
Journal of Cybersecurity Education, Research and Practice Journal of Cybersecurity Education, Research and Practice

Volume 2020 Number 1 Article 3

June 2020

Evaluating and Securing Text-Based Java Code through Static Evaluating and Securing Text-Based Java Code through Static

Code Analysis Code Analysis

Jeong Yang
Texas A&M University-San Antonio, jeong.yang@tamusa.edu

Young Lee
Texas A&M University-San Antonio, young.lee@tamusa.edu

Amanda Fernandez
The University of Texas at San Antonio, amanda.fernandez@utsa.edu

Joshua Sanchez
Texas A&M University-San Antonio, jsanchez@tamusa.edu

Follow this and additional works at: https://digitalcommons.kennesaw.edu/jcerp

 Part of the Information Security Commons, and the Technology and Innovation Commons

Recommended Citation Recommended Citation
Yang, Jeong; Lee, Young; Fernandez, Amanda; and Sanchez, Joshua (2020) "Evaluating and Securing Text-
Based Java Code through Static Code Analysis," Journal of Cybersecurity Education, Research and
Practice: Vol. 2020 : No. 1 , Article 3.
Available at: https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been
accepted for inclusion in Journal of Cybersecurity Education, Research and Practice by an authorized editor of
DigitalCommons@Kennesaw State University. For more information, please contact
digitalcommons@kennesaw.edu.

https://digitalcommons.kennesaw.edu/jcerp
https://digitalcommons.kennesaw.edu/jcerp/vol2020
https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1
https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3
https://digitalcommons.kennesaw.edu/jcerp?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2020%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2020%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2020%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3?utm_source=digitalcommons.kennesaw.edu%2Fjcerp%2Fvol2020%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Evaluating and Securing Text-Based Java Code through Static Code Analysis Evaluating and Securing Text-Based Java Code through Static Code Analysis

Abstract Abstract
As the cyber security landscape dynamically evolves and security professionals work to keep apace,
modern-day educators face the issue of equipping a new generation for this dynamic landscape. With
cyber-attacks and vulnerabilities substantially increased over the past years in frequency and severity, it is
important to design and build secure software applications from the group up. Therefore, defensive
secure coding techniques covering security concepts must be taught from beginning computer science
programming courses to exercise building secure applications. Using static analysis, this study
thoroughly analyzed Java source code in two textbooks used at a collegiate level, with the goal of guiding
educators to make a reference of the resources in teaching programming concepts from a security
perspective. The resources include the methods of source code analysis and relevant tools, categorized
bugs detected in the code, and compliant code examples with fixing the bugs. Overall, the first text
revealed a relatively moderate bug rate of approximately 44% of files analyzed contained either regular or
security bugs. About 13% of the total bugs found were security bugs and the most common security bug
was related to the Pseudo Random security vulnerability. The second text produced a slightly larger bug
rate of 53.80% with approximately 8% of security bugs. After combining the texts for an average rate, the
total number of security bugs that were likely to appear was roughly 10% percent. This encompasses
security bugs such as malicious code vulnerabilities and security vulnerabilities related to exposing or
manipulating data in these programs.

Keywords Keywords
Source Code Analysis, Static Analysis, Secure Coding, Defensive Programming, Java, Software Security

Cover Page Footnote Cover Page Footnote
Partial support for this work was provided by Texas A&M University-San Antonio’s Initiative Seed Grant
project entitled “Building a Secure Code Analyzer in a Cloud-Based Object-Oriented Programming
Environment, JaguarCode.”

This article is available in Journal of Cybersecurity Education, Research and Practice:
https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

INTRODUCTION
Cyber security, as a discipline, is continuously evolving to uncover, understand,
and predict similarly growing cyber threats. These attacks have been substantially
increased over the past years in terms of frequency, complexity, and severity.
Markettos et al discuss that we are facing crises with intensive security
vulnerabilities in the systems design of hardware, operating systems, and
applications (Markettos, 2019). They suggest that security must be ideally
considered from the ground up in order to build and manage complex
hardware/software systems constructed for new types of vulnerabilities. Saydjari
also advocates that engineers are responsible for designing and building safe and
secure systems, and encourage them to do so in partnership with system risk
analysis and management (Saydjari, 2019; Stamat, 2009). Yang et al have pointed
out that careless software design and implementations can cause a large number of
vulnerabilities and attacks on the application itself. Therefore, it is important to
stress that security is considered throughout the software development process.
Toward secure software assurance, programming concepts must be taught to
beginning programmers from a security perspective (Yang, 2018; Yang, 2019).
This could be exercised through defensive secure programming, secure coding, and
secure software development practices (Yuan 2016, Yang 2019).

Applications from secure coding practices can lead to quality software systems
that are safe, secure, and reliable. While there have been efforts to provide secure
coding guidelines and standards (Long, 2010; Long 2014; Seacord 2013; Yu 2011),
not many colleges and universities practice secure coding in their fundamental
programming courses. The ultimate goal of this study is to guide the fundamental
concepts of security and defensive programming from the freshman year.
Moreover, it aims to ensure that secure programming concepts are taught to
beginning programmers in order to build a strong cybersecurity foundation from
the ground up. The concepts learned in the foundation courses are applied to build
reliable software applications, which can be further enhanced and integrated with
secure software paradigms.

RELATED WORK AND BACKGROUND
Static code analysis is the process by which software developers review and
examine their code for problems and inconsistencies. Static code analysis tests
source code through scanning without executing, but after compiling. The source
code review is critical to enhancing software security through structured design,
code inspection, and peer review of the code. It can be integrated into the software
development process to help developers detect potential vulnerabilities at the early
stage of the development, reducing risks prior to a production environment.

1

Yang et al.: Evaluating and Securing Text-Based Java Code through Static Code Analysis

Published by DigitalCommons@Kennesaw State University, 2019

Through static code analysis, the quality of the code is increased. In order to
examine the code and identify security vulnerabilities, developers can either
manually analyze the code or leverage analysis tools. However, manually
examining the code to find security and performance bugs may have a relatively
high cost in both the time of the developers and complexity of vulnerabilities. The
code analysis can be done using static code analyzers - tools to assist in
identification of security vulnerabilities, which developers can use in examining
and analyzing their source code. Such example tools are FindBugs, Find Security
Bugs, Fortify, PMD, Lapse+, and SCALe. These tools examine the code and
automatically detect potential errors and bugs that pass through a compiler. While
proven effective, no tool to date is capable of perfect identification, and therefore
some errors may persist. Problems detected by these tools include unconditional
branches into loops, undeclared or uninitialized variables, parameter type
mismatches, uncalled functions and procedures, non-usage of function results,
possible array bound errors, and may others. These are logical errors,
vulnerabilities, and security issues that the compiler does not detect. Some tools
generate reports with graphical analysis results and recommend possible solutions
and suggestions. The use of the analysis tools will help developers mitigate
common coding errors that could negatively affect the efficiency of applications. It
can also speed up examining tasks with automation.

One critical point in recent literature is the integration of object-oriented
paradigms in the instruction of introductory programming. The work of Nordström
et al. discussed the flaws of common textbook examples and how to improve the
quality of examples. Their study revealed that the object-oriented quality of
examples is low (Nordström, 2011). A number of scholars noted that introductory
programming courses using the object-oriented paradigm are more complicated,
compared to the imperative/procedural paradigm (Sajaniemi, 2008; Bois, 2006;
Caspersen, 2007). When the object-oriented concepts are discussed, examples are
important for learning (Westfall, 2001; CACM, 2002; Dodani, 2003; CACM,
2005). Because, in the educational context, examples must be easy to understand
for learners, but still exemplary to act as role-models for the paradigm.

Textbooks can be a major source for examples of common programming
problems in introductory programming courses. Many textbook examples have
been evaluated through a large-scale study to capture technical, didactical and
object-oriented qualities (Börstler2, 2008). The particular needs of a novice being
introduced to object orientation were taken into account and some heuristics for the
design of object-oriented examples for novices were developed from those. The
discussion for teaching object orientation with examples is also initiated in Börstler,
2008, and the design of examples is specifically discussed in Nordström, 2010 and
Nordström, 2011.

2

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 1 [2019], Art. 3

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

RESEARCH GOALS
The goals of this research are 1) to detect regular and security-related bugs using
static code analysis tools from Java code in the textbooks, 2) to determine whether
currently taught programming practices are keeping pace with the dynamic security
landscape, and 3) to eliminate insecure coding practices and suggest secure coding
guidelines.

To achieve the goals and to promote effective learning with textbook examples,
this study uses open-source static analysis tools on the source code from two Java
textbooks used in colleges and universities for their freshman and sophomore level
programming courses: Text 1 - Starting Out with Java From Control Structures

through Objects, 7th Edition by Tony Gaddis (Gaddis, 2019) and Text 2 -

Introduction to Java Programming and Data Structures, Comprehensive Version,

11th Edition, by Y. Daniel Liang (Liang, 2019). The textbook selection is not based
on market adoption rates, but these books are used at the authors’ institution for
CS1/CS2 and Application Programming courses. There are also many public
universities in Texas that use Text 1 with the C++ or Java programming language.
Two analysis tools, FindBugs and Find Security Bugs are used to identify bugs and
vulnerabilities that are present in the text code. The scope of the analysis includes
common programming bugs that student developers most likely encounter with
security-related bugs being the highest priority for analysis.

CODE ANALYZER TOOLS

This research studies several static code analyzer tools by comparing the most
prevalent tools with their ease of use as well as their capability to detect real
problems in code. Choosing an easy-to-use analysis tool is essential to introduce to
beginner programmers, as it develops security knowledge in a way that does not
require the tool operator to have the same level of security expertise (Chess, 2002).
Both FindBugs and its extension, Find Security Bugs, were selected for having the
best qualifications related to the scope of this study due to the straightforward
instructions, easy to use functionalities, and their capability to check real problems.

FindBugs Comparisons with Other Tools
FindBugs is an established, highly configurable tool that allows loading custom
rulesets. The customizable rulesets can detect typical errors including security-
related checks (Static Code Analysis Tools, 2019). In a recent study, Oskouei et al
used three well-known open-source bug-finding tools, PMD, FindBugs, and
Checkstyle, to run and compare results on a variety of open-source Java programs.
They found that FindBugs uses data flow and syntactic analysis to detect bugs
categorized by a list of bug patterns (Oskouei, 2018) and it is expandable to allow

3

Yang et al.: Evaluating and Securing Text-Based Java Code through Static Code Analysis

Published by DigitalCommons@Kennesaw State University, 2019

users to add new bug patterns. Like PMD, it can be easily integrated with well-
known development environments such as Eclipse and IntelliJ IDEA. In a
comparison study of four Java static analysis tools (two commercials: Converity
Prevent and Jtest and two open-source: FindBugs and Jlint), FindBugs was found
the most discussed tool in the literature (Mamun, 2010). Probably because it is open
source. Among 27 Source Code Security Analyzers for Java programming
language, only seven of them are free open-source tools: FindBugs, Find Security
Bugs, Jlint, LAPSE, PMD, SpotBugs, and Yasca (Source Code Analyzers, 2019).

In another comparison of bug-finding tools for Java, Rutar et al applied five
bug-finding tools, Bandera, ESC/Java 2, FindBugs, JLint, and PMD, to a variety of
Java programs. They studied that FindBugs and JLint include dataflow components
to detect syntactic bug patterns while ESC/Java uses theorem proving, and Bandera
uses model checking. FindBugs also includes customizable rule sets and dataflow
components for security code analysis. Unlike other tools that focus on style and
formatting, FindBugs was created to find real bugs or potential performance
problems in code in reducing the number of false positives (Grindstaff, 2004).
According to an evaluation report, FindBugs is a good way to learn good coding
practices for Java, especially for the novice software engineer, which can help them
find common pieces of bad code and avoid them in the future (Analysis, 2009).

FindBugs gives correct results by uncovering potential vulnerabilities such as
null pointer dereferences, redundant comparisons to null, dead store to local
variables, synchronization errors, vulnerabilities to malicious code, and deadlock
situations present in the code (Charhar, 2012; Source Code Analyzers, 2019). Its
analysis outputs not only include the types of bugs found, but also describes what
the bug is in depth. It provides advice on how bugs can be fixed. While other static
analysis tools such as PMD and Lapse+ have similar capabilities, they do not
provide the full scope of our project requirements. Although PMD can successfully
detect common poor coding techniques and dead code such as null pointer
dereferencing, it does not catch injection vulnerabilities and unsafe development
practices (Mahmood, 2018; Charhar, 2012, Source Code Analyzers, 2019).

Due to the comprehensiveness of its analytical properties, the detailed output of
its analysis results, the easy to use and plugin functionalities, and good practice for
Java for novice programmers, FindBugs is selected in this study. Furthermore, no
previous study has evaluated the effectiveness of the Java static analysis tools for
textbook sample codes.

4

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 1 [2019], Art. 3

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

FindBugs and Find Security Bugs
FindBugs is a static code analysis tool for Java programs (FindBugs, 2018). It can
be a stand-alone and plugin program, which was originally designed to find
occurrences of similar bugs (Hovemeyer, 2005). FindBugs requires compiled code
first to detect bugs, which can contribute to obtain low false positives and detect
critical security-related bugs. FindBugs itself relates to the bugs of performance or
syntax. Whatever the interpreter or compiler won’t catch, FindBugs will usually
pick up. FindBugs-IDEA is a plugin for the IntelliJ IDEA IDE (IntelliJ, 2018). This
plugin allows for seamless integration of the tool into the IntelliJ environment,
providing various methods of analyzing Java programs. As a part of the plugin,
certain expansions can be added to increase functionalities. One such extension is
Find Security Bugs (Security Bugs, 2018). Find Security Bugs focuses on finding
security vulnerabilities of Java programs such as insecure usages of variables, SQL
injection vulnerabilities, pseudo-random number generators, and potential path
traversal (Bugs, 2018).

Figure 1 shows a screenshot of Find Security Bugs in action in the IntelliJ IDEA
environment showing bug detection for the sample code. From this, a user can
easily identify the main issues in the code: an internationalization regular bug and
a predictable random security bug as shown in areas (b) and (d) and their
corresponding code lines from areas (a) and (c) of the FindBugs-IDEA at the
bottom.

Figure 1. Find Security Bugs in Action in IntelliJ IDEA

(a)

(b)

(c)

(d)

5

Yang et al.: Evaluating and Securing Text-Based Java Code through Static Code Analysis

Published by DigitalCommons@Kennesaw State University, 2019

FindBugs Bug Patterns
When FindBugs is in action in analyzing source code, its reporting categorizes bug
patterns to Bad Practice, Correctness, Malicious Code Vulnerability, Performance,
Security, Dodgy Code, Multithreaded Correctness, Experimental, and
Internalization (FindBugs, 2018).

Bad Practice (B) code violates recommended and essential coding practices.
The examples of bad practice include equals problems, improperly formatted
strings, dropped exceptions, serializable problems, and misuse of finalizing. Dodgy
Code (D) is a confusing code that is anomalous or written in a way that can lead to
errors. Examples include dead local stores, unconfirmed casts, division overflows,
useless object creation, switch fall through, unconfirmed casts, and redundant null
check of value known to be null. Correctness Bugs (C) are probable bugs with
apparent coding mistakes that are probably not what developers intended. They can
produce unwanted results.

Performance (P) related inefficient code can cause performance degradation
and resource wasted. This could be software defects that lead to reduced
throughput, increased latency, and wasted resources. For example, when a class
contains an instance final field that is initialized to a compile-time static value, it
should be considered to be a static field. Unread fields that are never read can be
removed from the class. The examples of inefficient code include String
concatenation using + in a loop, inefficient new String() constructor invoked, and
inefficient number constructor invoke. This kind of code can be written differently
to improve performance.

Experimental (E) code can miss cleanup of streams, database objects, or other
objects that require a cleanup operation. For example, a method may fail to clean
up (close, dispose of) a stream, database object, or other resource requiring an
explicit cleanup operation. In general, if a method opens a stream or other resource,
the method should use a try/finally block to ensure that the stream or resource is
cleaned up before the method returns. Internationalization (I) code can inhibit the
use of international characters. Using a default encoding can lead to incompatibility
on systems with certain defaults. For example, when the default encoding is used
for the scanner input, the use of utf-8 can resolve the issue since the presence of
“utf-8” explicitly declares the encoding of the scanner.

While these bug patterns do not directly relate to security issues, it is still
important for students to know these bug patterns and practice the fundamental
concepts of defensive programming with them. For example, Dodgy code with the
improper use of division operations can lead to integer overflows. Detecting this
type of code will ensure programmers to use data types and their operations safely
to prevent integer errors and buffer overflows.

6

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 1 [2019], Art. 3

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

Find Security Bugs Bug Patterns
Find Security Bugs’ report categorizes its security bug patterns into Predictable
Random, Potential Path Traversal, Malicious Code Vulnerability, and SQL
vulnerability (Security Bugs, 2018).

When a Predictable Random (PR) value is used in a certain security-critical
context, it can lead to vulnerabilities. For example, when the value is used as a) a
Cross-Site Request Forgery (CSRF) token as a predictable token can lead to a CSRF
attack as an attacker may know the value of the token; b) a password reset token
sent by email - a predictable password token can lead to an account takeover since
an attacker can guess the URL of the password form: c) any other secret value.

Path Traversal (PT) is known as a directory traversal that can access files and
directories that are outside the system. This path traversal issue can be alerted
from/to reading/writing a file whose location is specified by user input with the
filename comes from an input parameter. With Malicious Code Vulnerability
(M), code can be maliciously changed by other code. Malicious code can cause
undesired effects, security breaches or damages to a system. For example, a method
may expose internal representation by storing an externally mutable object.

 SQL queries can lead to SQL Injections (S), in which input values in the
queries can be unsafely passed. A vulnerability occurs when the original SQL query
can be altered to make a different query and the execution of the altered query result
in data leaks or modification.

For instance, a database contains user names and passwords that have a string
size limit of 8 and 20 respectively. A SQL command to authenticate a user takes
the form SELECT * FROM users WHERE username = ‘<USERNAME>’ AND
password = ‘<PASSWORD>’ returns records where the user names and passwords
are valid.

If attackers can substitute arbitrary strings of <USERNAME> and
<PASSWORD>, they can perform a SQL injection for <USERNAME> when
injected into the command with: SELECT * FROM users WHERE username =
‘validuser’ OR ‘1’ = ‘1’ AND password = ‘<PASSWORD>’.

 If ‘validuser’ is a valid user name, this statement selects all validuser records
in the database table without checking their passwords. The attackers can log in
without a correct username and password as the ‘1’ =‘1’ tautology can disable both
username and password validation. Therefore, sanitizing and validating untrusted
input and parameterizing queries are very important to prevent SQL injection
vulnerabilities.

7

Yang et al.: Evaluating and Securing Text-Based Java Code through Static Code Analysis

Published by DigitalCommons@Kennesaw State University, 2019

The Texts
Text 1 - Starting out with Java: From Control Structures through Objects (Gaddis,
2019), was used to analyze the source code throughout all 12 chapters, as it
represents the most modern example of beginner Java concepts being taught across
colleges and universities. Text 2 - Introduction to Java Programming and Data

Structures, Comprehensive Version (Liang, 2019) was also used for the analysis:
16 chapters for beginner Java concepts classified into six groups as shown in Table
1, and 14 later chapters for advanced Java concepts classified into additional seven
groups in Table 5. Java source code from Chapters 12, 13 and 14 in Text 1 and
Chapters 14, 15, and 16 in Text 2 were excluded from the data analysis as they
cover JavaFX with controls, graphics, effects, and media for GUI programming.

RESEARCH METHODS AND RESULTS

To determine whether the currently taught programming practices keep pace with
the dynamic security landscape, this section reports the results of the static code
analysis of Java code from two textbooks. The analysis used a certain amount of
classification of datum with Java code segments examined and the type of bugs
found by the code analyzer. Certain cases had to also be considered, such as
programs with a regular bug and a security bug, the scope of bug finding for Find
Bugs and Find Security Bugs, the precedence of bugs in the final analysis, and the
definition of the categories for data gathering.

Grouping and Data Collection for Beginner Java Concepts
The groups were composed based on similar topics of the source code in the
consecutive chapters (Table 1). Most topics in Groups 1 through 5 are being taught
in CS1 and CS2 courses. As the goal was to look for the presence of bugs, when
analyzing the code, the data was classified and collected into two different
categories: Regular Bugs and Security Bugs. Considering the purpose of the
analysis, security Bugs have precedence over Regular Bugs due to the larger
implications of potential security-related information/data leaks in the code.

The analysis was conducted with the Java code examples throughout the two
textbooks. As the title of the books indicate, while Text 1 covers fundamental Java
concepts from control structures to objects, and beyond, Text 2 covers Data
Structures concepts as well as the fundamentals. It should be noted that there were
intentionally incomplete code examples. Therefore, the analysis results have
considered this and adjusted themselves accordingly. When these cases were
encountered, the Java program was considered to be bug-free due to developer
intent.

8

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 1 [2019], Art. 3

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

Group Text 1 Text 2

Ch. Content Ch. Content
1. Fundamentals,

Control
Structures,
Methods

2 Java Fundamentals 2 Elementary Programming
3 Decision Structures 3 Selections
4 Loops and Files 4 Mathematical Functions,

Characters, and Strings
5 Methods 5 Loops

6 Methods
2. Arrays 7 Arrays and ArrayList Class 7 Single Dimensional Arrays

8 Multidimensional Arrays
3. OOP 6 A first Look at Classes 9 Objects and Classes

8 A Second Look at Classes
and Objects

10 Object-Oriented Thinking

9 Text Processing and More
about Wrapper Classes

11 Inheritance and Polymorphism

10 Inheritance 13 Abstract Classes and Interface
4. File I/O 11 Exceptions and Advanced

File I/O
12 Exception Handling and Text I/O
17 Binary I/O

5. Recursion 15 Recursion 18 Recursion
6. Databases 16 Databases 34 Java Database programming

35 Advanced Database programming

Table 1: Texts Group Composition

Discussions
A total of 227 files were scanned throughout 12 Chapters of Text 1 and 184 files
were scanned throughout 18 Chapters of Text 2. The books use modern examples
of Java concepts being taught across colleges and universities. The source code data
was classified into two categories based on their bug patterns - Regular Bugs and
Security Bugs. Tables 2 and 3 show the number of each bug pattern in each of these
categories for each chapter of Texts 1 and 2 respectively.

The analysis results of Text 1 indicate that 46.56% (61 out of 131) of the bugs
found are internalization bugs in the regular category and 42.1% (8 out of 19) of
the security bugs found are related to predictable random. Chapter 16 Databases
has the most bugs (25 out of 131) in the regular category (19.09%). The analysis
results of Text 2 show that 48.59% (69 out of 142) of the bugs found are also
internalization bugs in the regular category and 76.92% (10 out of 13) of the
security bugs found are related to SQL Injections from Chapters 34 and 35 for
Database Programming. Chapter 12 Exception Handling and Text I/O has the most
bugs (30 out of 142) in the regular category (21.13%).

9

Yang et al.: Evaluating and Securing Text-Based Java Code through Static Code Analysis

Published by DigitalCommons@Kennesaw State University, 2019

Gr. Ch. No.
Files

Regular Bugs Security Bugs
 I D B C P E Total PR PT M S Total

1 2 33 5 0 0 0 0 0 5 0 0 0 0 0
3 24 11 1 6 0 0 0 18 0 0 0 0 0
4 25 14 1 3 0 0 0 18 2 4 0 0 6
5 16 1 0 1 0 0 0 2 0 1 0 0 1

2 7 33 9 2 2 0 0 0 13 0 0 1 0 1
3 6 18 1 1 1 0 0 0 3 4 0 0 0 4

8 9 1 0 2 2 0 0 5 0 0 0 0 0
9 13 5 0 1 0 0 0 6 0 1 0 0 1
10 17 6 2 1 2 8 0 19 0 0 0 0 0

4 11 17 6 4 1 2 1 0 14 2 0 0 0 2
5 15 12 1 2 0 0 0 0 3 0 0 0 0 0
6 16 10 1 0 4 0 2 18 25 0 0 0 4 4
Total 227 61 13 22 6 11 18 131 8 6 1 4 19

Table 2: Regular and Security Bugs in Chapters for Text 1

Gr. Ch.

No.
Files

Regular Bugs Security Bugs
I D B C P E Total PR PT M S Total

1 2 10 8 0 3 0 0 0 11 0 0 0 0 0
3 9 9 1 0 0 2 0 12 0 0 0 0 0
4 7 5 0 1 0 1 0 7 0 0 0 0 0
5 15 9 0 1 0 5 0 15 0 0 0 0 0
6 12 3 1 1 0 0 0 5 0 0 0 0 0

2

7 10 1 2 0 0 0 0 3 0 0 0 0 0
8 6 5 0 0 0 0 0 5 0 0 0 0 0

3

9 11 1 2 1 0 0 0 4 0 0 0 0 0
10 10 2 0 1 0 0 0 3 0 0 0 0 0
13 16 0 0 8 0 2 0 10 0 0 2 0 2
11 10 1 0 0 1 0 0 2 0 0 1 0 1

4

12 22 18 4 8 0 0 0 30 0 0 0 0 0
17 8 0 0 0 0 1 0 1 0 0 0 0 0

5

18 9 4 2 0 0 0 0 6 0 0 0 0 0
19 14 0 1 0 0 2 0 3 0 0 0 0 0

6

34 7 1 0 6 0 0 6 13 0 0 0 8 8
35 8 2 0 3 0 1 6 12 0 0 0 2 2

Total 184 69 13 33 1 14 12 142 0 0 3 10 13

Table 3: Regular and Security Bugs in Chapters for Text 2

10

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 1 [2019], Art. 3

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

The first categorized group, Fundamentals, Control Structures, and Methods
had a significantly larger bug rate in Text 2 (77%) compared to Text 1 (38%) even
though the number of files scanned in Text 1 was greater than Text 2. However,
there were a few security bugs found (7%) with regular bugs being the most
common issues (93%), such as internationalization, dodgy code, and performance
errors.

Group 2 (Arrays) had a relatively small number of bugs found with bugs rates
at 33% and 25% for Texts 1 and 2 respectively. There was one security bug found
in this group that posed as a possible vulnerability that could reveal internal
information from the method used by storing an externally mutable object. The
latter of the bugs were common-type bugs related to improper programming
practices. For instance, there was dodgy code where a switch case fell through due
to not implementing the default case. Upon examining Group 3 (Object-Oriented
Programming), the number of bugs found within Text 1 was far more surmountable
than the bugs found in Text 2. This is reflected when examining the bug rates, 54%,
and 34%, for Texts 1 and 2, respectively. Despite having more or fewer bugs, the
texts shared a commonality with the types of bugs discovered. The most notable
bug found was a security bug related to a malicious code vulnerability where the
method called was returning an array that may expose internal representation.

In Group 4 (File I/O), there were a few security bugs identified, but the large
portion of the bugs in this group were regular common-type bugs. These varied
from simple bugs such as bad practice or correctness, which ranged from using
default encoding like the Scanner class to implementation issues of methods being
used. The regular bugs discovered here attributed to most of the weight when
computing the bug rate, which resulted in the second-highest rate (62.5%).
Subsequently, Group 5 (Recursion) reported that no security bugs were discovered.

Figure 2: Textbooks Comparisons of Bug Rates in Groups

0.00%

20.00%

40.00%

60.00%

80.00%

1 2 3 4 5 6 Total

Comparision of Bug Rates in Groups

Text 1 Text 2

11

Yang et al.: Evaluating and Securing Text-Based Java Code through Static Code Analysis

Published by DigitalCommons@Kennesaw State University, 2019

Figure 2 and Table 4 provide an overview of regular bugs and security bugs
found in the combined texts by grouping the chapters into 6 groups. After the
grouping process, a bug rate was calculated to determine the percentage of bugs
occurring in each group. Bug rate was computed by dividing the number of bugged
files with the number of files scanned for each group. In this manner, the likeliness
of similar bugs occurring in other previous or future texts can be generally
estimated. This group also had the lowest percentage when comparing bug rates
across all groups with only ~26% overall. The few bugs that were found included
simple bugs such as extraneous objects being stored into variables and possible null
pointer dereferencing due to the return values when calling the implemented
method.

Gr. Text # of Regular
Bugs

of Security
Bugs

Total #
of Bugs

of Files
with Bugs

of Files
Scanned

Bug
Rate

1 1 43 7 50 38 98 38.78%
2 50 0 50 41 53 77.36%

Total 93 7 100 79 151 52.31%
2 1 13 1 14 11 33 33.33%

2 8 0 8 4 16 25.00%
Total 21 1 22 15 49 30.61%

3 1 33 5 38 31 57 54.39%
2 19 3 22 16 47 34.04%

Total 52 8 60 47 104 45.19%
4 1 14 2 16 10 18 55.56%

2 31 0 31 20 30 66.67%
Total 45 2 47 30 48 62.5%

5 1 3 0 3 2 12 16.7%
2 9 0 0 7 23 30.43%

Total 12 0 3 9 35 25.71%
6 1 25 4 29 7 10 70.00%

2 25 10 35 11 15 73.33%
Total 50 14 64 18 25 72%

Total 1 131 19 150 99 228 44.42%
2 142 13 155 99 184 53.80%

Total 273 32 305 198 412 48.06%

Table 4: Bug Rates in Groups

Group 6 (Databases) was the most peculiar concerning security bugs with a high
probability of these types of bugs occurring throughout both Texts. These bugs
were produced when non-constant strings were being passed to execute methods
involving SQL statements, which were discovered to be at risk due to an SQL
injection vulnerability. SQL injection is one of the most common threats to be
considered since it is the most used language to communicate with databases.

12

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 1 [2019], Art. 3

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

While this section had the highest bug rates (72%), the latter number of bugs
were regular type bugs that comprised mostly of cleaning up and closing database
resources after being used which could present another opportunity for
vulnerabilities. Overall, the first text revealed a relatively moderate bug rate of
44.42% with thirteen percent of security bugs. The second text produced a slightly
larger bug rate of 53.80% with approximately eight percent of security bugs. After
combining the texts for an average rate, the total number of security bugs that were
likely to appear was roughly ten percent. This encompasses security bugs such as
malicious code vulnerabilities and security vulnerabilities related to exposing or
manipulating data in these programs.

The most interest in the results is that 77.36% (41 out of 53) of the elementary
programming source code in Group 1 of Text 2 contains 100 bugs (93 regular bugs
and 7 security bugs). The second most interested group is that 70% (7 out of 10) of
the database-related source code in Group 6 of Text 1 contains 25 bugs. It was
observed that a CoffeeDBManager.java class with six methods implemented in it
contains 11 regular experimental and 4 security bugs. That class performs
operations on the coffee database using ‘select’ and ‘insert’ SQL queries and
ArrayList. 48.06% of the files from both Texts contain bugs while many have
multiple different types of bug patterns. In summary, 305 bugs were found from
198 Java files out of 412 files scanned.

The pie chart in Figure 3 represents the percentage of bugs found in both Text
1 and Text 2’s groups that were combined to get an average bug rate to obtain an
overview of how many bugs were discovered for each. By classifying the groups
with similar chapters involved, the distribution of bugs throughout the texts was
analyzed further. For instance, when comparing Groups 5 and 6, (Recursion and
Database), a drastic difference in bug rates occurred. While they have a similar
number of files scanned, the Database grouping is much more likely to produce
bugs whether they are regular or security bugs. This high percentage indicates that
there should be a review of the chapters in this group to prevent future programmers
from replicating these errors.

Figure 3: Percentage of Bugs Found in Groups

52.31%

30.61%

45.19%

62.50%

25.71%

72%

Percentage of Bugs Found in Groups

1. Fundamentals, Control
Structures, & Methods
2. Arrays

3. OOP

4. File I/O

5. Recursion

6. Database

13

Yang et al.: Evaluating and Securing Text-Based Java Code through Static Code Analysis

Published by DigitalCommons@Kennesaw State University, 2019

Grouping and Data Collection for Advanced Java Concepts
The advanced topics covered in Text 2 were classified into a multitude of groupings
with corresponding chapters as shown in Table 5. Several subgroups were formed
due to the text having multiple chapters covering an extensive amount of Data
Structures and Algorithms such as trees, graphs, and sorting algorithms. Most of
these topics are appropriate to be taught in CS2 and/or Data Structures courses.
Again, the code analysis looked for the presence of bugs with classified categories:
Regular Bugs and Security Bugs.

Text 2 Group Ch. Content
7. Fundamentals Data

Structures
20 Lists, Stacks, Queues, and Priority Queues
21 Sets and Maps
24 Implementing Lists, Stacks, Queues, and Priority Queues

8. Algorithms 22 Developing Efficient Algorithms
23 Sorting
27 Hashing

9. Trees 25 Binary Search Trees
26 AVL Trees

10. Graphs 28 Graphs and Applications
29 Weighted Graphs and Applications

11. Collection Streams 30 Aggregate Operations for Collection Streams
12. Networking & Parallel

Programming
32 Multithreading and Parallel Programming
33 Networking

13. Internationalization 36 Internationalization

Table 5: Group Composition for Advanced Topics in Text 2

Discussions
A total of 119 files were scanned throughout 14 Chapters of Text 2. These book
chapters use modern examples of advanced Java concepts being taught for CS2 and
Data structures courses. The source code data was also classified into two
categories: Regular Bugs and Security Bugs. Table 6 displays the number of each
bug pattern found in each of these categories for each chapter for advanced topics
in Text 2. The analysis results indicate that 46.57% (34 out of 73) of the bugs found
are performance and inefficient code related bugs in the regular category and only
3 malicious code vulnerability bugs were found from the group 10 Graphs and
Applications in the security category. While these trends are somehow different
from the bug findings for the beginner Java concepts, Bad Practice codes
consistently present throughout the chapters in both Texts (Text 1: 22/131, Text 2:
33/142 for beginner topics and 22/72 for advanced topics).

14

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 1 [2019], Art. 3

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

Gr.

Ch.

No.
Files

Regular Bugs Security Bugs
I D B C P E Total PR PT M S Total

7 20 11 0 0 2 0 3 0 5 0 0 0 0 0
21 9 2 1 0 0 0 0 3 0 0 0 0 0

 24 9 0 0 3 0 0 0 3 0 0 0 0 0
8 22 8 6 0 2 0 0 0 8 0 0 0 0 0

23 8 0 0 2 0 1 0 3 0 0 0 0 0
 27 5 0 0 0 0 1 0 1 0 0 0 0 0
9 25 8 1 0 3 0 1 0 5 0 0 0 0 0
 26 2 0 1 0 0 0 0 1 0 0 0 0 0

10 28 13 1 0 6 0 6 0 13 0 0 2 0 2
 29 6 1 0 2 0 2 0 5 0 0 1 0 1

11 30 12 4 0 2 0 0 0 6 0 0 0 0 0
12 32 10 0 0 0 0 9 0 9 0 0 0 0 0
 33 10 0 0 0 0 7 0 7 0 0 0 0 0

13 36 8 0 0 0 0 4 0 4 0 0 0 0 0
Total 119 15 2 22 0 34 0 73 0 0 3 0 3

Table 6: Regular and Security Bugs for Advanced Topics in Text 2

With the seven groups established, the bug rate was computed across each and
the results identified the distribution of bugs throughout this section. While the
groups can be examined individually, they were analyzed as an overall group for
advanced topics. This resulted that the advanced topic groups had a total bug rate
of about 37% with approximately 4% of security bugs detected. Figure 4 displays
the distribution of bugs found in the advanced topics for Text 2. Upon examination,
Group 11 Collection Streams has a comparatively high bug rate (50%), but the
types of errors discovered in this group did not pose a serious threat regarding
security. However, after reviewing Group 10 Graphs, the second-highest bug rate
(47.37%), a series of security bugs were revealed that implicates a risk of
vulnerabilities such as exposing internal information being stored within the files.

Gr.

of Regular
Bugs

of Security
Bugs

Total #
of Bugs

of Files
with Bugs

of Files
Scanned

Bug
Rate

7 11 0 11 9 29 31.03%
8 12 0 12 9 21 42.86%
9 6 0 6 2 10 20.00%

10 18 3 21 9 19 47.37%
11 6 0 6 6 12 50.00%
12 16 0 16 7 20 35.00%
13 4 0 4 2 8 25.00%

Total 73 3 76 44 119 36.97%

Table 7: Bug Rates in Groups for Advanced Topics in Text 2

15

Yang et al.: Evaluating and Securing Text-Based Java Code through Static Code Analysis

Published by DigitalCommons@Kennesaw State University, 2019

Figure 4: Percentage of Bugs Found in Groups for Advanced Topics in Text 2

CASE STUDY WITH COMPLIANT-CODE EXAMPLES
This section presents several case studies in converting non-compliant code with
bugs found by the analysis to compliant code without bugs. These case studies with
the compliant code can guide instructors and students to better equip
teaching/learning secure programming toward reliable software development. Each
case study is also interpreted in terms of the 2019 common 25 bug patterns
suggested by CWE (CWE, 2019). APPENDIX A provides more examples of each
category of bugs identified.

Case Study 1: Bad Practice in Regular Category
This case study explains the example of regular bugs. The code snippet in Figure 5
has a type of Bad Practice that has been identified as a problem with the
implementation of the compareTo method in ComparableRectangle.java in Chapter
13 of Text 2. The issue with the compareTo method is that the comparison
statements do not handle the special cases for double or float values correctly at
lines 26 and 28. For example, if the values -0.0 or NaN were passed into this
method, then an incorrect result may be displayed.

Figure 5: Bad Practice Example

31.03%

42.86%

20.00%

47.37%

50.00%

35.00%

25.00%

Percentage of Bugs in Groups

7. Data Structures

8. Algorithms

9. Trees

10. Graphs

11. Collection Streams

12. Networking & Parallel
Programming
13. Internationalization

// Compliant Code
if (Double.compare(this.getArea(), o.getArea()) > 0)
 return 1;
else if (Double.compare(this.getArea(), o.getArea()) < 0)
 return -1;

16

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 1 [2019], Art. 3

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

To resolve the issue with the compareTo method, the Double.compare method
was used to replace the condition checks and handle the special cases correctly such
as -0.0 and NaN. If these cases were left unhandled, then the return value of the
area would return a negative value, which implies that an overflow also occurred
in the stack. This would allow someone with malicious intent to exploit this
vulnerability by causing additional overflow errors to retrieve verbose error
messages. This bug is related to CWE-20: Improper Input Validation and CWE-
119: Improper Restriction of Operations within the Bounds of a Memory Buffer
(CWE, 2019).

Case Study 2: Performance in Regular Category
This case study examines an example of non-compliant code that has a Performance
related bug detected in HuffmanCode.java in Chapter 25 from Text 2. The Tree
class in Figure 6 defines a Huffman coding tree. The issue represented from this
code is about an inner public class, Node, which is nested inside the public static
Tree class. While it demonstrates the proper structure for a class, it does not use its
embedded references, left and right, to the object, which it defined. This reference
makes the instances of the inner class, Node, and may keep the reference to the
creator object alive longer than necessary. Thus, the more node objects that the
inner class instantiates, the more of an effect it will have on performance. This bug
is related to CWE-200: Information Exposure (CWE, 2019).

Figure 6: Performance Example

The solution to this performance issue was to refactor the inner class to be a
static class (public static class Node at line 105). This allows the inner class, Node,
to still be accessed by the outer class, Tree, but limits the usage of the class’s data
members and methods, which increases its efficiency.

Case Study 3: SQL Injection in Security Category
This case study describes an example of non-compliant code that has a security bug
detected in Text 2 in FindGrade.java in Chapter 34. The code results in a potential
SQL injection problem as the SQL statement is being passed with a string that is
being generated dynamically at line 77 in Figure 7.

// Compliant Code
public static class Node {…}

17

Yang et al.: Evaluating and Securing Text-Based Java Code through Static Code Analysis

Published by DigitalCommons@Kennesaw State University, 2019

This bug is related to CWE-89: Improper Neutralization of Special Elements used
in an SQL Command ('SQL Injection') (CWE, 2019).

Figure 7: SQL Injection Example

To resolve this issue, a Prepared Statement is recommended in the original
statement’s place to make it less vulnerable to SQL injection attacks at line 39. The
advantage of using a Prepared Statement is that when it is executed, the DBMS can
just run the prepared SQL statement without having to compile first. In the original
code, the object being used to create a statement was derived from the Statement
class as a global variable. This object was changed to a Prepared Statement object
that inherits the Statement class and then type-casted when the statement is being
created. This approach resolved the security bug found in this program and made it
less vulnerable to SQL injection attacks.

Case Study 4: Potential Path Traversal in Security Category
This case study examines an example of a non-compliant code that has a security-
related bug detected in FileWriteDemo2.java in Chapter 4 from Text 1. It depicts
the issue involving the creating of a File object and passing the filename into the
input parameter, which is demonstrated at line 35 in Figure 8. If an unfiltered
parameter is passed to this file API, then files in an arbitrary file system location
could be altered or modified. The vulnerability discovered, a potential path traversal
attack, aims to access files and directories that are stored outside the web root folder
and this vulnerability can manipulate variables that reference files with “dot-dot-
slash” sequences with the purpose of targeting application source code or
configuration and critical system files. This bug is related to CWE-22: Improper
Limitation of a Pathname to a Restricted Directory ('Path Traversal') (CWE, 2019).

// Compliant Code
stmt = (PreparedStatement) connection.createStatement();

18

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 1 [2019], Art. 3

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

Figure 8: Potential Path Traversal Example

To resolve this issue of file path traversal, line 35 was refactored to utilize the
FilenameUtils class from the Apache Commons IO library (version 2.6) and pass
the filename through the getName() method so that it only returns the filename
minus the path from the full filename, keeping the access file relative to the current
working directory. This would prevent the manipulation of web root folders and the
files that hold the configurations or critical system files. This solution also helps
when moving from a Windows-based development machine to a Unix based
production machine.

LIMITITATIONS
This study has limitations because the code analysis has only been conducted for
simple Java code from two textbooks at a small scale. Only two tools were used,
which can reduce the potential breadth of the analysis. FindBugs software has not
been updated since 2013. This limits the scope of analysis to JDK 1.8. Moreover,
the results of the analysis rely on only those bug categories supported by FindBugs
and Find Security Bugs. Just relying on one form of static code analysis may result
in a large number of false positives or negatives and it is difficult to verify all of
the results. In both Texts, a large number of Internalization bugs (14 in chapter 4
for Text 1 and 18 in chapter 22 for Text 2) were found.

Most of them relate to a Scanner method with input streams. Whereas the
internationalization bug in these cases refers to the Scanner.in using a default
encoding method that has not been stated explicitly, leading to possible problems
later down the line. Therefore, the code should be imported to a machine using a
different character-encoding standard. Furthermore, by declaring UTF-8 explicitly
to specify an explicit charset, the issue can be resolved. Most of the Bad Practices
bugs relate to format strings using ‘\n’. These can be simply fixed by using ‘%n’.

// Compliant Code
File file = new File(FilenameUtils.getName(filename));

19

Yang et al.: Evaluating and Securing Text-Based Java Code through Static Code Analysis

Published by DigitalCommons@Kennesaw State University, 2019

This study can be improved by conducting more analysis using SpotBugs,
which is a successor of FindBugs with updated bug patterns, as well as many other
static and dynamic tools. Additional research could also incorporate the latest JDK
versions and their respective new features. In addition, the size of the dataset
analyzed is not thoroughly comprehensive to make a concrete conclusion about
education about secure Java programming practices at large.

CONCLUSIONS AND FUTURE WORK
This study, through the static code analysis, examined regular and security bugs in
Java code from the two textbooks used for fundamental programming courses at a
college level. Overall, the first text revealed a relatively moderate bug rate of
approximately 44% of files analyzed contained either regular or security bugs.
Some have both. About 13% of the total bugs found were security bugs and the
most common security bug was related to the Pseudo Random security
vulnerability. 87% of the total bugs found were regular bugs with the most common
bugs related to Internalization. The second text produced a slightly larger bug rate
of 53.80% with approximately 8% of security bugs. After combining the texts for
an average rate, the total of security bugs that were likely to appear was roughly
10% percent. This encompasses security bugs such as malicious code
vulnerabilities and security vulnerabilities related to exposing or manipulating data
in these programs.

Remarkably, 77.36% (41 out of 53) of the elementary programming source code
in Group 1 of Text 2 contains bugs (93 regular and 7 security bugs) and 70% (7 out
of 10) of the database-related source code in Group 6 of Text 1 contains bugs (25
regular ad 4 security bugs). In summary, 305 bugs were found from 198 Java files
out of 412 files scanned from both textbooks for beginning Java concepts. This
analysis takes into account edge cases as well as removal of false positives from
the final analysis results of the big groups. While the code analysis is a good start,
there is significant research remaining on secure coding practices and common
coding practices in general.

The advanced topic groups from Text 2 had a total bug rate of about 37% with
approximately 4% of security bugs detected. The Collection Streams group has a
comparatively high bug rate (50%), but the types of errors discovered in this group
posed no serious security threat. However, the Graphs group demonstrated the
second-highest bug rate (47.37%), in which a series of security bugs were revealed.
This implies a risk of vulnerabilities, such as exposure of internal information
stored within the files.

20

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 1 [2019], Art. 3

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

Future work includes reducing and resolving all of the detected errors, finding
which bugs types have more serious issues in potential data leaks, and determining
how to resolve the issues. Source code analysis will be expanded to broader
domains and tools for advanced courses such as Database Systems, Computer
Networks, Computer Security, and Software Engineering. A fixed code can be
shared as a guideline for instructors of courses covering the foundational and
advanced CS concepts with security concepts incorporated. Experimental studies
will also be conducted to gather some quantitative and qualitative feedback from
students to apply the tools while practicing the code in classrooms. More
importantly, as Cheridari et al found false positives in 9 out of 21 systems using
FindBugs in their study (Cheridari, 2018), verification studies will be conducted to
identify false positives or negatives in the results from this analysis.

REFERENCES
Analysis of Software Artifacts, An Evaluation of FindBugs, Collection of unsound bug detectors

for Java. (2009). Retrieved from
http://www.cs.cmu.edu/~aldrich/courses/654/tools/Sandcastle-FindBugs-2009.pdf.

Barrientes, C., Yang, J., Sanchez, J., & Kim, Y. (2018). Source Code Analysis for Secure
Programming Practices. IEEE International Conference on Computational Science and

Computational Intelligence, 2018.

Bois, D. B., Demeyer, S., Verelst, J., and Temmerman, T. M. M. (2006). Does god class
decomposition affect comprehensibility? In Kokol, P., editor, SE 2006 International Multi-
Conference on Software Engineering, pages 346–355. IASTED.

Börstler J., Nordström M., KallinWestin L., Moström J-E., and Eliasson J., "Transitioning to
OOP/Java – A Never Ending Story", In Reflections on the Teaching of Programming, M.
Kölling, J. Bennedsen, and M. Caspersen, Eds. Lecture Notes in Computer Science, vol. LNCS
4821. Springer, 86-106.

Börstler, J., Christensen, H. B., Bennedsen, J., Nordström, M., Kallin Westin, L., Moström, J.-E.,
and Caspersen, M. E. Evaluating OO example programs for CS1. In ITiCSE ’08: Proceedings
of the 13th annual conference on Innovation and technology in computer science education,
pages 47–52, New York, NY, USA. ACM.

Bugs Patterns. (2018). Retrieved in November 6, 2018. Retrieved from https://find-sec-
bugs.github.io/bugs.htm.

CACM. 2002. Hello, world gets mixed greetings. Communications of the ACM 45, 2, 11–15.

CACM Forum. 2005. For programmers, objects are not the only tools. Communications of the ACM
48, 4, 11–12.

Caspersen, M. E. (2007). Educating Novices in The Skills of Programming. PhD thesis, University
of Aarhus, Denmark.

Chahar, C., Chauhan, V. S., & Das, M. L. (2012). Code Analysis for Software and System Security
Using Open Source Tools. Information Security Journal: a Global Perspective, 21, 6, 346-352.

21

Yang et al.: Evaluating and Securing Text-Based Java Code through Static Code Analysis

Published by DigitalCommons@Kennesaw State University, 2019

http://www.cs.cmu.edu/~aldrich/courses/654/tools/Sandcastle-FindBugs-2009.pdf
https://find-sec-bugs.github.io/bugs.htm
https://find-sec-bugs.github.io/bugs.htm

Cheirdari, F. and Karabatis, G. (2018). Analyzing False Positive Source Code Vulnerabilities
Using Static Analysis Tools. 2018 IEEE International Conference on Big Data (Big Data),
Seattle, WA, USA, 2018 pp. 4782-4788. doi: 10.1109/BigData.2018.8622456.

Chess, B., & McGraw, G. (2004). Static analysis for security. Ieee Security & Privacy

Magazine, 2, 6, 76-79.
CWE Top 25 Most Dangerous Software Errors. (2019). Retrieved from http://cwe.mitre.org/top25/.

Dodani, M. H. 2003. Hello world! goodbye skills! Journal of Object Technology 2, 1, 23–28.

FindBugs™ - Find Bugs in Java Programs. (2018). Retrieved from http://findbugs.sourceforge.net.

Find Security Bugs™. Retrieved from https://find-sec-bugs.github.io/.

Hovemeyer, D. H. (2005). Simple and Effective Static Analysis to Find Bugs, Ph.D. Dissertation.
University of Maryland.

IntelliJ IDEA: The Java IDE for Professional Developers by JetBrains. (n.d.). (2019).
Retrieved from https://www.jetbrains.com/idea/download/#section=windows.

Gaddis, T. (2019). Starting out with Java: From control structures through objects (7th ed.). New
York, NY: Pearson Education.

Grindstaff, C. (2004). Improve the Quality of Your Code. Received from
https://www.ibm.com/developerworks/java/library/j-findbug1/.

Liang, Y. D. (2019). Introduction to Java Programming and Data Structures, Comprehensive
Version, 11th Edition, New York, NY: Pearson Education.

Long, F., Mohindra, D., Seaccrd, R. C., Sutherland, D. F., & Svoboda, D. (2012). The CERT Oracle
Secure Coding Standard for Java. Addison-Wesley.

Long, F., Mohindra, D., Seaccrd, R. C., Sutherland, D. F., & Svoboda, D. (2014). Java Coding
Guidelines. Addison-Wesley.

Mahmood, R., & Mahmoud, Q. H. (2018). Evaluation of Static Analysis Tools for Finding
Vulnerabilities in Java and C/C Source Code. Retrieved October 09, 2018. Retrieved from
https://arxiv.org/abs/1805.09040v2.

Mamun, Md Abdullah & Khanam, Aklima & Grahn, Håkan & Feldt, Robert. (2010). Comparing
Four Static Analysis Tools for Java Concurrency Bugs. Third Swedish Workshop on Multi-
Core Computing (MCC-10).

Markettos, A. T., Watson, R. N. M., Moore, S. W., Sewell, P., & Neumann, P. G. (2019). Through
Computer Architecture, Darkly, Communications of the ACM, Vol. 62 No. 6, Pages 25-27,
10.1145/332528.

Nordström M., and Börstler J. (2010). Heuristics for Designing Object-Oriented Examples for
Novices. Submitted to ACM Transactions on Computing Education (TOCE).

Nordström M., and Börstler, J. (2011). Improving OO Example Programs. Submitted to IEEE
Transactions on Education, VOL. 54.

Oskouei, Elmira Hassani and Kalıpsız, Oya (2018): Comparing Bug Finding Tools for Java Open
Source Software. Journal Contribution.

22

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 1 [2019], Art. 3

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

http://cwe.mitre.org/top25/
http://findbugs.sourceforge.net/
https://find-sec-bugs.github.io/
https://www.jetbrains.com/idea/download/#section=windows
https://www.ibm.com/developerworks/java/library/j-findbug1/

Rutar, N., Almazan, C. B. and Foster, J. S. (2004). A comparison of bug finding tools for Java. 15th
International Symposium on Software Reliability Engineering, Saint-Malo, Bretagne, 2004, pp.
245-256. doi: 10.1109/ISSRE.2004.1.

Sajaniemi, J. and Kuittinen, M. (2008). From procedures to objects: A research agenda for the
psychology of object-oriented programming education. Human Technology, 4(1):75—91.

Saydjari, O. Sami. (2019). Engineering Trustworthy Systems: A Principled Approach to
Cybersecurity. Communications of the ACM, Vol. 62 No. 6, Pages 63-69, 10.1145/3282487.

Seacord, R. C. (2013). Secure Coding in C and C++. Addison-Wesley.

Static Code Analysis Tools. (2019). Retrieved from
https://security.web.cern.ch/security/recommendations/en/code_tools.shtml.

Source Code Security Analyzers. (2019). Retrieved in July 2019. Retrieved from
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html.

Stamat, M. L. & Humphries, J. W. (2009). Training ≠ Educating Secure Software Engineering Back
in the Classroom. WCCCE ’09 May 1-2, 2009, Burnaby, BC, Canada. ACM 978-1-60558-415-
7.

Westfall, R. (2001). ’hello, world’ considered harmful. Communications of the ACM, 44(10):129–
130.

Yang, J., Lodgher, A., & Lee, Y. (2018). Secure Modules for Undergraduate Software Engineering
Courses. 2018 IEEE Frontiers in Education Conference (FIE), San Jose, CA, USA, doi:
10.1109/FIE.2018.8658433.

Yang, J. & Lodgher, A. (2019). Fundamental Defensive Programming Practices with Secure Coding
Modules. 2019 International Conference on Security and Management, Las Vegas, NV.

Yuan, Xiaohong; Yang, Li; Jones, Bilan; Yu, Huiming; & Chu, Bei-Tseng. (2016) "Secure Software
Engineering Education: Knowledge Area, Curriculum and Resources," Journal of

Cybersecurity Education, Research and Practice: Vol. 2016 : No. 1 , Article 3.

Yu, H., Jones, N., Bullock, G., & Yuan, X. (2011). Teaching secure software engineering: Writing
secure code. 2011 7th Central and Eastern European Software Engineering Conference (CEE-

SECR), doi: 10.1109/CEE-SECR.2011.6188473.

23

Yang et al.: Evaluating and Securing Text-Based Java Code through Static Code Analysis

Published by DigitalCommons@Kennesaw State University, 2019

https://security.web.cern.ch/security/recommendations/en/code_tools.shtml
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

APPENDIX A: Overview of Bug Categories Present in Text Source Code

Internationalization (I): Found in CountKeywords.java in Chapter 21 of Text 2
Bug Description: Found reliance on default encoding - new
java.util.Scanner(InputStream) & java.util.Scanner(File) which will perform a byte
to String (or String to byte) conversion and will assume that the default platform
encoding is suitable. This will cause the application behavior to vary between
platforms (e.g., Windows to Linux).
Recommended Solution: To resolve this issue, it is recommended to use an
alternative API and specify a charset name or charset object explicitly.

Dodgy Code (D): Found in RecursiveBinarySearch.java in Chapter 18 of Text 2
Bug Description: Computation of average could result in overflow - The code
computes the average of two integers using either division or signed right shift, and
then uses the result as the index of an array. If the values being averaged are very
large, this can overflow (resulting in with a negative average).
Recommended Solution: If the result is intended to be non-negative, an unsigned
right shift can be used instead. In other words, rather than using (low+high)/2, use
(low+high) >>> 1.

24

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 1 [2019], Art. 3

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

Correctness (C): Found in DynamicBindingDemo.java in Chapter 11 of Text 2
Bug Description: This instanceof test will always return false. Although this is safe,
make sure it isn't an indication of some misunderstanding or some other logic error.

Experimental (E): Found in SimpleJdbc.java in Chapter 34 of Text 2
Bug Description: main (String []) may fail to clean up java.sql.ResultSet / main
(String []) may fail to clean up java.sql.Statement - This method may fail to clean
up (close, dispose of) a stream, database object, or other resource requiring an
explicit cleanup operation.
Recommended Solution: In order to make this method compliant, the usage of a
try/finally block should be implemented to ensure that the stream or resource is
cleaned up before the method returns.

Predictable Random (PR): Found in ObjectDemo.java in Chapter 6 of Text 1
Bug Description: The Random class is susceptible to returning predictable values
which can lead to vulnerabilities if used in a critical security component.

25

Yang et al.: Evaluating and Securing Text-Based Java Code through Static Code Analysis

Published by DigitalCommons@Kennesaw State University, 2019

For example, if this class was used to generate a CSRF token, then an attacker can
easily isolate the value of the token by using a password reset and eventually lead
to an account breach through a series of guesses by examining the URL of the
change password form.
Recommended Solution: To prevent the predictability of values generated, the use
of the java.security.SecureRandom class should be substituted for the
java.util.Random class. The SecureRandom class is cryptographically stronger at
generating random numbers that produces non-deterministic output. Therefore, any
seed material passed to the SecureRandom object must be unpredictable and all
output sequences intrinsically are cryptographically strong.

Malicious Code Vulnerability (M): Found in SimpleGeometricObject.java in
Chapter 11 of Text 2
Bug Description: Returning a reference to a mutable object value stored in one of
the object's fields exposes the internal representation of the object. If instances are
accessed by untrusted code, and unchecked changes to the mutable object would
compromise security or other important properties, you will need to do something
different.
Recommended Solution: Instead of returning a reference to the object, you can
return a new copy of the object which would prevent revealing internal information
about the object.

26

Journal of Cybersecurity Education, Research and Practice, Vol. 2020, No. 1 [2019], Art. 3

https://digitalcommons.kennesaw.edu/jcerp/vol2020/iss1/3

	Evaluating and Securing Text-Based Java Code through Static Code Analysis
	Recommended Citation

	Evaluating and Securing Text-Based Java Code through Static Code Analysis
	Abstract
	Keywords
	Cover Page Footnote

	Evaluating and Securing Text-Based Java Code through Static Code Analysis

