisabeth V. C. Friedrich, and Carola Romberg-Taylor. 2019. Does cross-frequency phase

coupling of oscillatory brain activity contribute to a better understanding of visual working memory? British Journal of Psychology
110: 245–55. [CrossRef]

Schmidt, James R. 2013. The Parallel Episodic Processing (PEP) model: Dissociating contingency and conflict adaptation in the
item-specific proportion congruent paradigm. Acta Psychologica 142: 119–26. [CrossRef] [PubMed]

Schubert, Anna-Lena. 2019. A meta-analysis of the worst performance rule. Intelligence 73: 88–100. [CrossRef]
Schubert, Anna-Lena, and Gideon. T. Frischkorn. 2020. Neurocognitive psychometrics of intelligence: How measurement ad-

vancements unveiled the role of mental speed in intelligence differences. Current Directions in Psychological Science 29: 140–46.
[CrossRef]

Schulze, Doreen, Andre Beauducel, and Burkhard Brocke. 2005. Semantically meaningful and abstract figural reasoning in the context
of fluid and crystallized intelligence. Intelligence 33: 143–59. [CrossRef]

Schweizer, Karl. 2010. The relationship of attention and intelligence. In Handbook of Individual Differences in Cognition: Attention, Memory,
and Executive Control. Edited by Aleksandra Gruszka, Garry Matthiews and Błażej Szymura. New York: Springer, pp. 247–62.
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