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The aim of the study was to examine the common items in the mixed 

format (e.g., multiple-choices and essay items) contain parameter drifts 

in the test equating processes performed with the common item non-

equivalent groups design. In this study, which was carried out using 

Monte Carlo simulation with a fully crossed design, the factors of test 

length (30 and 50), sample size (1000 and 3000), common item ratio (30 

and 40%), ratio of items with item parameter drift (IPD) in common 

items (20 and 30%), location of common items in tests (at the beginning, 

randomly distributed, and at the end) and IPD size in multiple-choice 

items (low [0.2] and high [1.0]) were studied. Four test forms were 

created, and two test forms do not contain parameter drifts. After the 

parameter drift was performed on the first of the other two test forms, the 

parameter drift was again performed on the second test form. Test 

equating results were compared using the root mean squared error 

(RMSE) value. As a result of the research, ratio of items with IPD in 

common items, IPD size in multiple-choice items, common item ratio, 

sample size and test length on equating errors were found to be 

significant. 
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Introduction 

Tests, in education, have various areas of use, including selecting students for specific 

programs, monitoring students’ development, and identifying their status. Large-scale tests that 

are periodically implemented to monitor students’ development and compare students may 

benefit from parallel test forms to ensure confidentiality and reduce cheating attempts (Chen, 
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2013). These forms should yield valid and reliable results, and the attained scores should be 

comparable (Kilmen, 2010). For the test forms to be comparable on the same scale, two 

important processes of psychometrics are required, namely scaling and equating (Guo, Zheng 

& Chang, 2015). 

Test equating is an important process that ensures the validity of different test forms. Many 

international testing programs such as Programme for International Student Assessment 

(PISA), Progress in International Reading Literacy Study (PIRLS), Trends International 

Mathematics and Science Study (TIMSS) uses test equating to monitor student achievement 

over the years. Like in these large-scale tests, many testing conditions should have high level 

of security. For this purpose, different forms of tests can be created and then compared by test 

equating process. Two tests that measure the same construct using test equating that is defined 

as converting one-unit system of a test form to another test form’s unit system (Angoff, 1971) 

are correlated with each other (Felan, 2002).  

Test equating based on item response theory (IRT) consists of three significant components, 

namely item parameter estimation, rescaling of item parameters, and scale conversion (Kolen 

& Brennan, 2004). One requirement of the IRT-based test equating is to study the item 

parameter invariance assumption that examines the item parameter invariance in multiple tests 

taken by the same group of students (Gaertner & Briggs, 2009). However, the students may fail 

to obtain item parameter invariance assumption due to reasons such as incorrect item 

calibration, miscalculation of item location on the scale, overuse of items, cheating, security 

flaws, etc. (Li, 2008; Stahl & Muckle, 2007). This situation is defined as item parameter drift 

(IPD) in literature. 

IPD causes errors in the measurement results since it violates the invariance assumption, which 

is one of the main assumptions of IRT. Validity decreases when variables that are irrelevant to 

the construct, which is to be measured, are included in measurement results (McCoy, 2009). 

This leads to certain problems in the administration of tests that require the invariance property 

in item parameters, including test developing and test equating. In administering test equations, 

IPD may cause an increase in measurement error by leading to errors in item calibration (Li, 

2008; Meng, Steinkamp & Matthews-Lopez, 2010). 

While test equating uses various methods such as random groups and single group design, this 

study focuses on common item non-equivalent groups design (CINEG) method for anchor tests, 

because many international testing programs such as PISA, PIRLS, TIMSS use mixed format 

common tests. This design equates two test forms over common items that are used to establish 

the relationship between different test forms that the two groups take. Common items may have 

a mixed format (multiple choice and open-ended) in CINEG design. It is important for these 

common items to represent test forms statistically and content-wise. The most significant 

assumption of the CINEG design is the maintenance of item parameters of common items that 

are used in equating, and remains constant between forms (Kolen & Brennan, 2004; 

Michaelides, 2010). However, item parameter drift may occur due to estimation error, context 

effect, exposure of items, and overuse of items that lead to differentiation in the parameters of 

common items (Li, 2012). 

IPD occurrences in test equating studies yield two significant results both of which are due to 

its effects on the item parameter estimations. One of them is biased ability estimations since 

IPD’s effect on item parameter estimations disrupt parameter invariance assumption. Another 

result is the effect IPD has on the equating coefficient by affecting item parameter estimations. 
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It is, thus, significant to identify the IPD conditions that negatively affect test equating (Li, 

2012) to avoid erroneous test equating. While some studies in literature examine the impact of 

IPD on test equating (Arce-Ferrer & Bulut, 2017; Chen, 2013; Demirus & Uysal, 2016; 

Gaertner & Brigss, 2009; Han, Wells & Hambleton, 2015; Michaelides, 2010), most studies 

focus on the results of IPD occurrences in -a or -b parameters in multiple choice items (Demirus 

& Uysal, 2016; Han & Guo, 2011; Han & Wells, 2007; Wells, Subkoviak & Serlin, 2002). On 

the other hand, there are very few studies that examine the impact of IPD on test equating, 

particularly when common items are in a mixed format (Hu, Rogers & Vukmirovic, 2008; Li, 

2012). 

Bock, Muraki and Pfeiffenberger (1988) conducted a study on the maintenance of IRT scale in 

the presence of IPD and they found that IPD came up in time especially in large sample sizes. 

Wollack, Sung and Kang (2005) examined the longitudinal impact of IPD in a German 

placement test where scaling was carried out between administration of tests. They emphasized 

that the scaling method and IPD identification model had significant effects on the individuals’ 

ability estimations and capacity to pass decisions. They supported their results with another 

study that they carried out a year later in which Wollack, Sung and Kang (2006) found that 

direct scaling yielded better results than indirect scaling in the presence of IPD. They underlined 

that test characteristic curve and scaling methods performed better than fixed parameter linking 

methods. Han (2008) conducted a study related with IPD was seen in the equating process. 

With series of simulations, Han (2008) found that when most of the common items (50%) had 

high level of IPD (1.00 logit), ability estimations were impacted substantially. Similarly, Lee 

and Geisinger (2019) analyzed the effects of IPD on three different lengths of TIMSS 2011 

scales and they determined that scales with fewer items have more impact on ability estimation 

and the improper classification of individuals. 

Chen (2013), who compared the performance of equating methods and used the three-parameter 

logistic model (3PLM) as well as non-equivalent groups with anchor tests (NEAT) function to 

keep or exclude items in and from tests in the presence of IPD, stated that IPD type had very 

small effects on the fixed common item parameter (FCIP) method. The impact of IPD on the 

Stocking-Lord test characteristic curve method (TCC-SL) and the concurrent method varied 

depending on whether the item that displayed IPD were kept in or excluded from the test. 

Accordingly, for the sake of correct estimations, when using the concurrent method, excluding 

the items that displayed IPD from scaling yielded better results. Demirus and Uysal (2016) 

compared test equating methods (mean-mean, mean-sigma, SL, Haebara) with a high level of 

parameter drift in the -b parameter in their simulation study with 3PLM. The b parameter 

created one-directional increasing, one-directional decreasing, and multidirectional (both 

increasing and decreasing) parameter drifts. The SL method showed the lowest test equating 

error (RMSD) when one-directional increasing and multidirectional parameter drift were 

observed. The mean-mean method showed the lowest test equating error with one-directional 

decreasing parameter drift. 

Han et al. (2015) examined the impacts of IPD on test equating in parameter -c of common 

items and observed a negative effect on equating results when 32 different conditions were 

compared using Monte Carlo simulation methods. When using the 3PLM in particular, the 

occurrence of IPD in parameter -b of common items affected the estimations of both -a and -c 

parameters. However, the full impact of IPD was not observed on parameter -b when IPD was 

uniform since a part of IPD was absorbed by parameter -c. In the studies so far, different 

conditions, such as ratio of common items, test length, sample size etc., were studied in IPD 

scope. However, these studies have been conducted in the extent of multiple-choice items.  
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Several studies on test equating and IPD separately examined the conditions where common 

items consisted of multiple-choice items as well as items of mixed formats. Hu et al. (2008) 

examined the impact of parameter drift in parameter -b of common items by using IRT-based 

test equating methods on test equating and the performances of equating methods when 

parameter -b comprised extreme values that displayed too much parameter drift. Their 

simulation study adopted the CINEG design, and group ability distribution, score and number 

of extreme values, type of extreme values as well as variables of equating methods were 

manipulated. Common items comprised 10 items, out of which 8 were multiple choice, 1 was 

a short-answer, and 1 was an open-ended item. A test form comprised a total of 36 items. Data 

were simulated to allow for two different test forms to be administered one year apart. The 

study results showed that methods of concurrent calibration, separate calibration with test 

characteristic curve (TCC), and calibration with fixed common item parameters (FCIP) yielded 

fewer errors compared to conditions that ignored IPD except for the mean-sigma method where 

IPD was observed, and extreme values were weighted when IPD occurred in parameter -b. 

Therefore, evidently, equating by observing IPD occurrence resulted in fewer equating errors. 

Li (2012) examined the impact of IPD on test equating when common items included mixed 

format items. The simulation study generated data based on the conditions of large-scale 

administration of tests. Factors such as IPD size, number of common items, number of open-

ended items with IPD, and ability distribution of former and latter groups who took the test 

were manipulated. The study found that among the four listed factors, while ability distribution 

of the group had the least impact on scaling and equating, numbers of common and open-ended 

items with IPD were the factors with the most impact. Scaling coefficients yielded more 

erroneous results when two open-ended items displayed IPD rather than one, proving that open-

ended item with IPD should be excluded from the test altogether. However, an increased 

number of common items led open-ended items with IPD to have a lower effect on error values.  

Although studies in literature revealed that IPD led to errors in test equating, a large number of 

these studies focused on conditions where the common items consisted of multiple-choice 

items. There were only few studies that focused on conditions where common items had a 

mixed format, and these studies examined the impact of IPD on equating for a limited number 

of conditions. Aside from factors such as item parameter drift ratio in common items, sample 

size, test length, and item parameter drift size, this study—as distinct from other studies—

examined the impacts of IPD by accounting for the location of common items in the tests. The 

impacts of IPD on test equating errors were identified by using ability estimations. To this end, 

this study sought answers to the research questions below: 

(1) What are the impacts of IPD size and ratio of common items in equating errors for 

equating processes that use common item non-equivalent groups design in anchor tests?  

(2) What are the impacts of test length, sample size, ratio of common items, and location 

of common items in tests on test equating errors in tests with IPD? 

Method 

Research Design 

This is a Monte Carlo simulation study that follows an experimental process, generates 

repeated random samples, inspects all conditions that are not examined in the study, and 

compares theoretical models. Monte Carlo simulation methods are carried out based on real life 

population parameters (Carsey & Harden, 2014; Mooney, 1997). 
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Simulation Conditions 

The controlled simulation conditions of this study, which are shown in Figure 1, are 

ability distribution (θ~N [0,1]); ability estimation method (expected a posteriori [EAP]); type 

of test (mixed format tests featuring both dichotomous and polytomous items); item response 

theory models (3PLM for dichotomous items and generalized partial credit model [GPCM] for 

polytomous items); IPD sizes for polytomous items (see data generation); test equating method 

(Stocking-Lord [SL]); and equating design (common item non-equivalent group design 

[CINEG]). 

 
Figure 1. Controlled simulation conditions. 

In the research, we used mixed format tests because open-ended and multiple-choice items 

eliminate each other's disadvantages (Messick, 1993). We used EAP for ability estimation. The 

EAP method is the most commonly used estimation method in unidimensional structures 

(Brown & Croudace, 2015). It is known that the EAP method makes more accurate estimations 

than the maximum likelihood (ML) method (Sass, Schmitt & Walker, 2008). In addition, the 

EAP method can make more accurate estimations than the MAP method in polytomous models 

(Kieftenbeld & Natesan, 2012). Sass et al. (2008) stated that the abilities should follow normal 

distribution in order to accurately estimate abilities in IRT. Therefore, the distribution of ability 

in the study was determined as N(0,1). Since it is frequently used for test security and practical 

reasons, the CINEG design was used in this study (Kolen & Brennan, 2004). This study opted 

Stocking-Lord (SL) as its equating method since the characteristics curve methods (Haebara 

and SL) that were based on separate calibration and used in the CINEG design yielded better 

performances than moment methods (Hanson & Beguin, 2002; Kim & Lee, 2006). Studies have 

shown that SL yielded more correct results compared to equating methods, including moment 

methods of mean-standard deviation and Kernel equating method (Meng, 2012). 

This study examines the impacts of test length (30 and 50 items), sample size (1000 and 3000), 

common item ratio in tests (30% and 40%), ratio of items with IPD in common items (20% and 

30%), location of common items in tests (at the beginning, randomly distributed, and at the 

end), and IPD size in multiple-choice items (low [0.2] and high [1.0]) on test equating by 

manipulating them. Figure 2 illustrates the manipulated simulation conditions used in the study. 
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Figure 2. Manipulated simulation conditions. 

Kim, Walker and McHale (2010) studied 36 items in the test equating study they carried out on 

a large-scale test in mixed format. From this point of view, a condition of 30 items was added 

to the study. Then, we add the 50 items condition to the simulation because it is a typical test 

length used in standard tests such as the Florida Comprehensive Assessment Test (FCAT) 

(Tian, 2011). While determining the test length, it was considered that open-ended items gave 

more information. Since the study was conducted on a mixed-format test, the number of score 

points are as important as the number of items (Cao, 2008). In the current study, there are 48 

number-correct scores in the condition where the test length is 30, and 80 number-correct scores 

in the condition that it is 50. Sample sizes were determined as 1000 and 3000 because three-

parameter logistic model of IRT yielded consistent results with a minimum sample size of 1000 

(Skaggs & Lissitz, 1986). Since studies recommended that the ratio of common items be 20% 

or more when the number of items in the test is 40 (Kolen & Brennan, 2004), the ratio of 

common items was set at 30 and 40%. The ratio of polytomous items to the number of items in 

tests was reported to be generally between 20 and 40% (Tian, 2011). Based on this, the ratio of 

polytomous items was identified as 20%.  

IPD size in dichotomous items was determined as 0.2 (low) and 1.0 (high) in this study. It is 

difficult to detect when the IPD magnitude is below 0.5 (Han & Guo, 2011). However, in this 

study, an IPD size of 0.2 was added to the conditions since there was a different amount of IPD 

in open-ended items. In the literature, it was found that the IPD size was determined as 0.8 in 

the b parameter (Sukin, 2010). In the current study, the condition 1.0 was added to the study in 

order to examine the effect of higher level of IPD size together with IPD in open-ended items. 

In the current study, 20% and 30% of the common items have IPD, which means that 

approximately 2, 3, 4, and 6 of all items have IPD. Chen (2013) has studied cases where 10% 

and 25% of the common items have IPD. In the current study, rates were set below 10% because 

only common items have IPD. Although not an equating study performed in the same context, 

Marengo, Miceli, Rosato and Settanni (2018) stated that changing the location of the item with 

DIF in common items causes a difference in the difficulty of the items. Therefore, in the current 

study, in which internal common items were used, the positions of the items with parameter 
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drift were changed. The study was carried out using fully crossed design with 96 conditions. 

Every condition was replicated 1000 times. 

Data Generation 

The study was carried out using four test forms where one of them was the baseline test 

form (Form 1). Of the other three, one did not contain IPD, and was generated as a reference 

point in test equating errors (Form 4). The remaining two test forms contained IPD, out of 

which Form 2 was re-exposed to IPD to create the second test form, Form 3. 

Tests and common items had a mixed format that was recommended to equate processes in 

anchor tests in order to represent test characteristics and contents of common items (Kim & 

Lee, 2004; Tate, 2000). Additionally, the use of items with constructed responses as common 

items reduced equating errors (Tian, 2011). Parameter drift was generated in some of the 

common dichotomous and polytomous items. All manipulations in parameter drifts in the study 

were done by reducing. Similar to the current study, Sukin (2010) also reduced the a and b 

parameters for parameter drift. A parameter drift of -0.5 was generated for parameter -a of 

dichotomous and polytomous items. Similar to this research, Wells et al. (2002) used the same 

value for the drift in parameter a. In Form 2, drift was generated for the first two thresholds at 

-0.25 and for the last two thresholds at -0.10 in parameter -b of polytomous items. In Form 3, 

drift was at -0.25 for the first two thresholds and at -0.20 for the last two thresholds. In the 

current study, low level of parameter drift was performed at all thresholds in Form 2. In Form 

3, on the other hand, since parameter drift were performed twice, a moderate parameter drift 

was observed in the first two thresholds, and a low-level parameter drift in the last two 

thresholds (Penfield, Alvarez & Lee, 2008). 

Dichotomous items were generated using the 3PLM and polytomous items were generated 

using GPCM (Muraki, 1992). While dichotomous items (0, 1) were placed in the test with 

multiple-choice items in mind, polytomous items were placed with open-ended items rated in 

five categories (0, 1, 2, 3, and 4) in mind. Similar to this research, the items with constructed 

responses in the Advanced Placement Program consist of 5 categories (Wang, Drasgow & Liu, 

2016).  

In the literature, it was observed that 3PLM yielded more consistent results than 2PLM and 

1PLM for dichotomous items and GPCM yielded more consistent results than PCM and GRM 

for polytomous items (Chon, Lee & Ansley, 2007). Moreover, 3PLM accounted for the correct 

answer being given by chance (DeMars, 2010). Anchor tests were thus composed using 3PLM 

and GPCM since GPCM was the most compatible model with 3PLM (Chon et al., 2007). When 

generating items with 3PLM distributions of 𝑎~𝑙𝑛𝑁 (0.3, 0.2), b~N (0, 1) and 𝑐~𝐵𝑒𝑡𝑎 (8, 32) 

were used. Bulut and Sunbul (2017) as well as Kim and Lee (2004) had also benefited from 

similar distributions for parameter values and distributions that were expected to represent 

large-scale tests. The discrimination parameter of polytomous items was the same as that of 

dichotomous items, and the location parameter was identified as d1~N (-1.5, 0.2), d2~N (-0.5, 

0.2), d3~N (0.5, 0.2), and d4~N (1.5, 0.2). The difficulty parameter was identified in a similar 

manner in the study by Kim and Lee (2004). 

Data Analysis 

Two test forms with and one test form without parameter drift were equated with the 

baseline test using the CINEG design. Test equating process was carried out using the SL 

(Stocking & Lord, 1982) method that accounted the difficulty and discrimination parameters 
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(Hambleton, Swaminathan & Rogers, 1991). Two test characteristic curves that were generated 

using X and Y forms were compared using this method (Kim, Harris & Kolen, 2010). The 

equation generated by the SL method is shown below: 

𝐻𝑑𝑖𝑓𝑓(𝜃𝑖) = ∑ [𝑝𝑖𝑗 (𝜃𝑗𝑖
; 𝑎𝑗𝑖

, 𝑏𝑗𝑖
, 𝑐𝑗𝑖

) − 𝑝𝑖𝑗(𝜃𝑗𝑖
;
𝑎𝑖𝑗

𝐴
, 𝐴𝑏𝑖𝑗 + 𝐵, 𝑐𝑖𝑗]

2

𝑗:𝑉

 1 

Where A ise slope, B is constant, 𝑝𝑖𝑗 (𝜃𝑗𝑖
; 𝑎𝑗𝑖

, 𝑏𝑗 𝑖
, 𝑐𝑗𝑖

) is item characteristic function and 

𝑝𝑖𝑗(𝜃𝑗𝑖
;

𝑎𝑖𝑗

𝐴
, 𝐴𝑏𝑖𝑗 + 𝐵, 𝑐𝑖𝑗) is equated item characteristic function.  

𝐻𝑐𝑟𝑖𝑡 = ∑ 𝐻𝑑𝑖𝑓𝑓(𝜃𝑖)

𝑖

 2 

This study used the R programming language (R Development Core Team, 2021) for data 

generation, calibration, and true score equation. Item and ability parameter estimations were 

carried out using package ‘irtplay’ (Lim, 2020), and true score equating was carried out using 

package ‘plink’ (Weeks, 2010). The root mean squared error (RMSE) value for equating errors 

was calculated using R, and it displayed the combination of bias (systematic error indicator) 

and conditional standard error (Kolen & Brennan, 2004). 

The RMSE value was calculated using the equation below where θ stands for true ability, θ* 

stands for estimated true ability, and f stands for ability frequency (Deng & Monfils, 2017; 

Keller & Keller, 2011). Since this was a simulation study based on replications, the means of 

RMSE values were calculated.  

                                     

𝑅𝑀𝑆𝐸 = √
∑ 𝑓𝑖𝑖 (θ∗−θ)2

∑ 𝑓𝑖𝑖
3                                     

Factorial analysis of variance (ANOVA) was used to determine whether RMSE values 

displayed significant differences according to the manipulated conditions in the study for 

independent samples. In addition, effect size value was calculated. 

Results 

The equating process was carried out using the SL method under different simulation 

conditions that were identified for the study. RMSE values were calculated in the equating 

process using estimated and true abilities. The results are displayed in Figure 3. In addition, 

results belonging to each simulation condition are provided in Appendix 1. 

Figure 3 displays that as a result of equating Form 4 (without parameter drift) to Form 1 

(baseline test form), equating errors that approached 0.05 were obtained. An increase in sample 

size in tests without IPD resulted in an equating error that approached 0. Test length and 

changes in common item ratio yielded similar results in tests without IPD. 

Errors generated by equating the two tests with IPD (Form 2 and Form 3) to the baseline test 

(Form 1) varied according to IPD ratio. When the IPD ratio dropped from 30 to 20%, equating 

errors decreased under all conditions. Equating errors peaked for Form 3, which was generated 

by running repeated parameter drift on Form 2. 
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Figure 3. Equating errors (RMSE). 
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An overview of the graphs revealed an increase in IPD that resulted in an increase in equating 

errors, as expected. When sample size was increased from 1000 to 3000, errors either remained 

at the same level or slightly decreased. Common items located in the beginning, at the end, or 

distributed randomly yielded similar results in equating errors. An increase in common items 

when common items contained 30% IPD resulted in increased equating errors. When examined 

according to test length, an increase in test length caused equating errors to either remain at the 

same level or decrease. However, an increase in test length when common item ratio was 40% 

and IPD ratio was 20% caused equating errors to increase. Increasing test length from 30 to 50 

when common item ratio was 40% and IPD ratio was 30% resulted in a significant decrease in 

equating errors. 

Factorial analysis of variance (ANOVA) was used for independent samples to determine 

whether conditions of equating tests with and without IPD, common item ratio, ratio of items 

with IPD, IPD size, location of common items in tests, sample size, test length, and combination 

of these conditions displayed significant differences. 

When the results of factorial ANOVA for independent samples were examined, errors 

generated by equating Forms 2, 3, and 4 to Form 1 displayed significant differences 

(F(2,287956)=181067.21, p<0.05, η2=0.56). The impact of test forms on test equating errors were 

significantly high. Partial eta squared value of 0.14 and above indicates a high level of impact 

(Cohen, 1977). As a result of dichotomous comparisons using the Bonferroni correction, errors 

generated by equating Form 4, without IPD, to Form 1 (p<0.05), Form 2, with IPD, to Form 1 

(p<0.05), and Form 3, with IPD, to Form 1 (p<0.05) displayed significant differences. Mean of 

errors generated by equating Form 4 to Form 1 (�̅�=0.048) was significantly lower than that 

generated by equating Form 2 to Form 1 (�̅�=0.136), which was even lower than that generated 

by equating Form 3 to Form 1 (�̅�=0.145). Evidently, errors generated by equating Forms 2 and 

3, with IPD, to the baseline test, Form 1, displayed significant differences (p<0.05). Test 

equating errors did not display statistically significant differences (F(2,287956)=0.00, p>0.05, 

η2=0.00) depending on the location of common items in tests. 

According to Cohen (1977), partial eta squared value of 0.01 indicates low impact. Mean of 

equating errors obtained (�̅�=0.107) when common item ratio was 30% was significantly lower 

than the mean obtained (�̅�=0.113) when common item ratio was 40%. Mean of equating errors 

obtained (�̅�=0.114) when sample size was 1000 was significantly higher than the mean 

obtained (�̅�=0.106) when sample size was 3000. Similarly, mean of equating errors obtained 

(�̅�=0.115) when test length was 30 was significantly higher than the mean obtained (�̅�=0.105) 

when test length was 50. The impact of IPD size on test equating errors was at medium-level. 

Partial eta squared value of 0.06 indicates medium impact (Cohen, 1977). Mean of equating 

errors obtained (�̅�=0.100) when IPD size in multiple-choice items was 0.2 was significantly 

lower than the mean obtained (�̅�=0.120) when IPD size was 1.0. Aside from these, whether 

combinations of above-mentioned variables led to significant differences on test equating errors 

was also examined. The combinations with low and high effect size that displayed significant 

differences are discussed below. 

Test forms and IPD size (F(2,287956)=5236.27, p<0.05, η2=0.04), test forms and IPD ratio 

(F(2,287956)=14803.90, p<0.05, η2=0.09), IPD ratio and common item ratio (F(1,287956)=4341.53, 

p<0.05, η2=0.02), test forms and sample size (F(2,287956)=1488.46, p<0.05, η2=0.01) as well as 

test forms and common item ratio (F(2,287956)=958.47, p<0.05, η2=0.01) display statistically 

significant differences in test equating errors. While the effects of test forms and IPD ratio on 
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equating errors are above medium-level, the effect of test forms and IPD size on equating errors 

are just below medium-level. The effects of IPD ratio and common item ratio, test forms and 

sample as well as test forms and common item ratio on test equating errors are low. 

Discussion 

This study examined the impact of IPD on test equating when common items were in a 

mixed format. By manipulating the test length, sample size, common item ratio, location of 

common items in tests, IPD size, and items with IPD in common items, their impacts on 

equating errors were examined. It was found that IPD increased equating errors in test equating 

processes, and the errors displayed a statistically significant difference. 

When the results were examined according to test length and sample size, equating errors 

decreased or were close to each other when the number of items in the test and sample size 

individually increased though the effects of these factors on test equating errors were significant 

yet low. An increase in test length when IPD ratio was 20% and common item ratio was 30% 

resulted in decreased equating errors. Lee and Geisinger (2019) obtained similar findings in 

their study that selected scales at different lengths that were rated polytomous in TIMMS. They 

emphasized that a decrease in the number of items in the scale resulted in an increased mean 

error, and the factor that most impacted RMSE values was scale length. An independent 

increase in test length and sample size when items with IPD were present, thus, caused equating 

errors to either remain the same or decrease. An increase in sample size when IPD was not 

present caused equating errors to approach zero. 

An increase in the number of items with IPD in common items when common item ratio in the 

test increased resulted in a statistically significant increase in equating errors, however, the 

effect of this factor on equating errors was low. Han et al. (2012) reported that a decrease in the 

number of common items that were similarly scaled resulted in increased standard equating 

errors. With regards to IPD ratio in common items, a decrease in the number of items with IPD 

resulted in decreased equating errors. These differences were statistically significant, and their 

effects on test equating errors were high. In other words, the occurrence of IPD in common 

items resulted in increased equating errors. Having reached similar results, Li (2012) stated that 

the anchor test length and number of polytomous items with IPD were the two factors that 

affected equating results, and an increase in anchor test length resulted in a decrease in scaling 

and equating errors. Additionally, one polytomous item with IPD among common items 

reflected lower RMSE values compared to when the number of such items was two. 

Furthermore, Han and Wells (2007) stated that even when 10% of common items had IPD, 

results of test equating processes were significantly affected. Jimenez (2011), who compared 

the performances of SL and Haebara methods under various IPD conditions by using the 

CINEG design, stated that an increase in the number of items with IPD in common items, in 

particular, resulted in a significant increase in error values when non-equivalent groups were 

present. Huang and Shyu (2003) stated that when IPD occurred in half of the common items, 

particularly, pass/fail scores were significantly affected. In a similar study, Hu et al. (2008) 

stated that the exclusion of items with IPD resulted in fewer equating errors but led to other 

equating errors (Miller & Fitzpatrick, 2009) and increased RMSE values (Lee & Geisinger, 

2019). The exclusion of polytomous items with IPD decreased the representative power of the 

test in general, and hence, polytomous items with IPD should be excluded from tests after 

identifying the extent of their impact on IRT equating results (Li, 2012). For both polytomous 

and dichotomous items, their invariance to IPD should be inspected, particularly in the 

successive administration of tests. While Kolen and Brennan (2004) recommended that 
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common items be inspected for IPD so as not to introduce differences among groups to be 

equated, Babcock and Albano (2012) recommended that these inspections be carried out at 

regular intervals using IPD identification methods. 

While a combined increase in the ratios of common item and IPD in common items resulted in 

significantly increased equating errors, the location of common items in tests yielded close 

results in terms of test equating errors and equating errors as this factor was found to be 

statistically insignificant. The location of common items when items with IPD were present did 

not have an effect on equating errors under the conditions of this study. However, in their study, 

Meyers et al. (2009) stated that a change in the location of items in tests significantly affected 

item difficulty in the Rasch model to the advantage of successful students and detriment of 

unsuccessful students. Similarly, in their study that used the SL equating method, Meyers et al. 

(2012) stated that a change in location of items in administration of tests resulted in more biases 

and errors, and item parameters could not be estimated consistently. This resulted in students 

being incorrectly categorized. However, these studies did not assess whether items with IPD 

were present, and only examined the impact of the change in location of these items in tests. 

Therefore, when changing the location of common items in tests, both the effects of IPD, if 

present, and the change of location condition on test equating should be examined. 

Additionally, since a high common item ratio resulted in increased equating errors, it is 

recommended to use common items ratios that are established by studies in literature. 

When the results were examined according to IPD size, an increase in IPD size resulted in 

increased test equating errors, and this impact was at medium-level. Similarly, Li (2012), who 

examined the occurrence of IPD when polytomous items were present among common items, 

stated that an increased IPD size negatively affected scaling coefficients and equating accuracy, 

and that these items should be excluded from the test as long as content validity was not 

significantly affected (Li, 2012; Miller & Fitzpatrick, 2009). Rupp and Zumbo (2003a, 2003b) 

stated that IPD size at low levels did not affect ability estimations. In an equating study, Chen 

(2013) stated that an increase from 0.20 to 0.40 in parameter -b resulted in a decreased accuracy 

of theta estimations. Since an increased IPD size implied a drift in real parameter values of 

items, it is a factor that negatively affected the parameter invariance characteristic of equating, 

and, thus, increased the equating errors. Therefore, an inspection of parameter invariance is 

recommended before carrying out test equating processes. 

To accurately estimate the performance and development levels of students in an accountable 

education system, parameters of common items in tests should maintain their invariance 

characteristic, particularly for test equating. Since the CINEG design uses common items for 

equating processes, the change in parameter values of these items in administration of tests may 

result in increased test equating errors, and, thus, lead to an incorrect estimation of individuals’ 

abilities. While no exact rule is in place for dealing with items with IPD, common items should 

be inspected at regular intervals to determine whether they display IPD occurrences to minimize 

test equating errors. According to items’ IPD conditions, a final decision should be made to 

either exclude the item from the test or revise the relevant items to maintain test validity. 

Regardless of the decision about items with IPD, their impact on the content validity of the test 

in general should also be assessed.  

As in many simulation studies, this study was limited by specific conditions. Taking into 

account the results obtained from these conditions, some recommendations may be 

recommended for further studies. The impact of IPD on test equating could be examined on 

large-scale examinations that contain real data. The generalizability of this study is limited to 
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previously examined test length, sample size, common item ratio, location of common items in 

tests, IPD size, and ratio of items with IPD in common items. Further studies may examine the 

impact of IPD on test equating by taking into account other conditions. Studies in literature 

mostly examine the impact of IPD on test equating in multiple-choice items. However, there 

are only few studies that examine this impact with open-ended items that are frequently applied 

to measure students’ high-level cognitive abilities. This study used at most three polytomous 

items with IPD among the common items. Therefore, the impact of increase in the number of 

polytomous items with IPD on test equating results should be examined. 
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Appendix 1. RMSE Values 
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Location of IPD Items 

First Random Last 

Sample Size 

1000 3000 1000 3000 1000 3000 

The Number of Items 

30 50 30 50 30 50 30 50 30 50 30 50 

Magnitude of IPD 

0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 

%20 

%30 

Form2 to Form1 0.112 0.133 0.091 0.118 0.108 0.130 0.087 0.117 0.112 0.133 0.091 0.118 0.108 0.130 0.087 0.117 0.112 0.133 0.091 0.118 0.108 0.13 0.087 0.117 

Form3 to Form1 0.117 0.142 0.096 0.128 0.114 0.140 0.093 0.126 0.117 0.142 0.096 0.128 0.114 0.140 0.093 0.126 0.117 0.142 0.096 0.128 0.114 0.14 0.093 0.126 

Form4 to Form1 0.062 0.062 0.055 0.055 0.043 0.043 0.037 0.037 0.062 0.062 0.055 0.055 0.043 0.043 0.037 0.037 0.062 0.062 0.055 0.055 0.043 0.043 0.037 0.037 

%40 

Form2 to Form1 0.099 0.116 0.104 0.125 0.094 0.113 0.102 0.123 0.099 0.116 0.104 0.125 0.094 0.113 0.102 0.123 0.099 0.116 0.104 0.125 0.094 0.113 0.102 0.123 

Form3 to Form1 0.105 0.125 0.109 0.132 0.099 0.121 0.106 0.131 0.105 0.125 0.109 0.132 0.099 0.121 0.106 0.131 0.105 0.125 0.109 0.132 0.099 0.121 0.106 0.131 

Form4 to Form1 0.059 0.059 0.053 0.053 0.039 0.039 0.037 0.037 0.059 0.059 0.053 0.053 0.039 0.039 0.037 0.037 0.059 0.059 0.053 0.053 0.039 0.039 0.037 0.037 

%30 

%30 

Form2 to Form1 0.13 0.176 0.132 0.16 0.127 0.175 0.132 0.161 0.13 0.176 0.132 0.16 0.127 0.175 0.132 0.161 0.13 0.176 0.132 0.16 0.127 0.175 0.132 0.161 

Form3 to Form1 0.137 0.19 0.14 0.173 0.136 0.189 0.139 0.172 0.137 0.19 0.14 0.173 0.136 0.189 0.139 0.172 0.137 0.19 0.14 0.173 0.136 0.189 0.139 0.172 

Form4 to Form1 0.062 0.062 0.055 0.055 0.043 0.043 0.037 0.037 0.062 0.062 0.055 0.055 0.043 0.043 0.037 0.037 0.062 0.062 0.055 0.055 0.043 0.043 0.037 0.037 

%40 

Form2 to Form1 0.169 0.205 0.146 0.177 0.169 0.207 0.145 0.177 0.169 0.205 0.146 0.177 0.169 0.207 0.145 0.177 0.169 0.205 0.146 0.177 0.169 0.207 0.145 0.177 

Form3 to Form1 0.179 0.222 0.153 0.188 0.179 0.222 0.152 0.188 0.179 0.222 0.153 0.188 0.179 0.222 0.152 0.188 0.179 0.222 0.153 0.188 0.179 0.222 0.152 0.188 

Form4 to Form1 0.059 0.059 0.053 0.053 0.039 0.039 0.037 0.037 0.059 0.059 0.053 0.053 0.039 0.039 0.037 0.037 0.059 0.059 0.053 0.053 0.039 0.039 0.037 0.037 


