
Journal of Cybersecurity Education, Research and Practice Journal of Cybersecurity Education, Research and Practice

Volume 2020 Number 2 Article 2

2020

GDOM: Granulometry for the Detection of Obfuscated Malware GDOM: Granulometry for the Detection of Obfuscated Malware

John A. Aruta
East Stroudsburg University of PA, jaa8184@gmail.com

N. Paul Schembari
East Stroudsburg University of PA, schembari@esu.edu

Follow this and additional works at: https://digitalcommons.kennesaw.edu/jcerp

 Part of the Information Security Commons, Management Information Systems Commons, and the

Technology and Innovation Commons

Recommended Citation Recommended Citation
Aruta, John A. and Schembari, N. Paul (2020) "GDOM: Granulometry for the Detection of Obfuscated
Malware," Journal of Cybersecurity Education, Research and Practice: Vol. 2020 : No. 2 , Article 2.
Available at: https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss2/2

This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been
accepted for inclusion in Journal of Cybersecurity Education, Research and Practice by an authorized editor of
DigitalCommons@Kennesaw State University. For more information, please contact
digitalcommons@kennesaw.edu.

https://digitalcommons.kennesaw.edu/jcerp
https://digitalcommons.kennesaw.edu/jcerp/vol2020
https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss2
https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss2/2
https://digitalcommons.kennesaw.edu/jcerp?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2020%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2020%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2020%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2020%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss2/2?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2020%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

GDOM: Granulometry for the Detection of Obfuscated Malware GDOM: Granulometry for the Detection of Obfuscated Malware

Abstract Abstract
We describe the results of a master's thesis in malware detection and discuss the connection to the
learning goals of the project. As part of the thesis, we studied obfuscation of malware, conversion of files
into images, image processing, and machine learning, a process of benefit to both the student and
faculty.

Malware detection becomes significantly more difficult when the malicious specimen is obfuscated or
transformed in an attempt to avoid detection. However, computer files have been shown to exhibit
evidence of structure when converted into images, so with image processing filters such as granulometry,
it is possible to generate a set of features which will help characterize malicious and non-malicious files.
If the structures of file-derived images are resistant to obfuscation, these images may be of valuable use
in providing malware signatures. We explore image generated file features and their effectiveness to
identify malware when used with various machine learning classifiers.

Keywords Keywords
malware detection, obfuscated malware, granulometry, logistic regression, support vector machines, k-
means clustering

This article is available in Journal of Cybersecurity Education, Research and Practice:
https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss2/2

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss2/2

GDOM: GRANULOMETRY FOR THE DETECTION
OF OBFUSCATED MALWARE

1. INTRODUCTION
At East Stroudsburg University, students may complete bachelor’s or master’s
degrees in cybersecurity related fields, and most that complete master’s degrees are
required to complete a master’s thesis. Often, students will find a thesis research
topic that interest them on their own, perhaps from reading a journal or proceedings
article in one of their courses such as Introduction to Research. The faculty working
with these students on their chosen topic then have the benefit of expanding their
research knowledge into multiple new subjects. For this reason, we have worked
on master’s theses in many cybersecurity fields from side-channel attacks on
cryptosystems to honeypots to malware detection.

The student learning goals for our thesis requirement are that students gain
experience in reading modern research, learning independently, performing some
type of experimentation, and writing their results coherently. In this paper we
describe the research from a master’s thesis on malware detection and we also
describe the connection to the learning goals.

2. BACKGROUND AND LITERATURE REVIEW
Since this paper stems from a master’s thesis, a literature review was performed,
but it was not as extensive as in a doctoral thesis. Overall, twenty-two papers were
studied, we worked through a textbook related to our chosen methods, and a few
software packages were evaluated for implementation. In general for our master’s
theses, students are required to find enough sources to make sure that all topics are
covered so that the interested reader has the opportunity to gain an understanding
of any required background information. To paraphrase one of our now retired
faculty: “The literature review should contain the list of sources you wish you had
when you started your research.” In what follows, for the sake of brevity, we only
describe the required background information for our malware detection algorithm.

As is well known, modern computer systems are faced with a staggering number
of attack vectors. For example, the website AV-Test.org (AV-Test, 2020) indicated
that over one billion malware files were registered by this institute, each a potential
attack. When we use the term malware, we include various types of malicious code,
such as bots, ransomware, rootkits, scareware, spyware, Trojan horses, viruses, and
worms. More specifically, NIST (the US National Institute of Standards and
Technology) defines malware as “a program that is inserted into a system, usually
covertly, with the intent of compromising the confidentiality, integrity, or

1

Aruta and Schembari: GDOM: Granulometry for the Detection of Obfuscated Malware

Published by DigitalCommons@Kennesaw State University, 2020

availability of the victim’s data, applications, or operating system or otherwise
annoying or disrupting the victim.” (Souppaya and Scarfone, 2013) A long-
established goal of cybersecurity is the detection of malware, which is also the goal
of our work.

Because cybersecurity researchers, professionals, and tools attempt to detect
malware, such malicious code is often obfuscated. An obfuscation is a
transformation intended to allow a piece of malicious code into a system without
detection. Common obfuscation methods include encryption, packing, or bytecode
rearrangement (Sezer, McLaughlin, and O’Kane, 2011). These methods don’t
change the performance or core functions of the malicious software. As introduced
by (Szor, 2005), a system can be actively monitored for any form of deobfuscation
code that may execute. However, many files which are not malware are obfuscated
to prevent disassembly. Hence, identifying malware based on an actively running
unpacker or deobfuscator becomes unrealistic because it can lead to the possibility
of extremely high false-positive rates.

The detection of malware is often categorized with regard to two functional
methods: static analysis or dynamic analysis. Static analysis is performed on a
binary while it is not in execution. Static analysis is convenient for malware
analysts because it requires minimal resources and also offers quick insight into the
capabilities of a possibly malicious file. Static analysis techniques include static
string extraction, op code analysis, and control flow analysis, which can be
performed with a standard disassembler such as IDA Pro (IDA, 2020). Dynamic
analysis is performed on a binary during runtime. Control flow can be analyzed
during runtime and packed binaries can be manually unpacked. It is important to
note that dynamic analysis requires more resources than static analysis, but it can
be valuable to malware analysts because it allows them to scrutinize any piece of
malware, regardless its degree of obfuscation. Our research involves static analysis
in an attempt generate functional signatures for malicious executables. We call our
method GDOM: Granulometry for the Detection of Obfuscated Malware.

In order to execute GDOM, we use image processing. We define an image as a
function on two variables 𝑓(𝑥, 𝑦) where (𝑥, 𝑦) corresponds to a location (a pixel in
a window or printout), and the output of the function represents the “color” at that
location. The color may be pure black and white (using 0 and 1), it may be grayscale
(using integers 0 – 255), or it may be a three- or four-vector representing RGB or
CMYK. Image processing concerns transformations performed on digital images.
Examples include restoration (restoring noisy images), filtering (extracting
properties), and modification. Image filters can provide ideally unique
characteristics for a particular image. In our algorithm, we will convert files into
images, and then process them with a granulometry filter, “a method for
characterizing granular images by means of how they are sieved through sieves of

2

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 2 [2020], Art. 2

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss2/2

various size and shape.” (Dougherty and Lotufo, 2003, p. 193)
After our potential malware has been converted into an image file and processed

with a granulometry filter, we apply machine learning to classify the file as
malware or not. Machine learning makes “computers modify or adapt their
actions… so that these actions get more accurate, where accuracy is measured by
how well the chosen actions reflect the correct ones.” (Marsland, 2009) Supervised
learning is a subset of machine learning that utilizes an algorithm and labeled
training set in an attempt to make correct predictions. We can also apply an
unsupervised clustering algorithm to this type of problem so that the files are
separated into two clusters representing malware and not, but training is not
necessary. We see that classifying malicious files with machine learning is a binary
classification problem, where the classification is based on some type of decision
boundary creating a partition of the Euclidean space containing our image-
represented files into “Malicious” and “NonMalicious”.

Hence, the goals of GDOM are:

• Generate malware signatures that are resistant to the obfuscation of their
parent binary

• Find evidence of unique structures in files that can be extracted to serve as
signatures

• Integrate file signatures with machine learning classifiers or clustering
algorithms in order to provide successful malware detection

To summarize our GDOM approach, obfuscated files which are potentially
malware are transformed into images and then granulometrically filtered to provide
unique characteristics about their parent files. Each potential malware file produces
one vector of characteristics, which is the signature of the file. The vectors are then
input into several machine learning algorithms and classified as malicious or non-
malicious, which also gives the classifications of the parent files. Hence, we explore
the effectiveness of the image processing technique of granulometry in relation to
malware identification illustrating that it offers some resistance to malware
obfuscation.

3. MATHEMATICS, TECHNIQUES, AND
ALGORITHM
In this section, we introduce the specific techniques used in our approach, and we
fully describe our algorithm. To begin, we decided to work only with Windows x86
executables, but our techniques can be used on any type of file format. Second, our
implementation was written in C#, and we used the ImageJ (US National Institute
of Health, 2020) and WEKA (University of Waikato, 2020) packages in order to

3

Aruta and Schembari: GDOM: Granulometry for the Detection of Obfuscated Malware

Published by DigitalCommons@Kennesaw State University, 2020

perform image processing and apply our chosen machine learning algorithms,
respectively. These selections were made by the student as part of the process of
learning how to experiment and create a reasonable data set for research analysis.

3.1 File Selection
To create a set of files, we first downloaded a collection of potential malware from
the virus research site VirusSign (VirusSign, 2020). This collection contained 32-
bit and 64-bit Windows executables, PDF, and DLL files, but we only used the 32-
bit EXEs. To test that these files were actually considered malicious, we extracted
them from a ZIP file on a computer running an updated anti-virus system and all
files were recognized as malware. Further, to ensure that some of the malicious files
were obfuscated, we used PEiD (Aldeid, 2020) to check for packing. In our
collection, a variety of files were identified as having been packed by UPX
(Ultimate Packer for eXecutables, 2020), PECompact (Bitsum.com, 2020), and
ASProtect (Aspack Software, 2020). We should note that having some files
obfuscated and some files not obfuscated was an important experimental
consideration since if we only used packed malware, the machine learning
classifiers might be tailored to detect malware based on packing. We also needed
to include non-malicious files in our test collection, so we used 32-bit EXEs from
the Windows XP Professional and Windows 7 Professional operating system files
for a total of 804 non-malicious and 804 malicious files.

Again, these selections were made by the student as part of the process of
learning how to experiment and create a reasonable data set for research analysis.

3.2 Image Creation

In our implementation, we decided to use grayscale images to represent the files,
and hence we require a byte for each pixel. Like any computer file, each EXE under
consideration can be viewed as a list of bytes, and hence a vector. To convert a file
to a pixel representation, we require two coordinates for the location of each byte.
Because of this, as we convert files, we need to determine a length and a width of
each of the generated images. Following the taxonomy created by (Nataraj,
Yegneswaran, Porras, and Zhang, 2011), based on their own empirical
observations, we used the widths shown in Table 1 for our file-generated images.
Finally, in the event of a remainder, where not enough bytes were available to fill
an entire row, we filled out the pixels with bytes of 0, giving intensity 0. Hence, the
overall process reads one byte of the file at a time, converts that byte to a grayscale
intensity, and then places this intensity into the pixel based on the Nataraj, et al,
width methodology. Figure 1 shows a sample file from Nataraj, et al. Notice, that
we are using a previously published method for the image generation, again a good

4

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 2 [2020], Art. 2

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss2/2

technique for students to learn when they are beginning their research programs.

File Size Range (KB) Image Width (Pixels)
Less than 10 32
10 – 30 64
30 – 60 128
60 – 100 256
100 – 200 384
200 – 500 512
500 – 1000 768
More than 1000 1024

Table 1: Image Width Based on File Size

Figure 1: Sample Image File

5

Aruta and Schembari: GDOM: Granulometry for the Detection of Obfuscated Malware

Published by DigitalCommons@Kennesaw State University, 2020

3.3 Image Processing with Granulometry
Previous researchers have used various image processing techniques to determine
file structure and apply this to malware classification. One of the first papers in this
area involved the analysis of files as grayscale images by (Conti et al, 2010). In two
papers, (Nataraj et al, 2011) and (Nataraj, Karthikeyan, Jacob, and Manjunath,
2011) used a GIST descriptor and a set of Gabor filters, which are commonly used
in scene classification, object recognition (Oliva and Torralba, 2011), and texture
extraction, to classify files as malware. In order to try a new approach, we decided
to use the image processing technique of granulometry in GDOM. This is part of
the experimentation of the master’s thesis, following a yet unused approach.

In order to gain a good understanding of granulometry, we read through
Doughetry and Latufo’s text, Hands-on Morphological Image Processing, as well
as worked through many of the exercises. Granulometry uses the mathematical
morphology concepts of translation, erosion, dilation, and opening (Dougherty and
Lotufo, 2003, Chapter 1). For a binary (black/white) image 𝐴, these operations are
defined as follows:

• For a point or vector 𝑥, the translation of the image 𝐴 by	𝑥 is
𝐴! = {𝑎 + 𝑥: 𝑎 ∈ 𝐴}

• For the binary image 𝐵, usually called the structuring element, the erosion
of 𝐴 by 𝐵 is

𝐴⊖ 𝐵 = {𝑥: 𝐵! ⊂ 𝐴}.
• The dilation of 𝐴 by the structuring element 𝐵 is

𝐴⊕ 𝐵 = {𝐴": 𝑏 ∈ 𝐵}.
• The opening of the image 𝐴 by the structuring element 𝐵 is

𝐴 ∘ 𝐵 = (𝐴⊖ 𝐵)⊕ 𝐵

As examples for the above processes, following Dougherty and Lotufo, let us

assume the binary image 𝐴 and the binary structuring element 𝐵 are represented by
the matrices below, where we envision the origin at the center of each matrix:

𝐴 =

⎣
⎢
⎢
⎢
⎡
1 1 1 0 0
1 0 1 0 0
0 0 0 1 1
1 0 1 1 1
0 0 0 0 0⎦

⎥
⎥
⎥
⎤
							𝐵 = ?

0 0 1
0 1 0
0 0 0

@

For erosion, it may be easiest to find the entries of 𝐴 where the positions of the
nonzero entries of the matrix 𝐵 are found – almost like an intersection. Hence, for
erosion in this example, we are looking for the value of 1, where this value is
repeated in a position one above and to the right. Hence, we can determine the

6

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 2 [2020], Art. 2

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss2/2

erosion by proceeding through each point of 𝐴, placing the matrix 𝐵 centered at
that point (with respect to 𝐵’s origin), and if the two values of 1 from 𝐵 “match”
the values in 𝐴, we select that point from 𝐴 to be part of the erosion. When
following this process, we can assume that any points outside of the matrix are 0.
Dilation, instead, is the dual of erosion – we imagine “unioning” or “adding” the
structural element with the original matrix. We proceed through each point of 𝐴
which is 1, place 𝐵 centered at that point, and then because of the other number 1
in the matrix 𝐵, make sure that 1 also appears in that position of the result. Finally,
opening combines the two processes. For this example, the results of erosion and
dilation are given below:

𝐴⊖ 𝐵 =

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤
							𝐴 ⊕ 𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡
0 1 1 1 0 0
1 1 1 1 0 0
1 0 1 0 1 1
0 1 0 1 1 1
1
0

0
0

1
0

1
0

1 0
0 0⎦

⎥
⎥
⎥
⎥
⎤

 For grayscale images, the processes of erosion and dilation are similar if we

consider the intensity (0 – 255) as the height of a function at the pixel (𝑥, 𝑦), and
we think of a solid gray shape under the heights. (We are now thinking of the solid
gray shape as the image.) In this case, to perform erosion of a signal, the center of
the structuring element (SE) is aligned with the 𝑥-coordinates and pushed upward
from negative infinity until part of it exits the solid shape of the original signal. The
position of the structuring element is marked, and any space above the SE becomes
undefined. Note that spaces where the signal is originally undefined play no role in
the process of grayscale erosion as there is no intensity to erode. In order to perform
dilation of a signal, the center of the structuring element is aligned with the 𝑥-
coordinates, but now pushed downward from positive infinity until part of it enters
the solid shape of the original signal. The position of the structuring element is
marked, and any space under the SE becomes part of the new signal. In this case,
spaces where the signal is originally undefined can also become part of the
transformed signal. Finally, the opening operation is defined in the same manner as
the binary case.

As described by (Dougherty and Lotufo, 2003, p. 193), (Matheron and Serra,
2002) defined a granulometric method which uses different size and shape
structuring elements to sieve images and thus is effective for texture analysis. This
is the method we will use to obtain a “signature” for each potential malware file.
To perform this analysis, we used the tool ImageJ (US National Institute of Health,
2020). Specifically, we used the Granulometry Plugin (Prodanov, 2020) which
requires images to be in 8-bit grayscale format. To create the signatures for our
images, we consider the integer 𝑡 > 0 a variable and define a granulometry of the

7

Aruta and Schembari: GDOM: Granulometry for the Detection of Obfuscated Malware

Published by DigitalCommons@Kennesaw State University, 2020

image 𝐴 based on the generator (structuring element) 𝐵 as
𝛹#(𝐴) = 𝐴 ∘ 𝑡𝐵 = 𝐴 ∘ DE(𝐵 ∘ 𝐵) ∘ 𝐵F ∘ … ∘ 𝐵H,

where the opening of 𝐵 is repeated 𝑡 times. In GDOM, we used a disk as the base
structuring element, so 𝑡𝐵 represents disks of increasing radii 𝑡. Then, if we let
𝜈(𝐴) represent the area of the image 𝐴, we obtain the area removed by the opening
by 𝑡𝐵, called the size distribution of the image:

𝛺(𝑡) = 𝑣(𝐴) − 𝑣(𝐴 ∘ 𝑡𝐵).
Notice that for sufficiently large 𝑡, 𝛺(𝑡) = 𝑣(𝐴). Then the normalized size
distribution is given by

Φ(𝑡) =
𝛺(𝑡)
𝛺(∞) =

𝛺(𝑡)
𝑣(𝑎)		.

Finally, we create the image signature, called the discrete pattern spectrum, by
taking the discrete derivative of

𝑑Φ(𝑡) = Φ(𝑡 + 1) − Φ(𝑡).
In GDOM, we allowed the integer t to range from 0 up to maximal radius between
10 and 20 with a step size of 1.

3.4 Machine Learning

Once the potential malware files were converted to images, and then summarized
via the granulometry signatures, we then classified them as “malicious” or “non-
malicious” by using three of the machine learning algorithms built into WEKA
(University of Waikato, 2020). In particular, we used the SimpleLogistic function
which creates logistic regression models, the LibSVM library for support vector
machine classification, and the SimpleKMeans class for clustering data using the
𝒌-means algorithm.

Overall, our problem involves a set of vectors, the image signatures, and we
want to classify them as “malicious” or “non-malicious”. Hence, we require a
mapping from ℝ$ to {0,1}, where the elements of the domain are typically called
feature vectors and the elements of the range are called the labels. To create a
Logistic Regression model, we introduce the function

𝜎(𝑧) =
1

1 + 𝑒%&

which has a limit of 0 as 𝑧 → −∞, and a limit of 1 as 𝑧 → ∞. For the input vectors
𝑥, and a fixed vector 𝜃, we then create the hypothesis function

ℎ'(𝑥) = 𝜎(𝜃(𝑥).
Using this function, the goal of logistic regression is to find the best 𝜃 so that
ℎ'(𝑥)	is large when 𝑥 should have a label of 1, and ℎ'(𝑥)	is small when 𝑥 should
have a label of 0. This is performed by using the correct cost function (Stanford
University, 2017). We find 𝜃 by training the classifier on part of our input data.

8

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 2 [2020], Art. 2

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss2/2

Then, we test our solution on the remaining data.
We also used the Support Vector Machine (SVM) model as a comparison to

Logistic Regression. If we view our feature vectors in ℝ$ with some of these
representing malicious code and the others representing non-malicious code, then
we can consider the largest “rectangular” region (we use rectangular in the 𝑛-
dimentionsal sense), called the margin, separating the two types of vectors. The
support vectors are the feature vectors which are closest to this margin. The best
classifier is a hyperplane which bisects the margin in a perpendicular fashion so
that the two types of feature vectors are on opposite sides of the hyperplane. Finding
this best classifier is a constrained optimization problem (Marsland, 2009, Chapter
8). As in the logistic regression case, the SVM approach requires training.

The final algorithm that we used for classification, the 𝑘-means algorithm [7],
does not require training. Again, we view our feature vectors in ℝ$, but instead we
separate the vectors into two clusters by choosing those “closest” to each other. To
measure the distance between two vectors, we used the standard Euclidean distance
function. As described by (Redmond and Heneghan, 2007), first we choose a
random set of two cluster centers, called the Forgy initialization. Second, each
vector is assigned to a cluster based on its nearest center. Third, each cluster center
is updated as the mean of the current set of vectors in the cluster. Last, the error
between the vectors and the centers is calculated. The algorithm is repeated until
the calculated errors are minimized.

The final technique which we used in GDOM was 10-fold cross validation. In
this process, the data (our original 1608 files) was divided into 10 randomly
selected sets. Nine of the sets were used for training, and the last set was used for
actual testing. This process was repeated 9 more times, where each of the 10 sets
acted once as the testing set, while the other 9 sets acted as the training sets
(Marsland, 2009, pp. 20-21).

As we can see from this description, the thesis has definitely met the goals of
allowing the student to experiment and stretch their learning outside the classroom
and in an independent fashion.

3.5 Algorithm

With the parts described above, we can now illustrate our algorithm, GDOM:
Granulometry for the Detection of Obfuscated Malware.
1. Potential malware files are converted into grayscale images, with widths based

on Table 1, by writing each byte as a grayscale intensity. If we do not have
enough bytes to fill a row, we use 0 intensity for the missing pixels.

2. The images are probed with disks of increasing radii, creating a granulometry
filter. The radii range from 0 up to a maximum radius between 10 and 20, with
step size 1.

9

Aruta and Schembari: GDOM: Granulometry for the Detection of Obfuscated Malware

Published by DigitalCommons@Kennesaw State University, 2020

3. The probing of step 2 creates a file signature, based on the Discrete Pattern
Spectrum of the image.

4. The files are then grouped into two clusters to indicate malicious or non-
malicious files. This classification is completed with the machine learning
methods of Logistic Regression, Support Vector Machines, and 𝑘-Means
Clustering (with 𝑘 = 2).

4. EXPERIMENTATION AND RESULTS
To illustrate our results by algorithm based on the files as selected in Section 3.1,
we present three tables. Table 2 shows the results when processing the signatures
under Logistic Regression, where the TPR (True Positive Rate) gives the
percentage of malware detected, TNR (True Negative Rate) gives the percentage
of non-malware detected, and the Accuracy gives the average of the TPR and TNR.
The general trend here is that higher radii give slightly better results. Since the
detection of malware is of utmost importance, the TPR is the most significant
measure of an algorithm such as GDOM. Hence, we concentrate our analysis on
the TPR. Furthermore, it is important to remember that our experimentation
included both obfuscated and non-obfuscated files.

Max. Radius Accuracy TPR TNR

10 0.7618 0.8159 0.7077
11 0.7649 0.8172 0.7127
12 0.7631 0.8159 0.7102
13 0.7680 0.8209 0.7152
14 0.7668 0.8197 0.7139
15 0.7624 0.8172 0.7077
16 0.7662 0.8221 0.7102
17 0.7668 0.8221 0.7114
18 0.7693 0.8209 0.7177
19 0.7674 0.8197 0.7152
20 0.7699 0.8221 0.7177

Table 2: Logistic Regression Results

Table 3 shows the results when processing the signatures with the Support

Vector Machine method. The general trend here is that higher radii give slightly
better results. We have especially good results in the True Positive Rate.

10

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 2 [2020], Art. 2

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss2/2

Max. Radius Accuracy TPR TNR
10 0.7419 0.8271 0.6567
11 0.7450 0.8371 0.6530
12 0.7475 0.8420 0.6530
13 0.7481 0.8420 0.6542
14 0.7481 0.8458 0.6505
15 0.7475 0.8470 0.6480
16 0.7475 0.8495 0.6455
17 0.7475 0.8520 0.6430
18 0.7438 0.8520 0.6356
19 0.7552 0.8532 0.6538
20 0.7419 0.8557 0.6281

Table 3: SVM Results

The best results come from the 𝑘-Means Clustering algorithm, as shown in

Table 4. We see a True Positive Rate of 88% when the maximum radius is 20.

Max. Radius Accuracy TPR TNR
10 0.7239 0.6863 0.7804
11 0.7270 0.8246 0.6294
12 0.7264 0.8296 0.6231
13 0.7295 0.8271 0.6318
14 0.7245 0.8333 0.6157
15 0.7257 0.8358 0.6157
16 0.7276 0.8470 0.6082
17 0.7264 0.8420 0.6107
18 0.7282 0.8495 0.6070
19 0.7264 0.8433 0.6095
20 0.6934 0.8843 0.5025

Table 4: 𝑘-Means Results

Scanning Tables 2, 3, and 4, we find the best results (measured by the rates)

with regard to Accuracy, TPR, and TNR as shown in Table 5. This indicates that
GDOM works best especially with regard to the TPR by using the 𝑘-Means
Clustering algorithm. It is interesting that the best detection of malware came with
a maximum radius of 20, while the best detection of non-malware came with a
maximum radius of 10.

11

Aruta and Schembari: GDOM: Granulometry for the Detection of Obfuscated Malware

Published by DigitalCommons@Kennesaw State University, 2020

Measure Algorithm Max. Radius Rate %
Accuracy Logistic 20 76.99

TPR 𝑘−Mean 20 88.43
TNR 𝑘−Mean 10 78.04

Table 5: Best Results by Measure

Since the above work satisfied the learning goals for the thesis, we did not

compare these results with methods used by other researchers as part of the thesis.
In Table 6 we include some comparisons for the sake of completeness. Blank
entries in the table indicate that these results were not reported.

Papers Accuracy TPR TNR
Nataraj et al, (2011) and Nataraj,
Karthikeyan, Jacob, and Manjunath (2011) 86% – 98% --- ---

Makandar and Patrot (2015) 90% 90% ---
Kosmidis and Kalloniatis (2017) 85% – 91% --- ---
Kumar, et al (2018) 98% --- ---
Shukla, et al (2019) 94% --- ---

Table 6: Results Reported by Other Researchers

5. CONCLUSION
Our algorithm, experimentation, and analysis indicate that the mathematical
morphology method of granulometry is a good tool for the detection of malware,
including obfuscated malware. Furthermore, the project clearly meets the learning
goals of our thesis requirement. Our experimental results also show evidence that
files exhibit identifiable texture patterns when converted to images, and that these
patterns can be detected by a granulometry filter. In particular, malware can be
identified using the discrete pattern spectrum of the derived image as a signature
and the 𝒌-Means Clustering algorithm to classify the malware. This method does
not report results as good as those by other researchers, but enhancements may
improve the results. One of the possible enhancements may be to combine the
machine learning methods.

Besides enhancements, other open questions remain. First, ImageJ was only
capable of performing granulometry filtering with disk shaped elements during the

12

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 2 [2020], Art. 2

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss2/2

time of feature extraction. It would be valuable to explore the use of different
shaped structuring elements. Second, we limited the maximum radii of the disks to
values between 10 and 20 in order to provide a reasonable testing scope. Perhaps
larger radii would give better results. Third, we increased the radii of the structuring
elements by 1 each time. It is possible that a different increase would improve
results. Fourth, we used the results of previous researchers to choose the widths of
our images. Hence, different image width schemes should be examined. Finally,
experimentation should be completed on other file types to determine the efficacy
of GDOM.

Despite the fact that some malware was packed, and some wasn’t, GDOM
obtained very good True Positive Rates for malware detection especially since
obfuscated malware is more difficult to identify. The Accuracy and True Negative
Rates (detection of non-malware) of GDOM are also promising and show evidence
that transforming files into images, subsequently generating signatures for the
images using granulometry, and using the signatures as input for machine learning
algorithms serves as a valuable approach to distinguish malware and non-malware
whether or not files are obfuscated. Finally, it is clear from our work on this thesis
that undertaking a project of this kind is of definite benefit to both student and
faculty.

REFERENCES
Aldeid.com (2020), PEiD. https://www.aldeid.com/wiki/PEiD
Aspack Software (2020), ASProtect 32 - application protection tools for software developers.

http://www.aspack.com/asprotect32.html
AV-Test (2017): Malware statistics and trends report. www.av-test.org/en/statistics/malware/
Bitsum.com (2017), PECompact - windows (PE) executable compressor.

https://bitsum.com/portfolio/pecompact/
Conti, G., et al (2010), A visual study of primitive binary fragment types.

http://www.rumint.org/gregconti/publications/taxonomy-bh.pdf
Dougherty, E.R. & Lotufo, R.A. (2003), Hands-on Morphological Image Processing. Washington,

USA: SPIE Press.
IDA: About (2020). www.hex-rays.com/products/ida/
Kosmidis, K. and Kalloniatis, C. (2017), Machine Learning and Images for Malware Detection and

Classification. Proceedings of the 21st Pan-Hellenic Conference on Informatics, pp. 1–6.
Kumar, R., Xiaosong, Z., Khan, R. U., Ahad, I., Kumar, J. (2018), Malicious Code Detection based

on Image Processing Using Deep Learning. Proceedings of the 2018 International Conference
on Computing and Artificial Intelligence, pp. 81–85.

MacQueen, J. (1967), Some methods for classification and analysis of multivariate observations.
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Statistics, pp. 281–297. California, USA: University of California Press

Makandar, Aziz and Patrot, Anita (2015), Malware Image Analysis and Classification using Support
Vector Machine. International Journal of Advanced Trends in Computer Science and
Engineering, Vol.4, No.5, pp. 01-03.

Marsland, S. (2009), Machine Learning: An Algorithmic Perspective. London, UK: Chapman and

13

Aruta and Schembari: GDOM: Granulometry for the Detection of Obfuscated Malware

Published by DigitalCommons@Kennesaw State University, 2020

Hall/CRC.
Matheron, G. & Serra, J. (2002), The birth of mathematical morphology. Proceedings of the Sixth

International Symposium on Mathematical Morphology, pp. 1–16. Sydney, AU: Chapman and
Hall/CRC

Nataraj, L., Karthikeyan, S., & Jacob, G., Manjunath, B.S. (2011), Malware images: Visualization
and automatic classification. VizSec 2011, pp. 4:1–4:7. New York, US: ACM.

Nataraj, L., Yegneswaran, V., Porras, P., & Zhang, J. (2011), A comparative assessment of malware
classification using binary texture analysis and dynamic analysis. Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence, AISec 2011, pp. 21–30. New York, US:
ACM.

Oliva, A. & Torralba, A. (2001), Modeling the shape of the scene: a holistic representation of the
spatial envelope. International Journal of Computer Vision 42(3), pp. 145–175. New York, US:
Springer.

Prodanov, D. (2020), Granulometry plugin for ImageJ.
https://imagej.nih.gov/ij/plugins/granulometry.html

Redmond, S.J. & Heneghan, C. (2007), A method for initialising the 𝑘-means clustering algorithm
using 𝑘𝑑-trees. Pattern Recognition Letters 28(8), pp. 965–973. Edinburgh UK: Elsevier.

Sezer, S., McLaughlin, K. & O’Kane, P. (2011), Obfuscation: The hidden malware. IEEE Security
and Privacy Volume: 9 (Issue: 5, Sept.-Oct. 2011) pp. 41–47. New York, US: IEEE.

Shukla, S., Kolhe, G., Manoj P D, S., and Rafatirad S. (2019), MicroArchitectural events and image
processing-based hybrid approach for robust malware detection: work-in-progress.
Proceedings of the International Conference on Compliers, Architectures and Synthesis for
Embedded Systems Companion, pp. 1–2.

Souppaya, M. & Scarfone, K. (2013), Guide to malware incident prevention and handling for
desktops and laptops. nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-83r1.pdf

Stanford University (2020), Department of Computer Science: Deep learning tutorial - logistic
regression. http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/

Szor, P. (2005), The Art of Virus Research and Defense, Antivirus Defense Techniques. New Jersey,
US: Addison-Wesley Professional.

Ultimate Packer for eXecutables (2020), UPX: Ultimate Packer for eXecutables.
https://github.com/upx/upx

University of Waikato (2020), WEKA3. http://www.cs.waikato.ac.nz/ml/weka/
US National Institute of Health (2020): ImageJ. https://imagej.nih.gov/ij/
VirusSign (2020), VirusSign. http://www.virussign.com/

14

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 2 [2020], Art. 2

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss2/2

	GDOM: Granulometry for the Detection of Obfuscated Malware
	Recommended Citation

	GDOM: Granulometry for the Detection of Obfuscated Malware
	Abstract
	Keywords

	GDOM: GRANULOMETRY FOR THE DETECTION OF OBFUSCATED MALWARE

