
International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3
ISSN 2513-8359

 1

Difficult Concepts and Practices of Computational Thinking Using
Block-Based Programming

Hyunchang MOON1
Jongphil CHEON2
Kyungbin KWON3

1 Baylor University, Waco, USA
2 Texas Tech University, Lubbock, USA
3 Indiana University, Bloomington, USA

DOI: 10.21585/ijcses.v5i3.129

Abstract

To help novice learners overcome the obstacles of learning computational thinking (CT) through programming, it
is vital to identify difficult CT components. This study aimed to determine the computational concepts and
practices that learners may have difficulties acquiring and discuss how programming instructions should be
designed to facilitate learning CT in online learning environments. Participants included 92 undergraduate students
enrolled in an online course. Data were collected from a CT knowledge test and coding journals. Results revealed
that four computational concepts (i.e., parallelism, conditionals, data, and operators) and two computational
practices (i.e., testing and debugging and abstracting and modularizing) were identified as CT components that
were difficult to learn. The findings of this study imply that CT instructions should offer additional instructional
supports to enhance the mastery of difficult computational concepts and practices. Further research is necessary to
investigate instructional approaches to successful CT learning.

Keywords: computational thinking, block-based programming, Scratch, CT difficulties, CT challenges

1. Introduction

Digital transformation is everywhere. Although innovation in digital technology advances our well-being, the fast
rate of world change generates unprecedented social, economic, and environmental challenges. A United Nations
report (2019) examining how digital technology would transform our lives and communities emphasized that many
people become more vulnerable to uncertain adversity and risks when they do not have the fundamental skills
required for finding solutions to real-life problems in the digital age. In this increasingly evolving world,
computational thinking (CT) has emerged as a problem-solving skill that new generations of students must acquire
to prepare them for tomorrow’s challenges and expand their potential. As a response to these issues, educators,
researchers, and policymakers are rapidly recognizing that CT is a new core skill needed by all people, not just
computer programmers (Wing, 2011). Emphasis is being increasingly placed on developing effective curricula for
computer science (CS) and CT education. Also, many efforts have been made in various educational settings to
integrate CT components into existing classroom activities.

As part of these ongoing efforts, in 2016 in the United States, the Computer Science for All initiative laid the
foundation for providing students in pre-K through 12th grade with opportunities to participate in CS education
(National Science Foundation, 2016). Later on, the Common Core State Standards and Next Generation Science
Standards were reformed to encompass CT as an interdisciplinary approach. With these recent educational reforms,
which incorporated CS/CT into both K-12 and higher education curricula, educators need to adapt their existing
pedagogical strategies to properly teach CS/CT to learners. They also need to learn appropriate pedagogies for
delivering a new subject, particularly in those aspects of CS/CT competencies. Although recent literature
pertaining to CS education in school emphasizes many ways to make CS/CT education more accessible to K-20

International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3
ISSN 2513-8359

 2

students, educators, researchers, and administrators still must manage the ambiguity of CT definitions and methods
of instruction and assessment. Particularly, attempts have been made to propose instructional tools to facilitate CT
learning, but these studies did not present the most difficult CT components for learners to engage in block-based
programming learning. This may be due to the lack of empirical research findings to identify difficult CT concepts
and practices in block-based programming environments. Thus, it is crucial to identify difficult-to-learn CT
components via learning block-based programming. To situate our study, we first outline CT in general, highlight
CT assessments, and then consider what it means in block-based programming and the challenges in CT instruction.

2. Literature Review

2.1 Definitions of Computational Thinking

Alongside the growing recognition of CT as essential for students’ future success, several researchers have
attempted to define CT and identify its components (e.g., Atmatzidou & Demetriadis, 2016; Barr, Harrison, &
Conery, 2011; Berland & Wilensky, 2015; Google, 2016; Israel et al., 2015; Parpert, 1980; Pearson et al., 2015).
The term CT was first coined by Seymour Papert (1980), who developed LOGO programming, and was later
popularized in the CS community by Jeannette Wing (2006). She described CT as “the thought processes involved
in formulating problems and their solutions so that the solutions are represented in a form that can be effectively
carried out by an information-processing agent” (Wing, 2011, p. 1). The National Research Council (2010)
expanded the nature and scope of CT with diverse applications for the definition. Barr and Stephenson (2011)
provided an operational definition of CT for K-12 education, which they described as a problem-solving process
and a series of dispositions and attitudes. Aho (2012) refined the term, saying that the solution should be
represented as computational steps and algorithms. Román-González (2015) argued that the basic CT concepts—
computing and programming—were central to formulating and solving problems. Grover and Pea (2018) redefined
CT as a “widely applicable thinking competency” (p. 22) of which problem formulation processes should be
considered key in solving problems. Denning and Tedre (2021) advanced CT’s definition with a historically
grounded view of professional disciplines and highlighted the aspects of “designing computations that get
computers to do jobs for us, and for explaining and interpreting the world in terms of information processes” (p.
365). As CT encompasses broad domains across disciplines, there is no standard definition of this term; hence,
various components of CT have been differently proposed in line with study contexts, which has influenced the
development of a variety of CT assessment tools.

2.2 Assessments of Computational Thinking

Given that an educational assessment contributes significantly to teaching and learning (Black & Wiliam, 1998;
Shepard, 2000), a CT assessment is an integral piece that provides valuable information about student learning
progress, as well as the effects of instruction. Although it is difficult to unify in a single assessment, it has been
agreed that comprehensiveness of assessment is central to enable educators and researchers to evaluate the
effectiveness of CT-incorporated instruction in discipline-specific or multi-disciplinary lessons. Without a
comprehensive assessment framework, teachers and students cannot understand how they are teaching and
learning in a classroom. Grover et al. (2014) suggested considering multiple complementary measures that can
reflect deeper learning and contribute to a comprehensive picture of students’ learning in CT education. As the
clarity of and discussion on the definitions of CT in education have advanced, several comprehensive frameworks
for improving CT assessment have been proposed (e.g., Adams et al., 2018; Brennan & Resnick, 2012; Grover &
Pea, 2013, 2018; Roman-Gonzalez, 2015; Shute et al., 2017; Zhong et al., 2016). Today, most frameworks of CT
rely primarily on works from both the Computer Science Teachers Association (CSTA) and the International
Society for Technology in Education Committee (ISTE; Barr & Stephenson, 2011) and the three-dimensional CT
model (Brennan & Resnick, 2012). The CSTA and ISTE model includes CT concepts, capabilities, dispositions
and predispositions, and classroom culture. Brennan and Resnick’s model consists of computational concepts,
practices, and perspectives.

2.3 Roles of Block-Based Programming

Several studies have examined the effectiveness of CT intervention to facilitate CT teaching and learning. Some
studies explored instructional approaches with diverse target populations in a variety of educational settings (e.g.,
Atmatzidou & Demetriadis, 2016; Czerkawski & Lyman, 2015; de Paula et al., 2018; Grover et al., 2015; Jenkins,
2015; Román-González et al., 2015; Romero et al., 2017; Yadav et al., 2014). Shute et al. (2017) classified
introductory CS/CT practices into four strategies: (a) programming, (b) robotics, (c) game design/play, and (d)
unplugged activities. The National Research Council (2010) highlighted the role of programming in constructing

International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3
ISSN 2513-8359

 3

a series of steps for solving a computational problem. As an effort to help programming attract and engage students
in computational problem-solving, various block-based programming languages where codes are represented as
blocks (e.g., Scratch, Alice, Snap!, App Inventor, LEGO Mindstorms, and Blockly) were introduced as an aid to
better understanding CT. Brennan and Resnick (2012) suggested suitable settings in the context of Scratch block-
based programming for developing CT capacities aligned with three CT dimensions.

Also, although prior research has been conducted mainly on K-12 CS education, CS/CT should be expanded to
college students and lifelong students in terms of providing unique and equal opportunities to develop
computational problem-solving skills. This type of CS/CT course is designed for students who typically have no
prior experience in programming and only have a general knowledge of computing. Hence, it is significant to
identify CT components that are difficult for beginners in learning block-based programming.

2.4 Instruction of Computational Thinking

Although block-based programming provides an engaging introduction to programming, researchers have found
that novice learners still have difficulties mastering specific programming concepts. The study conducted by
Sentence and Csizmadia (2015) found that programming was effective in enhancing CT but recognized as one of
the most challenging learning activities. Duncan and Bell (2015) argued that CT cannot be learned automatically
simply by using tools that improve CT competencies in previous studies. In a smiliar study, learners found it
difficult to learn programming, and the biggest limitation of CT education is that CT components are difficult to
teach due to their abstract nature (Czerkawski & Lyman, 2015). This may be because teachers are rarely cognizant
of how to approach computational problem-solving using the abstract concepts. Such lack of readiness for teaching
computational concepts hinders teachers’ abilities to keep students engaged and on track with more in-depth
learning. A few studies suggested instructional approaches for promoting the CT process (Czerkawski & Lyman,
2015; Sentence & Csizmadia, 2015); however, these studies did not present which CT components are likely to be
most challenging for learners to engage in learning programming. It is fundamental to identify which areas are
most challenging to learn CT via programming. Moreover, CT instruction should be designed for students to attain
deeper learning outcomes; thus, it gives rise to a need for studies that provide empirical data for CT leaning and
explore practical instructional approaches. One way to advance this area of research is to identify which CT
components are difficult for novices to learn.

3. Purpose of the Study

The purpose of this study was to examine computational concepts and practices that novice learners may
experience challenges with learning in an online course intended to promote CT competencies as they apply to
basic computer skills and programming. Two research questions guided this study:

• RQ1: Which computational thinking concepts are difficult for undergraduate students in an online learning
environment?

• RQ2: Which computational thinking practices are difficult for undergraduate students in an online learning
environment?

The findings would provide empirical evidence associated with the difficulties in learning CT components for
novice learners but also expand discussions about how instructions should be formed to support difficult
computational concepts and practices.

3.1 Dimensions of Computational Thinking

When programming with Scratch to facilitate the development of CT, multiple dimensions have been considered.
In the framework proposed by Brennan and Resnick (2012) along with the Scratch programming language and
environment, three key dimensions involve (a) computational concepts commonly found in programming
languages, (b) computational practices referred to as the process of building a solution with the concepts, and (c)
computational perspectives as the understandings of relationships with oneself, others, and the world. Each
dimension includes different subcomponents, such as seven concepts (i.e., sequences, loops, events, parallelism,
conditionals, operators, and data); four practices (i.e., being incremental and iterating testing and debugging,
reusing and remixing, abstracting and modularizing); and three perspectives (i.e., expressing, connecting, and
questioning).

3.2 Computational Concepts and Practices

Among the three dimensions, this study focused on computational concepts and practices and excluded

International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3
ISSN 2513-8359

 4

perspectives due to the constraints on capturing changes in participants’ perspectives over a short time period.
Table 1 provides a summary of the definitions of CT components targeted in the study.

International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3
ISSN 2513-8359

 5

Table 1. Definitions of CT target components
Dimensions Definitions

Computational
Concepts

Sequences: Executing a series of individual steps or instructions for an activity or task
Loops: Repeating the same sequence multiple times
Events: Triggering specific actions to happen
Parallelism: Performing a sequence of actions in parallel
Conditionals: Making a decision based on certain conditions
Operators: Expressing mathematical, logical, and string operations
Data: Storing, retrieving, and updating values in variables and lists

Computational
Practices

Being incremental and iterative: Developing solutions step by step
Testing and debugging: Finding strategies for solving problems
Reuse and remix: Building new solutions on existing works or ideas
Abstraction and modularity: Modeling complex systems with simple elements

Note. Adapted from Brennan and Resnick’s framework (2012).

4. Methods

4.1 Participant Characteristics

A total of 92 undergraduate students who were enrolled in an online course, Computing and Information
Technology, at a large public university in the southwestern United States participated in this study. Participants
were studying with varied majors, were of various ages and included both males and females (male: 59, female:
33; age range: 19-49; average age = 25.21; SD = 11.32). The students learned a set of core knowledge and skills
that shape the landscape of computer science, represent information digitally, and create block-based programs to
solve problems. This study was approved by the University Institutional Review Board.

4.2 Research Setting

The course was delivered completely online via a web-based learning management system. The course aimed to
deliver a set of core competencies that shape the background of computer science and essential career readiness
skills such as critical thinking, problem-solving, and communication. The learning modules were designed to
provide students with programming experiences using the Scratch block-based programming language. Scratch
programming is intended to be adopted in an introductory CS/CT course for people of all ages and across
disciplines (Resnick et al., 2009), and it offers editors both online and offline to make it easy for learners to create
and share programming projects. Out of 15 online learning modules, a total of eight modules were related to
Scratch programming projects aligned with learning objectives. In each module, programming activities related to
computational concepts were provided along with clear instructions and requirements to to clarify the learning
process and expectations. Student performance was assessed regularly to ensure students achieved the intended
learning outcomes. The programming quizzes and assignments were graded with evaluation criteria, and
constructive feedback was provided to foster active participation in the learning process. The research data was
collected in the last programming project where learners demonstrated their problem-solving skills through block-
based programming. The programming tasks were to complete predesigned and semifinished Scratch
programming projects with a set of requirements, but the final project was to program a game with Scratch by
applying the CT concepts and skills learned in the previous module.

4.3 Instruments

The computational concepts and practices were assessed by (a) a computational thinking test (CTt; Roman-
Gonzalez, 2015) and (b) coding journals. All 92 participants completed the CTt and coding journals. The CTt scale
(α = 0.79) had significant correlations with other standardized tests on problem-solving skills, and its validity was
confirmed for block-based programming learners. The CTt scale includes 28 multiple-choice questions to measure
the understanding level of computational concepts (i.e., basic direction and sequences, loops-repeat time, loops-
repeat until, if-simple conditional, if/else-complex conditional, while conditional, and simple function). The CTt
was initially designed and has been used for research targeting secondary school students (e.g., Bati, 2018; Chan
et al., 2021; Guggemos, 2021; Román -González et al., 2017, 2018, 2019; Wiebe et al., 2019) and a few studies
have been conducted for undergraduate students (e.g., Cachero et al., 2020; Guggemos et al., 2019; Kousis, 2019).
Also, the CTt aims to measure the developmental level of computational problem-solving (Román-González et
al., 2017). As the target population was novices on the subject of computer science, we adapted this scale for the
study to measure the core computational concepts according to the developmental level of beginner rather than the

International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3
ISSN 2513-8359

 6

age level, which may allow further insights. Six of the 11 CT components were covered by the CTt (see Table 2).
Since five of the 11 CT components were covered by the CTt, the remaining components were measured through
the coding journal.

The coding journal questionnaire for Scratch programming project assignments was developed by the researchers.
Open-ended questions are used in CT-related studies to provide insight into the participants’ understanding of
computational practices (Cetin, 2016; Ozoran et al., 2012). Participants were asked to share their programming
experiences with reflective writing in response to four open-ended questions as they performed programming tasks
using Scratch: (a) overall programming process or steps to create your program, (b) what worked well during
programming, (c) what issues you faced during programming, and (d) what needs to be improved in the next
programming project. The coding journal questionnaires were designed to lead the students to validate and
embellish on the findings from the CTt responses, which were also helpful in finding what interventions could
help improve their learning experiences on computational concepts. Table 2 presents a summary of the
measurements deployed to measure computational thinking components.

Table 2. A summary of CT components and corresponding instruments

Dimensions Components CTt Coding Journal
Computational Concept Sequences

Loops
Events
Parallelism
Conditional
Operators
Data

O
O
O
X
O
O
X

O
O
O
O
O
O
O

Computational Practice Being incremental and iterative
Testing and debugging
Reuse and remixing
Abstraction and modularity

X
X
X
X

O
O
O
O

Note. Symbol “O” indicates measured; “X” indicates unmeasured.

4.4 Data Collection and Analysis

After completing all computational concept-related activities, an online form of CTt was linked in a module.
Participants received an extra point for voluntary participation in the test. Their answers to the CTt items were
stored in the database and statistically analyzed. Afterward, we conducted descriptive and repeated measures
analysis of variance (ANOVA) analyses for the CTt scores to determine the changes in scores.

In each module, participants used Scratch to perform programming tasks. Their experiences were gathered from
the coding journals for the assignment where all computational concepts and practices needed to be applied. A
total of 92 coding journals were analyzed by thematic analysis. The authors organized the data and then coded the
Scratch coding journals following the three-step guidelines from Miles and Huberman (1994) for deductive
thematic analysis: (a) data reduction, (b) data display, and (c) data drawing and conclusion. The qualitative data
was coded for the frequencies of different types of CT components and then recoded using iteratively refined codes
by two of the researchers with high levels of interrater secured. Their responses were reexamined and categorized
into seven computational concepts and four computational practices based on Brennan and Resnick’s framework.
Finally, tables were created based on the four categories aligned with the journal questions: (a) process, (b) success,
(c) challenge, and (d) improvement (see Tables 4–6).

5. Results

5.1 CTt Analysis Results (RQ1: Which computational thinking concepts are difficult for undergraduate students?)

For the first research question, CTt scores showed that the participants’ understanding of each CT concept differed
considerably. Table 3 shows a summary of the CTt mean scores, of which each subscale ranges from 1 to 4. As
shown in Table 3, while “basic direction and sequences” among the seven computational concepts had the highest
mean score of 3.29 out of 4 (M = 3.29, SD =1.0); “while conditional” had the lowest mean score of 1.49 (M =
1.49, SD =1.02); followed by “if-simple conditional” (M = 1.75, SD = 1.10); “if/else complex conditional” (M =
2.03, SD = 1.31); “simple function” (M = 2.18, SD = 1.29); “loops-repeat until” (M = 2.68, SD = 1.05); and “loops-
repeat time” (M = 3.17, SD = .98). As demonstrated in Table 3, the values of the two computational concepts,

International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3
ISSN 2513-8359

 7

“while conditional” and “if conditional,” was relatively lower than those of the other concepts. Also, a one-way
repeated measures ANOVA was computed to evaluate if there was any change in participants’ CT sub-concept
scores when measured in the seven computational concepts. The results of the ANOVA indicated a significant
effect for the CT concept (Wilks’ Lambda = .23, F (6,86) = 47.07, p < .01, η² = .77). Also, there was significant
evidence that the mean score of each concept was different. Pairwise comparisons indicated that each pairwise
difference in scores was significant, p < .05, suggesting that participation in the subscale decreased participants’
mean scores of CTt subscales. That is, the average score tended to decrease gradually as the difficulty of the CT
concept increased. However, there was no statistically significant difference in mean test scores between “simple
function” and “if/else complex conditional” (p = 0.87).

Table 3. A summary of descriptive analysis results (RQ1)

CTt Concepts Mean SD
Basic direction & sequences 3.29 1.15
Loops-repeat time 3.17 .98
Loops-repeat until 2.68 1.05
Simple function 2.18 1.29
If/else complex conditional 2.03 1.31
If-simple conditional 1.75 1.10
While conditional 1.49 1.20

5.2 Coding Journal Analysis Results (RQ1 & RQ2: Which computational thinking concepts and practices are
difficult for undergraduate students?)

The results of the content analyses from the student coding journals showed the computational concepts and
practices areas where participants had difficulties as they programmed with Scratch. The responses to the open-
ended questions of the coding journals (i.e., overall process, success, challenge, and improvement) produced a
more diverse set of answers. After thoroughly validating the data analysis, a list of difficult computational concept
and practice areas for beginners to learn block-based programming online was identified. As shown in Table 4, the
most common responses to the open-ended question regarding issues faced during programming were the use of
“conditionals” (e.g., if/else and nested conditionals) and “data” (e.g., variables and lists). When asked what needed
to be improved in the next programming project, students described the uses of “if/else conditional,” “data,” and
“operators” (e.g., numeric, logical, and string manipulation) when it comes to computational concepts. In contrast,
the concepts considered successfully learned were “sequences,” “loops,” and “events.” In terms of “parallelism,”
in the early simple programming, the codes were parallelized as intended, but as the number of sprites and the
complexity of the programs increased, the parallelism tended to become more challenging. Table 4 summarizes
the content analysis results for computational concepts. The responses to the first question in the coding journal,
overall programming process, were categorized as codes for computational practices.

Table 4. A summary of the content analysis results related to computational concepts (RQ1)

Concepts Frequencies Quotes

Success
(N=150)

Sequences 46% “Programming the correct sequences was easy.”

Events 32% “What worked well was getting the character to move, look,
sound, and event.”

 Loops 22% “Repeat background sound and pauses worked very well.”

Challenge
(N=182)

Data 37% “Creating a new variable and list caused me to re-write the
code several times.”

 Conditionals 33% “I am facing a lot of simple mistakes when I initially use
control blocks such as if/else and repeat until.”

 Parallelism 30% “I struggled to know how to run simultaneously with the
multiple movements.”

International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3
ISSN 2513-8359

 8

Improvement
(N=110)

Conditionals 41% “I would like for my next programming project to flow better
with no issues.”

 Data 36% “The only difficulty that I faced during the process was that
it was hard for me to place the correct variable in order to
keep the correct commands consistent.”

 Operators 23% “I want to be more comfortable with the operators and I think
continuing to explore more operators and use more in depth.”

Note. Values in percent indicate relative frequencies.

In addition, concerning the computational practice in programming, a summary of the content analysis results is
presented in Table 5. First, as a result of analyzing the responses to the overall process for the programming project,
participants described the process as incremental and iterative by approaching and developing a solution in small
steps. Second, although participants perceived that they were doing best in “reusing and remixing” (i.e., building
on their own or others’ work), “testing and debugging” (i.e., trial and error, fixing an error) was reflected as the
most difficult computational practice element even after they had attempted a number of trials and errors. For
instance, participants most often expressed, “I cannot see where I’m making a mistake to fix it,” or “I know the
problem, but I don’t know how to solve it,” or “I spent a lot of time and effort trying to solve the problem, but I
can’t solve it.” Last, “abstracting and modularity” was the most frequent response as computational practice when
participants were asked what they wanted to improve for the next Scratch project. Participants wanted to find more
ways to efficiently abstract solutions by analyzing problem patterns to solve problems. They also wanted to
improve in converting their solutions efficiently. Table 5 presents example quotes from the coding journal
regarding computational practices.

Table 5. A summary of the content analysis results related to computational practices (RQ2)

 Practices Frequencies Quotes

Process
(N=131)

Being incremental & iterating

Remixing & reusing

Testing & debugging

Abstracting & modularizing

61%

25%

9%

5%

“The process I used to create my program was
to first read through the blackboard
instructions and understand the steps to create.
After this, I began to create the project by
developing a project in small steps.”

Success
(N=103)

Remixing & reusing

Being incremental & iterating

Testing & debugging

65%

26%

9%

“What worked well during programming was
remixing. I looked at our starter and example
projects several times as well as looked at
other students that have created Scratch
projects similar.”

Challenge
(N=74)

Testing & debugging

Abstracting & modularizing

72%

28%

“I attempted multiple different methods to
complete this task but for some reason I was
not able to successfully execute.”

Improvement
(N=114)

Abstracting & modularizing

Testing & debugging

65%

35%

“The most used block was the if blocks. A new
block that became very helpful for me were
the created blocks. It saved a lot of room and
time when building collections of codes.”

Note. Values in percent indicate relative frequencies.

6. Discussion and Implications

This study aimed to identify the computational concept and practice components that learners may have difficulties

International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3
ISSN 2513-8359

 9

learning with online programming, to lay the groundwork for an effective teaching approach. Along with Brenan
and Resnick’s dimensional framework (2012), the CTt scale provided meaningful results for the understanding of
computational concepts. Through the coding journal analysis, information on achievements in computational
concepts and practices were obtained. In particular, the differences in learning were revealed in some concepts and
practices of computational thinking. The results from the two data analyses showed that the relatively easy CT
concepts were “sequences,” “loops,” and “events,” and relatively easy CT practices were “being incremental and
iterating” and “reusing and remixing.” Conversely, four concepts (i.e., parallelism, conditionals, data, and
operators) and two practices (i.e., testing and debugging and abstracting and modularizing) were identified as
difficult CT components to achieve in block-based programming. In particular, the problems of using “conditionals”
were consistent with the results of the coding journal analysis in that all of the CTt scores on the “conditionals”
(i.e., if-simple conditional, if/else complex conditional, and while conditional) were low.

Findings suggest that educators should pay more attention to the levels of learning difficulty of the computational
concepts—“parallelism” (e.g., complex sets of activities in parallel); “conditionals” (e.g., if-simple conditional,
and if/else complex conditional, and while conditional); “data” (e.g., variables and lists); and “operators” (e.g.,
numeric and string manipulation). Also, to facilitate the process of CT development in practice, instructions should
incorporate the elements of computational practices (e.g., testing and debugging and abstracting and modularizing).
Instructional approaches can be suitable for the difficulty level of the computational concepts and practices. The
following instructional approaches can be considered.

Table 6. A summary of the key findings

 CT Concepts from CTt and Coding Journals CT Practice from Coding Journals

Process N/A #1 Being incremental and iterative

#2 Remixing & reusing

Success #1 Sequences

#2 Events

#3 Loops

#1 Remixing & reusing

#2 Being incremental and iterative

Challenge #1 Data

#2 Conditional

#3 Parallelism

#1 Testing and debugging

#2 Abstracting & modularizing

Improvement #1 Conditional

#2 Data

#3 Operators

#1 Abstraction and modularity

#2 Testing and debugging

First, participants had difficulty as the complexity of concepts increased. Since the biggest limitation of CT
instruction is that CT is difficult to teach due to its abstract concepts (e.g., parallelism, conditionals, data, and
operators), unplugged activities can help novice learners gain a deeper conceptual understanding of abstract
computation concepts and develop an algorithmic solution on paper. For example, storyboard, decomposition sheet,
flowchart, pseudo code, and/or journal entry can aid in understanding challenging computational concepts (e.g.,
Looi et al., 2018). These unplugged activities are suitable for novice programming learners to build difficult
computational concepts and develop difficult computational practices gradually. Unplugged activities build student
insight into the meaning of blocks, rather than copying a set of blocks and running it (e.g., Brackmann et al., 2017;
Caeli & Yadav, 2020).

Second, explicit instruction can address challenges learners face when learning difficult computational concepts
and practices. For example, direct instruction is a way to teach concepts and skills to novice students using direct
and structured instruction that explains, demonstrates, and models what learners do. In particular, direct instruction
is effective when background knowledge is low and the task is complex (Kroesbergen et al., 2004, Rupley et al.,
2009). When complex computational concepts and practices are broken down into adaptable chunks, instructors

International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3
ISSN 2513-8359

 10

can evaluate students’ understanding more precisely by teaching codes one line at a time. Students can practice the
skills to increase their understanding of concepts by observing and experimenting with the assistance of the teacher.
After guided practice, students need to apply it independently in their use of the concept and skills.

Third, CT instructions should be differentiated for high- and low-achieving students when teaching complex
concepts and practices. High-achieving learners are likely to have more prior knowledge and existing schemas for
constructing new information. Low-achieving learners need support, repetition, and motivating activities, such as
constructive feedback and gamification including choice, rewards, experience points, and level up (e.g., Standford
et al., 2010). Besides, the scope and sequence of CT instruction should be presented depending on the difficulty
level of domains and tasks (e.g., Tomlinson, 2012). Learners’ knowledge background and proficiency should be
considered in designing CT instructions with technology. Even non-CS college students need help to understand
complex concepts in order to solve computational problems.

Fourth, novice learners should have opportunities to learn how to build computational practices. A complete
understanding of computational concepts does not mean that computational practice can be acquired naturally.
Since computational problem-solving requires an incremental and iterative process, novices need to learn relevant
strategies (e.g., planning multiple phases of development, dividing functions or processes in a program).
Debugging usually starts by looking into what should happen, but beginners may have a hard time locating the
problem (McCauley et al., 2008). Debugging strategies (e.g., checking invalid values/operations, order of codes,
time between blocks) help beginners troubleshoot the problems. Also, they should be encouraged to accept failures
as part of their learning process and understand that such experiences help them find the right solution. As shown
in Table 5, for students who have tried several different attempts to solve a problem but cannot successfully execute,
debugging strategies and tips as a scaffolding should be in place in case they give up without solving the problem.
Moreover, as novices advance their computational practices, the CT instructions should include exercises on
abstraction and modularization strategies (e.g., simplifying a program, dividing code blocks).

Last, learners should be encouraged to reflect on and share their CT learning experiences with other classmates.
Collaboration was incredibly beneficial, particularly to students with minimal programming experience (Denner
et al., 2014). In activities related to reuse and remixing (see Table 5), students responded that they benefited from
seeing other students’ coding blocks or ideas when developing a solution. Collaborative experiences include
brainstorming solutions, planning the uses of code blocks, developing algorithms, and fixing errors in pairs. The
collaborative learning experience is advantageous not just for developing programming knowledge, but for
building other skills critical to solving problems, especially considering that first programming experiences are
not offered equally to all.

7. Conclusion

As CS/CT education has gained growing recognition in many disciplines, it is necessary to carefully prepare for
its integration to make the leap from block-based programming to problem-solving. However, educators were
neither confident in the subject matter nor differentiated it sufficiently for a mixed-ability group (Sentence &
Csizmadia, 2015). The evidence from this study confirmed what computational concepts and practices novice
learners might struggle with. We discussed how instructions need to be shaped to assist novices in improving CT
learning in an online environment. The findings of this study underlined that CT-related learning activities should
offer additional instructional support to enhance the understanding of challenging computational concepts and
practices. It is hoped that educators will close instructional gaps in what their students struggle with to construct
difficult computational concepts and fully practice new solutions with what they already know. Further studies are
needed to investigate the effects of instructional approaches to these identified CT components.

Limitations

The empirical results reported herein should be treated with caution. First, the study is limited in that the
programming task did not require a design-based activity and did not ask for differences in perceptions of CT
perspectives. Future studies, therefore, should focus on deepening our understanding of how CT learning processes
occur in creative programming tasks and how the computational perspective helps teachers and learners understand
themselves and their communities. Second, the CTt scale used in this study was found to partially measure the
components of Brennan and Resnick’s CT concept and practices. That is, the CTt did not contain or fit some
computational concepts (e.g., parallelism, data, and operator) and computational practices (e.g, being incremental
and iterating, reusing and remixing, abstracting and modularizing). Further research is needed to include these sub-
components on the scale. Third, to be more valid with a different population and other settings, the study may need

International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3
ISSN 2513-8359

 11

to be repeated to support the results.

International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3
ISSN 2513-8359

 12

References

Adams, C., Cutumisu, M., & Lu, C. (2019). Measuring K-12 computational thinking concepts, practices and
perspectives: An examination of current CT assessments. In Society for Information Technology & Teacher
Education International Conference (pp. 275-285). Association for the Advancement of Computing in
Education (AACE). https://www.learntechlib.org/primary/p/207654

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832-835.
https://doi.org/10.1093/comjnl/bxs074

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students' computational thinking skills through
educational robotics: A study on age and gender relevant differences. Robotics and Autonomous
Systems, 75, 661-670. https://doi.org/10.1016/j.robot.2015.10.008

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning &
Leading with Technology, 38(6), 20-23. https://edtechbooks.org/-HQ

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is involved and what is the
role of the computer science education community?. Inroads, 2(1), 48-54.
https://doi.org/10.1145/1929887.1929905

Bati, K. (2018). Computational Thinking Test (CTT) for middle school students. Akdeniz Eğitim Araştırmaları
Dergisi, 12(23), 89-101. https://doi.org/10.29329/mjer.2018.138.6

Berland, M., & Wilensky, U. (2015). Comparing virtual and physical robotics environments for supporting
complex systems and computational thinking. Journal of Science Education and Technology, 24(5), 628-
647. https://doi.org/10.1007/s10956-015-9552-x

Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: principles, policy
& practice, 5(1), 7-74. https://doi.org/10.1080/0969595980050102

Brackmann, C. P., Román-González, M., Robles, G., Moreno-León, J., Casali, A., & Barone, D. (2017,
November). Development of computational thinking skills through unplugged activities in primary school.
In Proceedings of the 12th Workshop on Primary and Secondary Computing Education (pp. 65-72).
https://doi.org/10.1145/3137065.3137069

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of
computational thinking. In Proceedings of the 2012 annual meeting of the American Educational Research
Association, Vancouver, Canada, 1, 25. https://www.media.mit.edu/publications/new-frameworks-for-
studying-and-assessing-the-development-of-computational-thinking

Cachero, C., Barra, P., Meliá, S., & López, O. (2020). Impact of programming exposure on the development of
computational thinking capabilities: An empirical study. IEEE Access, 8, 72316-72325.
https://doi.org/10.1109/ACCESS.2020.2987254

Caeli, E. N., & Yadav, A. (2020). Unplugged approaches to computational thinking: A historical
perspective. TechTrends, 64(1), 29-36. https://doi.org/10.1007/s11528-019-00410-5

Cetin, I. (2016). Preservice teachers' introduction to computing: Exploring utilization of scratch. Journal of
Educational Computing Research, 54(7), 997-1021. https://doi.org/10.1177/0735633116642774

Chan, S. W., Looi, C. K., & Sumintono, B. (2021). Assessing computational thinking abilities among Singapore
secondary students: A rasch model measurement analysis. Journal of Computers in Education, 8(2), 213-
236. https://doi.org/10.1007/s40692-020-00177-2

Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting mixed methods research. Sage publications.

CSTA & ISTE. (2011). Operational definition of computational thinking for k-12 education.
http://csta.acm.org/curriculum/sub/currfiles/compthinkingflyer.pdf

Czerkawski, B. C., & Lyman, E. W. (2015). Exploring issues about computational thinking in higher education.
TechTrends, 59(2), 57-65. https://doi.org/10.1007/s11528-015-0840-3

International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3
ISSN 2513-8359

 13

Denning, P. J., & Tedre, M. (2021). Computational thinking: A disciplinary perspective. Informatics in
Education, 20(3), 361-390. https://10.15388/infedu.2021.21

de Paula, B. H., Burn, A., Noss, R., & Valente, J. A. (2018). Playing Beowulf: Bridging computational thinking,
arts and literature through game-making. International journal of child-computer interaction, 16, 39-46.
https://doi.org/10.1016/j.ijcci.2017.11.003

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming: Under what conditions is it
advantageous for middle school students?. Journal of Research on Technology in Education, 46(3), 277-
296. https://doi.org/10.1080/15391523.2014.888272

Duncan, C., & Bell, T. (2015). A pilot computer science and programming course for primary school students.
In Proceedings of the Workshop in Primary and Secondary Computing Education, 39-48. ACM.
https://doi.org/10.1145/2818314.2818328

General, U. S. (2019). The age of digital interdependence. Report of the UN Secretary-General’s High-Level
Panel on Digital Cooperation. https://www.un.org/en/pdfs/DigitalCooperation-report-for%20web.pdf

Google. (2016). Computational thinking for educators. https://edu.google.com/resources/programs/exploring-
computational-thinking

Grover, S., Cooper, S., & Pea, R. (2014). Assessing computational learning in K-12. In Proceedings of the 2014
conference on innovation & technology in computer science education. 57-62. ACM.
https://doi.org/10.1145/2591708.2591713

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational
researcher, 42(1), 38-43. https://doi.org/10.3102/0013189X12463051

Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come. Computer Science
Education: Perspectives on teaching and learning in school. London: Bloomsbury Academic, 19-37.
https://www.researchgate.net/profile/Shuchi-Grover-
2/publication/322104135_Computational_Thinking_A_Competency_Whose_Time_Has_Come/links/5a45
7813a6fdcce1971a5ce5/Computational-Thinking-A-Competency-Whose-Time-Has-Come.pdf

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science course for
middle school students. Computer Science Education, 25(2), 199-237.
https://doi.org/10.1080/08993408.2015.1033142

Guggemos, J. (2021). On the predictors of computational thinking and its growth at the high-school level.
Computers & Education, 161, Article 104060. https://doi.org/10.1016/j.compedu.2020.104060

Guggemos, J., Seufert, S., & Román-González, M. (2019). Measuring computational thinking-Adapting a
performance test and a self-assessment instrument for german-speaking countries. International
Association for Development of the Information Society. https://eric.ed.gov/?id=ED608655

Kousis, A. (2019). The impact of educational robotics on teachers’ computational thinking. Educational Journal
of the University of Patras UNESCO Chair. https://doi.org/10.26220/une.3085

Kroesbergen, E. H., Van Luit, J. E., & Maas, C. J. (2004). Effectiveness of explicit and constructivist
mathematics instruction for low-achieving students in the Netherlands. The Elementary School
Journal, 104(3), 233-251. https://doi.org/10.1086/499751

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all learners in school-wide
computational thinking: A cross-case qualitative analysis. Computers & Education, 82, 263-279.
https://doi.org/10.1016/j.compedu.2014.11.022

Jenkins, C. (2015). A work in progress paper: Evaluating a microworlds-based learning approach for developing
literacy and computational thinking in cross-curricular contexts. In Proceedings of the Workshop in
Primary and Secondary Computing Education, 61-64. ACM. https://doi.org/10.1145/2818314.2818316

Johnson, R. B., Onwuegbuzie, A. J., & Turner, L. A. (2007). Toward a definition of mixed methods
research. Journal of Mixed Methods Research, 1, 112-133. https://doi.org/10.1177/1558689806298224

International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3
ISSN 2513-8359

 14

Looi, C. K., How, M. L., Longkai, W., Seow, P., & Liu, L. (2018). Analysis of linkages between an unplugged
activity and the development of computational thinking. Computer Science Education, 28(3), 255-279.
https://doi.org/10.1080/08993408.2018.1533297

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., & Zander, C. (2008).
Debugging: a review of the literature from an educational perspective. Computer Science Education, 18(2),
67-92. https://doi.org/10.1080/08993400802114581

Miles, M. B., Huberman, A. M., Huberman, M. A., & Huberman, M. (1994). Qualitative data analysis: An
expanded sourcebook. Sage publications. https://doi.org/10.1016/0149-7189(96)88232-2

Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: Automatic analysis of scratch
projects to assess and foster computational thinking. Revista de Educación a Distancia, 46, 1-23.
https://doi.org/10.6018/red/46/10

National Research Council. (2010). Report of a workshop on the scope and nature of computational thinking.
National Academies Press. https://doi.org/10.17226/12840

National Science Foundation. (2016) Computer science for all (CSforAll:RPP)(Dec. 1 2016).
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505359

Ozoran, D., Cagiltay, N., & Topalli, D. (2012). Using scratch in introduction to programming course for
engineering students. In 2nd International Engineering Education Conference. 2, 125-132.
https://www.academia.edu/25922529/Using_Scratch_in_introduction_to_programming_Course_for_Engin
eering_Students

Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. New York: Basic Books.
https://doi.org/10.5555/1095592

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ... & Kafai, Y. B.
(2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60-67.
https://web.media.mit.edu/~mres/papers/Scratch-CACM-final.pdf

Román-González, M. (2015). Computational thinking test: Design guidelines and content validation.
In Proceedings of EDULEARN15 Conference, 2436-2444. https://doi.org/10.13140/RG.2.1.4203.4329

Román-González, M., Moreno-León, J., & Robles, G. (2017). Complementary tools for computational thinking
assessment. In Proceedings of International Conference on Computational Thinking Education, S. C Kong,
J Sheldon, and K. Y Li (Eds.). The Education University of Hong Kong, 154-159.
https://doi.org/10.1007/978-981-13-6528-7_6

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities
underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in
human behavior, 72, 678-691. https://doi.org/10.1016/j.chb.2016.08.047

Román-González, M., Pérez-González, J. C., Moreno-León, J., & Robles, G. (2016). Does computational
thinking correlate with personality?: The non-cognitive side of computational thinking. In Proceedings of
the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality, 51-58.
ACM. https://doi.org/10.1145/3012430.3012496

Román-González, M., Pérez-González, J. C., Moreno-León, J., & Robles, G. (2018). Can computational talent
be detected? Predictive validity of the Computational Thinking Test. International Journal of Child-
Computer Interaction, 18, 47-58. https://doi.org/10.1016/j.ijcci.2018.06.004

Román-González, M., Moreno-León, J., & Robles, G. (2019). Combining assessment tools for a comprehensive
evaluation of computational thinking interventions. In Computational thinking education (pp. 79-98).
Springer, Singapore. https://doi.org/10.1007/978-981-13-6528-7_6

Romero, M., Lepage, A., & Lille, B. (2017). Computational thinking development through creative
programming in higher education. International Journal of Educational Technology in Higher Education,
14(1), 42. https://doi.org/10.1186/s41239-017-0080-z

International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3
ISSN 2513-8359

 15

Rupley, W. H., Blair, T. R., & Nichols, W. D. (2009). Effective reading instruction for struggling readers: The
role of direct/explicit teaching. Reading & Writing Quarterly, 25(2-3), 125-138.
https://doi.org/10.1080/10573560802683523

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking of primary
grade students. In Proceedings of the ninth annual international ACM conference on International
computing education research, 59-66. ACM. https://doi.org/10.1145/2493394.2493403

Sentance, S., & Csizmadia, A. (2015). Teachers' perspectives on successful strategies for teaching computing in
school. In IFIP TCS. https://www.researchgate.net/profile/Sue-
Sentance/publication/301525438_Teachers%27_perspectives_on_successful_strategies_for_teaching_Com
puting_in_school/links/57176e3708ae2679a8c76745/Teachers-perspectives-on-successful-strategies-for-
teaching-Computing-in-school.pdf

Shepard, L. A. (2000). The role of assessment in a learning culture. Educational researcher, 29(7), 4-14.
https://doi.org/10.3102/0013189X029007004

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research
Review, 22, 142-158. https://doi.org/10.1016/j.edurev.2017.09.003

Stanford, P., Crowe, M. W., & Flice, H. (2010). Differentiating with technology. TEACHING exceptional
children plus, 6(4), 4. https://files.eric.ed.gov/fulltext/EJ907030.pdf

Teddlie, C., & Tashakkori, A. (2003). Major issues and controversies in the use of mixed methods in the social
and behvioral sciences. Handbook of mixed methods in social & behavioral research, 3-50.
https://doi.org/10.4135/9781506335193

Tomlinson, C. A. (2012). Differentiated instruction (pp. 307-320). Routledge.
http://www.casenex.com/casenex/ericReadings/DifferentiationOfInstruction.pdf

United Nations (2019). The age of digital interdependence. Report of the UN Secretary-General’s

High-level Panel on Digital Cooperation. https://www.un.org/en/pdfs/DigitalCooperation-report-
for%20web.pdf

Wiebe, E., London, J., Aksit, O., Mott, B. W., Boyer, K. E., & Lester, J. C. (2019). Development of a lean
computational thinking abilities assessment for middle grades students. In Proceedings of the 50th ACM
technical symposium on computer science education (pp. 456-461).
https://doi.org/10.1145/3287324.3287390

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2011). Research Notebook: Computational thinking—What and why. The LINK. The Magazine of
Carnegie Mellon University's School of Computer Science. Carnegie Mellon University, School of Computer
Science. https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in elementary
and secondary teacher education. ACM Transactions on Computing Education (TOCE), 14(1), 5.
https://doi.org/10.1145/2576872

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional integrated assessment for
computational thinking. Journal of Educational Computing Research, 53(4), 562-590.
https://doi.org/10.1177/0735633115608444

