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Model Adequacy Checking for Applying Harmonic
Regression to Assessment Quality Control

Jiahe Qian & Shuhong Li

ETS, Princeton, New Jersey

In recent years, harmonic regression models have been applied to implement quality control for educational assessment data consisting
of multiple administrations and displaying seasonality. As with other types of regression models, it is imperative that model adequacy
checking and model fit be appropriately conducted. However, there has been no literature on how to perform a comprehensive model
adequacy evaluation when applying harmonic regression models to sequential data with seasonality in the educational assessment field.
This paper is intended to fill this gap with an illustration of real data from an English language assessment. Two types of cross-validation,
leave-one-out and out-of-sample, were designed to measure prediction errors and check model validation. Three types of R-squared
(R2, R2

adj, and R2
pred) and various residual diagnostics were applied to check model adequacy and model fitting.

Keywords Sequential data with seasonality; model selection; harmonic pair index; leave-one-out cross-validation; out-of-sample
cross-validation; rotated jackknife grouping

doi:10.1002/ets2.12327

Model adequacy checking is essential to assessing model fit for linear regression, logistic regression, generalized lin-
ear models, as well as harmonic regressions (HR; see Courant, 1937). For assessments with administrations (admins)
across four seasons, HR models (Andrews, 2013; Lee & Haberman, 2013) are sometimes applied to conducting assess-
ment quality control (QC) and monitoring quality of reported scores (Andrews, 2013; Lee & von Davier, 2013; Li &
Qian, 2018). Although models such as ANOVA can also be used (Haberman et al., 2008), HR models typically perform
better for data with many admins across seasons because the harmonic terms in HR can properly capture the season-
ing variations (Lee & Haberman, 2013). Prior to the QC application in the assessment field, the HR models had found
widespread applications in data with periodicity in economics, medicine, and meteorology research (Artis et al., 2007;
Gaffney et al., 1993).

No existing literature has addressed how to conduct a comprehensive model adequacy evaluation when applying HRs
to an educational assessment with multiple forms and periodical data. For such an assessment, if the selected HR model
fits the data well, this suggests that the HR model is able to account for the expected variations in the data and the scale
score trends for the assessment are stable as assessment experts expected. If there are considerable outliers (Tukey, 1977),
the data can fail to confirm the HR model. The outliers are most likely due to unexpected factors that might have occurred
regarding the test instrument, test administration, or the test-taker population. Therefore, for example, evaluating season-
ality, which is the first step in model adequacy checking, is a prerequisite for applying HR models. Otherwise, the analysis
might result in models that fail to explain the genuine relationship between the dependent and independent variables and
lead to incorrect conclusions. Almost all literature in the field dwells on only this initial step (i.e., evaluating outliers and
seasonality, as well as on regular model fitting examination such as model selection and checking assumptions). In terms
of evaluating model adequacy for HR, some authors used different types of R-squared, root mean squared errors (RMSE)
of prediction, and various residual diagnostics (Lee & Haberman, 2013; Li & Qian, 2018).

The goal of this study is to focus on exploring model adequacy checking methods for HR models with sequential data
displaying seasonality. In addition to conventional techniques in checking model fitting and assumptions (Anscombe &
Tukey, 1963; Cox, 2002; Ramsey, 1969) and employing graphics to analyze data periodicity and residuals (Cook, 1994;
Cook & Weisberg, 1997), one primary inquiry is to investigate how to effectively conduct cross-validation, both leave-
one-out and out-of-sample, for sequential data with seasonality.
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Cross-validation (Draper & Smith, 1998), a standard statistical technique for checking model adequacy, is applied for
measuring prediction errors and validating model performance. Two types of cross-validation are proposed: leave-one-out
cross-validation using R2

pred and predicted residual error sum of squares (PRESS) statistics, and out-of-sample forecast
using validation data to assess the model (Allen, 1974; Tarpey, 2000; Weisberg, 2014). In addition to typical indices includ-
ing the three types of R-squared (R2, R2

adj, and R2
pred) and RMSE of prediction (Darlington, 1968; Draper & Smith, 1998),

root mean predicted residual error sum of squares (RMPRESS) is proposed to assess model fit and adequacy. RMPRESS,
based on the principle of leave-one-out cross-validation, measures the average prediction errors and can be directly com-
pared with the RMSE of prediction.

In conducting the out-of-sample cross-validation (Stone, 1974; Weisberg, 2014), data are usually partitioned into two
parts, a training data set and a validation data set, and we then examine whether the models constructed from the training
data can be extended to the validation data (Arlot & Celisse, 2010; Snee, 1977). For data exhibiting seasonality, we argue
that random partitioning of data is not desirable for sequential data with seasonality, because it will be difficult to detect a
trend among the predicted points as they blend with observed points that are subject to periodic variation. Therefore, an
appropriate strategy to conduct cross-validation is to use period-based partition, that is, splitting the data into two disjoint
integrated sub data sets; one set is treated as training data and the other is used for validation. Such a scheme, unlike
bootstrapping design (Efron & Tibshirani, 1997), is analogous to grouped jackknifing design (Haberman et al., 2009).
Further, the predicted points on the validation data can be compared with true values in assessing prediction accuracy,
like the subsample-based design in survey sampling (Qian et al., 2013). Under the framework of the out-of-sample cross-
validation, for evaluating prediction accuracy, a rotation design of jackknife grouping has been proposed to estimate the
jackknifed variance of prediction at each point for sequential data.

The paper also addresses how to monitor model overfitting (Harrell Jr., 2001) in the event of very high R-squared values.
Overfitting refers to a not-“best”-fitted HR model with a high R-squared value, making the model look unrealistically good
because of limitations of sample size, the range of the predictors, and possibly the related degrees of freedom. Examples of
various types of overfitting can be found in Babyak (2004). An overfitted model does not describe the genuine relationship
between the dependent and independent variables. In prediction, such models would fail to conform to and extend the
same shape of observed points onto future samples, thus creating significant uncertainty about the trustworthiness of the
findings.

The next section covers the method used in the study, including the HR model, principle of employing harmonic terms
in pairs, several proposed processes, three types of R-squared, RMSE of prediction, and RMPRESS. The Results section
provides empirical graphs, including the plots of mean scores across four seasons for all four skills in the assessment and
the plots of residuals versus the predicted values of the HR models. The model adequacy checking focuses on applying
cross-validation to model selection and model specification. The final section offers a summary with major conclusions.

Method

Data

The real data analyzed in the study contain the admin mean scale scores of four different skills (Skill A, Skill B, Skill C,
and Skill D) across four seasons in six consecutive years of a large-scale English language assessment. Table 1 presents the
summary statistics for the data. For reliable results, the analysis includes only admins with sample sizes greater than 3,000;
the total number of included admins is 498. To thoroughly assess the regional effects on the test-taker performance of the
English language assessment, the data sets include 19 dummy region variables, which can be found in the first column of
Table 2.

Harmonic Regression Model

A general HR model (Courant, 1937; Lee & Haberman, 2013; Li & Qian, 2018) is constructed for the data with expected
factors that cause measurement variability for the assessment. These factors include three main types of predictors: dummy
variables for year effect, dummy variables for regional effects, and harmonic terms for the sum of sine and cosine functions
that reflect seasonal trends. The dummy variable for year effect has two levels: 1 if the observation is of the year and 0 for
otherwise. A significant year effect indicates the existence of trend changes. In addition, because we have preknowledge
about the assessment that test takers’ performance tends to vary across different regions, incorporating regional effects
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Table 1 The Means and Standard Deviations of the Admin Mean Scale Scores for the Four Skills in the Six Years’ Data

Section statistic Year Statistic mean Statistic SD

Skill A Year 1 14.745 0.895
Year 2 15.099 0.736
Year 3 15.123 0.794
Year 4 15.302 0.864
Year 5 15.483 0.908
Year 6 15.854 0.756

Skill B Year 1 14.560 0.963
Year 2 14.898 0.889
Year 3 14.823 1.143
Year 4 15.005 1.256
Year 5 15.157 1.395
Year 6 15.432 1.073

Skill C Year 1 15.284 0.932
Year 2 15.360 0.936
Year 3 15.317 1.003
Year 4 15.364 1.172
Year 5 15.358 1.277
Year 6 15.462 0.880

Skill D Year 1 15.616 0.537
Year 2 15.786 0.459
Year 3 15.379 0.564
Year 4 15.604 0.629
Year 5 15.799 0.774
Year 6 15.873 0.603

into the model is expected to improve model fit and differentiating power (Lee & Haberman, 2013; Wang et al., 2018).
Note that in fitting HR, depending on the characteristics of data and specific research topic(s) of interest, other predictors
can be included as necessary.

In this study, a full HR model is

yt = μ +
H∑

i=1

[
αi cos

(
2iπdt

Tt

)
+ βi sin

(
2iπdt

Tt

)]
+

6∑
j=2

γjxjt +
18∑

k=1
δkfkt + et, (1)

where yt is the admin mean score at time point1 t and et ∼iid N
(

0, σ2) is the residual term;

H∑
i=1

[
αi cos

(
2iπdt

Tt

)
+ βi sin

(
2iπdt

Tt

)]

is the sum of the pairs of harmonic terms, cos (·) and sin (·), with coefficientsαi and βi (harmonic pair index H = 1, 2, 3, etc.,
and a full H refers to the highest H of an HR) in Equation 1, dt is the number of days elapsed for the admin at point t since
the beginning of the year, and Tt is the total number of days in the year;

6∑
j=2

γjxjt

is the sum of the year-effect terms, with coefficients γj and dummy year variables xjt (the year index j = 2, … , 6) for admin
at point t;

18∑
k=1

δkfkt

is the sum of the region-effect terms, with coefficients δk and dummy region variables fkt (the region index k = 1, 2, … , 18)
are expressed in proportion of the test takers in region k for admin at point t. The names of the 19 region variables can be
found in the first column of Table 2 except for f19t , Mid-East abroad. The dummy variables f19t , as well as x1t , are dropped
from the equation to avoid perfect multicollinearity in the model (Draper & Smith, 1998).

ETS Research Report No. RR-21-13. © 2021 Educational Testing Service 3



J. Qian & S. Li Model Adequacy Checking for Harmonic Regression

Table 2 The Parameter Estimates of the Harmonic Regression Models of Admin Means With Terms Retained by the Backward Selection
Procedure on Year 1–Year 6 Full Data and Year 1–Year 5 Training Data

Parameter estimates on Year 1–Year 6 Parameter estimates on Year 1–Year 5

Variables Skill A Skill B Skill C Skill D Skill A Skill B Skill C Skill D

Intercept 8.705a 10.894a 18.694a 18.975a 8.764a 10.632a 18.682a 19.474a

Year 2 0.287a 0.415a 0.137a 0.061 0.279a 0.413a 0.121a 0.043
Year 3 0.389a 0.445a 0.174a -0.294a 0.378a 0.443a 0.152a −0.307a

Year 4 0.534a 0.641a 0.192a −0.159 0.545a 0.652a 0.179a −0.176a

Year 5 0.685a 0.873a 0.286a 0.068 0.702a 0.884a 0.274a 0.057
Year 6 1.043a 1.220a 0.508a 0.204
β1 sin −0.717a −0.689a −0.275a −0.337a −0.696a −0.663a −0.245a −0.315a

α1 cos 0.063 0.004 0.023 0.118a 0.083 0.004 0.045 0.129a

β2 sin −0.002 0.046 0.082a −0.011 0.046 0.075a

α2 cos −0.221a −0.142a −0.055a −0.238a −0.154a −0.060a

Africa 5.892 5.888
Africa abrd. −24.442 −24.771
Ameri. 10.152a 8.490a 10.146a 8.804a 0.604
Ameri. abrd. 15.158 10.109 17.142 11.885
Asia 1 9.440a 5.411 8.475a 5.173
Asia 1 abrd. 31.399 27.295 −17.646 24.618 24.595 −17.084
Asia 2 11.200a 6.872a 1.309a 11.171a 7.102a 0.796
Asia 2 abrd. 10.154a 9.734a 3.685a 4.479a 9.642a 9.863a 3.572a 3.906a

Eng. Spk Ctry#

Europe 14.645a 13.363a 4.212a 4.319a 14.567a 13.639a 4.179a 3.880a

Europe abrd. 9.330 7.912
Asia 3 12.499a 11.051a 3.915a 4.827a 12.528a 11.353a 3.928a 4.213a

Asia 3 abrd. −10.618a

Asia 4 8.078a 6.301a −1.852a 8.238a 7.238a −1.467
Asia 4 abrd.
Asia 5 13.860a 10.350a 2.122a 3.238a 13.814a 10.501a 2.116a 2.217a

Asia 5 abrd. 18.477a 15.693 8.398a 11.082 22.089a 18.051 8.548a 10.893
Mid-E! 11.876a 10.487a 2.754a 12.324a 10.832a 2.502a

Note. The blank cells are the terms not retained by the backward model selection. Ameri.=Americas; abrd.= abroad (i.e., taking the test
outside of their home country); Eng. Spk Ctry = English-speaking country, including Austria, Canada, New Zealand, and Singapore;
Mid-E! indicates that the variable Mid-E abrd (the counterpart of Mid-E) was not used in modeling. a Significance in t-tests with the
Bonferroni correction based on selected models.

Principle: Employing Harmonic Terms in Pairs

As a periodic function, the signal component in sequential data with seasonality can be analyzed by a Fourier series
composed of terms of harmonically related sinusoids with a phase angle

Ai cos
(

2iπdt

Tt
− φi

)
, (2)

where Ai is amplitude and φi is the phase angle for i = 1, 2, … H (Tolstov, 1976). The phase angle φi is a variate with
nonzero expectation for educational assessments administered across seasons.

The harmonic terms in Equation 1 are always used in pairs because term i in a Fourier series within amplitude-phase
form can be expressed as

Ai cos
(

2iπdt

Tt
− φi

)
= Ai cos

(
φi
)

cos
(

2iπdt

Tt

)
+ Ai sin

(
φi
)

sin
(

2iπdt

Tt

)
, (3)

where Ai =
√

α2
i + β2

i and the phase angle φi = arctan
(

βi
αi

)
(Tolstov, 1976). Equation 3 can be derived from a trigono-

metric identity. Because

cos
[

arctan
(
βi

αi

)]
= 1√(

βi
αi

)2
+ 1

=
αi√

β2
i + α2

i

,
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and, similarly,

sin
[

arctan
(
βi

αi

)]
=

βi√
β2

i + α2
i

,

the coefficients Ai cos
(
φi
)
= αi and Ai sin

(
φi
)
= βi. Thus the right side of Equation 3 can be expressed as

αi cos
(

2iπdt

Tt

)
+ βi sin

(
2iπdt

Tt

)
. (4)

Consequently, a periodic function in amplitude-phase form equals the harmonic terms with sine and cosine pair in
Equation 4, that is,

Ai cos
(

2iπdt

Tt
− φi

)
= αi cos

(
2iπdt

Tt

)
+ βi sin

(
2iπdt

Tt

)
.

Because the cosine term is nonlinear in Equation 2, the significance test of the sinusoid estimates in Equation 2 is
complex. Therefore, instead of using sinusoids, the pairs of harmonic terms as in Equation 4, serving as a Fourier basis,
are always used in HR (Courant, 1937). The principle explains why harmonic terms should be used in pairs when we fit
HR models.

The Process to Determine the Harmonic Term Pairs

To determine the harmonic term pairs in Equation 1 means to identify the full H (i.e., the highest H of an HR). For
example, in Table 2, we have full H = 1 for Skill D in Equation 1 on the Year 1–Year 6 full data and full H = 2 for Skill
A, Skill B, and Skill C. When H = 2, the two included pairs of the harmonic terms for each of the skills are α1 cos

(
2πdt
Tt

)
and β1 sin

(
2πdt
Tt

)
for i = 1, and α2 cos

(
4πdt
Tt

)
and β2 sin

(
4πdt
Tt

)
for i = 2.

The inclusion of harmonic pairs is based on the significance test of the parameter estimates of the harmonic term
pairs in Equation 1. A stepwise test process can be used to determine the full H. First, for H = 1, construct the full HR
with one pair of harmonic terms and check the significance of the parameter estimates α̂1 and β̂1 of the first harmonic
pair. If neither is significant, the model is a regular regression and the process ends; otherwise, if either of the parameter
estimates is significant, it suggests H = 1 holds, and the first pair of harmonic terms is included in Equation 1. Then, for
H = 2, construct the full HR with two pairs of harmonic terms and examine the significance of the parameter estimates α̂2
and β̂2. If none of the parameter estimates α̂2 and β̂2 are significant, it suggests full H = 1 and the process ends; otherwise,
if either is significant, H = 2, and the second pair of harmonic terms is also included in Equation 1. Continue the process
for each of the next H until it ends. Based on empirical outcomes in literature (Andrews, 2013; Lee & Haberman, 2013;
Lee & von Davier, 2013; Li & Qian, 2018), the full H is usually no larger than 3 in applying HR to assessment QC. The
detailed application process is illustrated with real data under the Model Selection subhead in the Results section.

The Process to Conduct Out-of-Sample Cross-Validation

As mentioned in the introduction, out-of-sample cross-validation is conducted to validate whether the models con-
structed from the training data can be extended to the validation data. For sequential data with seasonality, the con-
ventional scheme of dropping a random sample, as in a bootstrapping design, is not desirable because a sampling-based
partition does not allow us to detect trends in the predicted admin points, as they blend with observed points that are
subject to periodic variations. Instead, we propose dropping an integrated chunk of sample from the data as a basis upon
which to assess the prediction error of the model. This is similar to a grouped jackknifing design. In this analysis, the train-
ing data consist of Year 1 to Year 5 admins, and the validation data consist of Year 6 admins. There are alternative ways to
conduct the data partition. For example, the training data contain Year 1 to Year 4 admins and the validation data com-
prise Year 5 and Year 6 admins (see more discussion in the Model Adequacy Checking: Out-of-Sample Cross-Validation
section of the Results).

Because the year effects are significantly nonzero for all four skills, to improve prediction accuracy, the predicted year
effects, the term γ̂6x6t for admin at t in Year 6 in Equation 1, are included in the prediction. In this study, the technique of
hot deck imputation (Little & Rubin, 2002) was used to estimate the coefficient γ̂6; specifically, it took the same value as
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γ̂5 in predicting the means because the predicted means estimated by the validation data of Year 6 had the same tendency
patterns as those for the training data of Year 5, with small prediction errors. As pointed out by a reviewer, the hot deck
prediction could be confounded by the year drift effect and other predictors. To further improve prediction accuracy, we
might need to use enhanced statistical techniques such as autoregressive integrated moving average (ARIMA) for time
series (Guo et al., 2017; Hillmer & Tiao, 1982).

Three Types of R-Squared, Root Mean Squared Error of Prediction, and Root Mean Predicted Residual
Error Sum of Squares

Five statistical indices, including three types of R-squared, RMSE of prediction, and RMPRESS, are used to examine model
fit as well as in model selection. Two statistical indices, R2

pred and PRESS, are used for the leave-one-out cross-validation
analysis.

Let y· be the sample average. Let ŷt be the predicted value for admin at point t and ŷ(t) be the predicted value yielded by
the data with admin at point t dropped. For a sample of size n, define SST =

∑n
t=1

(
yt − y·

)2 and SSE =
∑n

t=1
(

yt − ŷt
)2.

The RMSE of prediction for a model is defined as the square root of the mean of the squared differences between the true
criterion value for each record and the predicted value yielded by the regression:

RMSE =
√

SSE
n

(5)

(Darlington, 1968).
The R-squared is as

R2 = 1 − SSE
SST

. (6)

The adjusted R2 is defined by making adjustments for the corresponding degrees of freedom to the terms of R2:

R2
adj = 1 −

(
1 − R2)(n − 1

n − g

)
, (7)

where g is the number of independent variables (Draper & Smith, 1998). R2
adj measures the percentage of variation

explained only by the independent variables.
The PRESS residual is defined as

PRESS =
n∑

i=1

(
yi − ŷ(i)

)2 (8)

(Allen, 1974; Draper & Smith, 1998; Pierce & Schafer, 1986; Tarpey, 2000). The PRESS, a form of leave-one-out cross-
validation, is a summary measure of model fit based on ŷ(i) (= 1, … n), in which the observation i is not included to
estimate the model.

The predicted R2 is defined as
R2

pred = 1 − PRESS
SST

. (9)

The R2
pred measures the prediction power based on leave-one-out cross-validation. Compared with R2 and R2

adj, a low
value of R2

pred indicates poor prediction of the model and a possibility of model overfitting, in particular if the difference
between R2

pred and R2
adj is greater than 0.20 (McClellan & Staiger, 2000). Therefore, R2

pred is an effective tool for model
adequacy checking.

Lastly, the RMPRESS is defined as

RMPRESS =
√

PRESS
n

(10)

RMPRESS quantifies the average prediction error and indicates the prediction validity for a regression analysis.
Although RMSE also assesses the average prediction error of a model, RMPRESS is estimated by the leave-one-out
cross-validation approach and provides more adequate prediction error. See the Model Adequacy Checking: Model
Overfitting section in Results for the specific application process. Table B1 in Appendix B presents the summary and
comparison of all foregoing statistics used to examine model fit.

6 ETS Research Report No. RR-21-13. © 2021 Educational Testing Service
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Results

Model Selection

As noted in the introduction, the preliminary task for HR model selection was to verify whether data displayed periodicity
across seasons and whether HR was the appropriate model. Figures 1 and 2 present the plots of mean scale scores of the
four skills of all admins across 6 years. The dark points in the plots are the moving averages of the mean scale scores of
every six adjacent administrations. The periodic trends suggested a clear pattern of seasonality. In Figures 1 and 2, a 3*SD
band, indicated by two dotted lines, was formed above and below the overall mean y· of each skill. There were no outlier
admins in the trend because all the admin points fell within the band (Tukey, 1977). The empirical evidence described
above supported the usage of the data in HR modeling.

Model selection consisted of two stages. At the first stage, we used significance test to determine the harmonic pair index
H in Equation 1. For the model of Skill A on the Year 1–Year 6 data, when H = 1, the coefficients α̂1 and β̂1 for the trigono-
metric terms of cosine and sine are −0.741* and 0.122, respectively. Here, symbol * in −0.741* indicates significance in
t-tests with the Bonferroni correction. Thus, the first pair of harmonic terms i = 1 was included in Equation 1. Next, when
H = 2 for the model of Skill A, the coefficients α̂2 and β̂2, in Table 2, are −0.002 and −0.221*, respectively. Because β̂2 was
significant, the pair of i = 2 was also included in the equation. However, when H = 3, results (not reported in Table 2)
indicated that the coefficients α̂3 and β̂3,−0.002 and−0.02, were both not significant, so the process ended. H = 2 is called
full H of the model for Skill A, that is, the model included harmonic term pair α2 cos

(
4πdt
Tt

)
and β2 sin

(
4πdt
Tt

)
and the

pair α1 cos
(

2πdt
Tt

)
and β1 sin

(
2πdt
Tt

)
. The models for Skill B and Skill C had a similar full H = 2. The Skill D model had

the full H = 1, because β̂1 (for sine) in the pair of cosine and sine terms, 0.002 and −0.221*, was significant when H = 1,
but α̂2 and β̂2, −0.002 and −0.01, were both not significant when H = 2. By the principle of employing harmonic terms
in pairs, the Skill D model had the full H = 1.

At the second stage, after the harmonic term pairs were determined, we conducted the process to select par-
simonious models from models with no autocorrelation measured by the correlations between adjacent cases in
the residuals (Lee & Haberman, 2013). In this process, the Durbin–Watson d (Durbin & Watson, 1971) was used
to detect autocorrelation in the analysis. In Table 3, all the Durbin–Watson d statistics for the HR models were
close to 2 (well above 1 and below 4), suggesting that these models showed no apparent autocorrelation (Draper &
Smith, 1998).

Subsequently, given the included harmonic term pairs, backward selection procedure (Draper & Smith, 1998; Hock-
ing, 1976; Judge et al., 1980) was used to select the region variables in an F test with a significance alpha entry level of
.25 and a staying alpha level of .15. Two alpha levels were chosen by the rule of thumb in empirical regression analy-
ses (SAS Institute, 2008). Note that those dropped variables accounted for some of the blank cells in Table 2. We then
conducted the significance tests to the list of variables retained from the first stage. The significance of the variables
was checked using the t –test with the Bonferroni correction (Lee & Haberman, 2013), by setting the significance cut-
off at α∕n*, where α = .05 and n* referred to the number of retained variables in the selected models. The significance
test of a shorter list of retained variables with the Bonferroni correction was less conservative in comparison with the
previous analysis (Li & Qian, 2018). Thus, we were able to select an adequate model and detect the significant predic-
tors.

Table 2 presents the parameter estimates of the parsimonious HR models of the admin means for each skill based on
the full data of Year 1 to Year 6 and the training data of Year 1 to Year 5. Note that the Year 1 to Year 5 data were called
training data because the data were used to build prediction models in the out-of-sample cross-validation; moreover, the
comparison between the results from the model derived from the full data and those from the training data showed that
the HR models were stable and effective for QC purposes.

Table 3 provides the summary statistics for each skill, including the estimates of Akaike’s information criterion (AIC;
see Akaike, 1973), RMSE of prediction, RMPRESS, R2, R2

adj, and R2
pred of the models for the full data and the training data,

respectively. The RMSE values suggested that the models demonstrated reasonable model fit because, except for Skill C,
RMSE estimates were between .43 and .50. The R2 estimates ranged between .58 and .87, except for Skill C, which also
suggested reasonable model fit. The implications of a large R2 estimate for Skill C will be discussed in detail in the Model
Adequacy Checking: Model Overfitting section.
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Figure 1 Mean scale scores of each test administration for all 6 years’ data with moving averages of the mean scores of every six
administrations (in dark points) and 3*SD band for the overall mean. Note that the Excel software does not create a moving average for
every admin; it only prints disconnected dots. The test date t starts from the beginning time point of Year 1; there are in total 2,191 days
(2,191 = 365× 6+ 1) across Year 1–Year 6 including 1 day from a leap year (2016).

Residual Plots

The residual plots were used to check the HR model assumptions. The regular diagnostic methods of linear regression
can be found in Draper and Smith (1998). To facilitate readability, main processes and methods used in checking major
regression assumptions are listed in Table B3 in Appendix B.

Figure 3 contains two types of residual plots. The first row presents the plots for the residuals versus the predicted values.
In these plots, the residuals had zero means across the predicted values, and the random dispersion around the horizontal
axis had no linear or seasonal trends. The second row provides the normal QQ plots for the residuals. The centered fit in
the QQ plots indicated normality of the residuals. The residuals with random dispersion were uncorrelated, which was
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Figure 2 Mean scale scores of each test administration for all 6 years’ data with moving averages of the mean scores of every six
administrations (in dark points) and 3*SD band for the overall mean. Note that the Excel software does not create a moving average for
every admin; it only prints disconnected dots. The test date t starts from the beginning time point of Year 1; there are in total 2,191 days
(2,191 = 365× 6+ 1) across Year 1–Year 6 including 1 day from a leap year (2016).

consistent with the residual assumption that et ∼iid N
(

0, σ2). These plots confirmed that, after the harmonic term pairs had
been selected, no seasonality or periodicity was observed in the remaining residuals. The Skill C plot appeared to have
two scattered clusters, which might be explained by the demographic feature region of the test takers. This is consistent
with our preknowledge about the assessment as well as the patterns shown in Figures 1 and 2.

Figure 4 contains the plots of residuals against region variables with the horizontal axis representing the region propor-
tions. For example, the plots for Europe are in the second row. In alignment with the findings above, the plots, excluding
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Table 3 Comparison of Akaike’s Information Criterion,2 Root Mean Squared Error of Prediction, R2, Adjusted R2, and Predicted R2

for the Full Data of Year 1–Year 6 and the Training Data of Year 1–Year 5

Section AIC RMSE RMPRESS R2 Adj R2 Pred R2 Durbin–Watson da

Selected model on Year 1–Year 6 data
Skill A −707.01 0.478 0.497 0.724 0.709 0.685 1.890
Skill B −792.74 0.439 0.453 0.866 0.858 0.849 1.950
Skill C −1, 374.84 0.245 0.254 0.949 0.946 0.941 1.742
Skill D −844.28 0.418 0.429 0.578 0.556 0.531 1.740
Selected model on Year 1–Year 5 data
Skill A −601.15 0.486 0.504 0.707 0.703 0.688 1.857
Skill B −666.53 0.452 0.463 0.859 0.858 0.851 1.966
Skill C −1, 191.48 0.246 0.252 0.951 0.950 0.948 1.790
Skill D −738.99 0.417 0.424 0.583 0.576 0.560 1.749

Note. The selected models can be found in Table 2. a All the Durbin–Watson d are close to 2 (well above 1 and below 4); these models
show no apparent autocorrelation.

Figure 3 Residuals versus the predicted values and normal QQ plots for the residuals of the harmonic regression models (left to right:
Skill A, Skill B, Skill C, and Skill D; first row: residuals vs. the predicted values; second row: normal QQ plots for the residuals).

zero points, showed no sign of obvious explanatory patterns. Note that the points clustered at zero were the admins without
European test takers. The residual plots for other region variables showed similar patterns.

Model Adequacy Checking: Out-of-Sample Cross-Validation

In addition to the mean scale scores of each admin across 6 years, Figures 5 and 6 present the plots of the predicted means
yielded by the training data (Year 1 to Year 5) and the validation data (Year 6), both in dark points but in different colors.
Those dark points in the left segment are yielded by the model from the training data across Year 1 to Year 5; the dark
points in the right segment, represented in a different color scheme, are the predicted means yielded from the validation
data of Year 6. The validation data were used to assess the model yielded by the training data. Because test takers are known
to exhibit different performance patterns across regional groups for this test, mainly West versus East, the predicted admin
means of Skill B and Skill C, in Figures 5 and 6, respectively, demonstrated such a difference in having two distinct dark
point curves across 6 years; this is also exhibited by their residual plots in Figure 3.

Because the year effects were nonzero for the training data and significant for Skill A through Skill C and part of the
Year 1–Year 5 for Skill D (see Table 2), the predicted year effects γ̂6x6t were added to the means of Year 6 in prediction.
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Figure 4 Residuals versus proportions of Asia2 abroad (with label fCHIB in plot), Europe (with label fEU in plot), Asia3 (with label
fIN in plot), and Asia5 (with label fKO in plot) test takers for the selected models of admin means (left to right: Skill A, Skill B, Skill
C and Skill D; first row: Asia2 abroad test takers; second row: Europe test takers; third row: Asia3 test takers; fourth row: Asia5 test
takers).

Following the hot deck imputation (Little & Rubin, 2002), the coefficient γ̂6 took the same value as γ̂5; for example, for
Skill A, the imputed value of γ̂6 was .702 for the year effects γ̂6x6t in prediction. According to Table 1, the average means
for Skill A and Skill B of Year 6 increased by .37 and .27 from those of Year 5, respectively. If the year effect term γ̂6x6t had
not been included, as shown in Figures 7 and 8, the predicted means for Year 6 validation data would have been slightly
lower than their empirical counterparts, in particular for Skill A and Skill B, as in Figures 5 and 6. Obviously, the predicted
means for Year 6 validation data in Figures 7 and 8 appear inferior and deviate more than their empirical counterparts in
Figures 5 and 6, in particular for Skill A and Skill B. The imputation technique, as mentioned before, is based on hot deck
imputation for surveys with missing responses (Little & Rubin, 2002); the predicted means with included year effects had
prediction errors less than 1 SD. Because the effect of γ̂6x6t on prediction could be confounded by the year drift effect and
other predictors, ARIMA can be used to improve prediction accuracy. This is a topic for future research.
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Figure 5 Empirical mean scale scores of each test administration for all 6 years’ data for Skills A and B, with dark points representing
the predicted means yielded by the training data (Year 1 to Year 5) and the validation data (Year 6); the prediction for Year 6 included
the predicted year effects in the out-of-sample cross-validation. The test date t starts from the beginning time point of Year 1; there are
in total 2,191 days (2191 = 365× 6+1) across Year 1–Year 6 including 1 day from a leap year (2016).
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Figure 6 Empirical mean scale scores of each test administration for all 6 years’ data for Skills C and D, with dark points representing
the predicted means yielded by the training data (Year 1 to Year 5) and the validation data (Year 6); the prediction for Year 6 included
the predicted year effects in the out-of-sample cross-validation. The test date t starts from the beginning time point of Year 1; there are
in total 2,191 days (2,191 = 365× 6+ 1) across Year 1–Year 6 including 1 day from a leap year (2016).
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Figure 7 Empirical mean scale scores of each test administration for all 6 years’ data for Skills A and B, with dark points representing
the predicted means yielded by the training data (Year 1 to Year 5) and the validation data (Year 6); the prediction for Year 6 did not
include the predicted year effects in the out-of-sample cross-validation. The test date t starts from the beginning time point of Year 1;
there are in total 2,191 days (2,191 = 365× 6+ 1) across Year 1–Year 6 including 1 day from a leap year (2016).
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Figure 8 Empirical mean scale scores of each test administration for all 6 years’ data for Skills C and D, with dark points representing
the predicted means yielded by the training data (Year 1 to Year 5) and the validation data (Year 6); the prediction for Year 6 did not
include the predicted year effects in the out-of-sample cross-validation. The test date t starts from the beginning time point of Year 1;
there are in total 2,191 days (2,191 = 365× 6+ 1) across Year 1–Year 6 including 1 day from a leap year (2016).
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As mentioned in the Method section, we can apply alternative ways to split the data for the out-of-sample cross-
validation—for example, partitioning the data into training data containing Year 1 to Year 4 admins and the validation
data containing Year 5 and Year 6 admins. When year is not used as the boundary in partitioning, a number of combi-
nations can be carefully arranged into a grouped jackknifing type design (Haberman et al., 2009; Wang et al., 2018). A
rotation design of jackknife grouping, derived from period-based partition, can yield replicated results from each rota-
tion cycle. These replicated results, including year effects in the estimates, can be used to assess the jackknifed prediction
accuracy of each point on the cross-validation for sequential data with seasonality. Though details of how to implement
the methodology are beyond the scope of the current study, a proposed algorithm for the rotation design is provided in
detail for interested readers in Appendix A, An Algorithm of Assessing the Point Prediction Errors in the Out-of-Sample
Cross-Validation with Sequential Data. The empirical results and improvement of the algorithm should be a topic for
future research.

Model Adequacy Checking: Model Overfitting

Because the R2 of the HR models for Skill C was high (> 0.9), one concern was whether the high value of the R2 was due to
model overfitting, or, alternatively, whether Skill C data properly confirmed the HR model in Equation 1. As mentioned,
an overfitted regression is tailor-made and cannot be generalized to the future data sets. The R-squared value, regression
coefficients, and p values of an overfitted model could be misleading because the model would describe the pattern of
random errors in the data rather than the genuine relationship between the dependent and independent variables of
interest. It is critical to ensure that the high R-squared values of the fitted models are authentic and not due to model
overfitting.

In Table 3, three values of R2, R2
adj, and R2

pred were very close to each other for the models on both the Year 1–Year
6 full data and Year 1–Year 5 training data. The differences between R2

adj and R2 were small (< 0.025) for the selected
models as well as the full models. The same was true for R2

pred and R2
adj (< 0.025). See Figure 9 for the comparisons.

In Figure 10, the differences between RMPRESS and RMSE were less than 4% and 5% for the selected models and
full models, respectively. The results showed no evidence of model overfitting for Skill C, indicating the alternative—a
high level of explanatory and prediction power of the yielded models. This was supported by the plots of the Skill C
data in Figure 2, which displayed clear curves across 6 years with no detached outliers. Moreover, the plots of Skill
C in Figure 6, based on the out-of-sample cross-validation, validated the HR model in Equation 1; that is, the pre-
dicted points on the training data closely conformed to the periodic shape of the observed points, and the predicted
points on the validation data extended the trend of the observed points, following the same shape of their periodic
variation.

By the AIC criterion, all differences between the full models and the selected models in Figure 11 were less than 1.5%,
for all four skills. Moreover, for all four skills, the AICs of the models for the Year 1 to Year 5 data were larger than the
same models with the Year 6 admins added.

Table B2 in Appendix B contains major features of the methods employed for a thorough investigation in this section.

Summary

To ensure that HR models are adequately implemented for data exhibiting seasonality and periodicity, it is necessary to
perform appropriate model adequacy checking. There is a void in the literature on how to conduct a comprehensive model
adequacy evaluation when applying HR models to sequential data with seasonality. The current study contributes to the
existing literature by filling in this gap.

A few statistical tools were used for model adequacy checking, such as graphics, out-of-sample cross-validation pre-
diction, and summary statistics. The harmonic term pairing principle was first proved. Based on this principle, a process
was proposed to determine the full H in HR modeling. A two-stage strategy was used to select parsimonious models
and determine the significant predictors. The first stage involved determining the full H of an HR model and selecting
the region effects through the backward selection procedure. The second stage contained the significance tests of region
effects from the shorter variable list obtained from the first stage. The tests with the Bonferroni correction on a shorter
variable list were thus less conservative and had a smaller rate of false negatives.
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Figure 9 Comparison of three types of R-squared of the models for four skills (above, full models; below, selected models).

To effectively implement the out-of-sample cross-validation for sequential data with seasonality, the study used a
period-based partition, similar to a grouped jackknifing strategy. Such a strategy is analogous to PRESS yet leaves an
integrated sub data set out in each rotation cycle. Otherwise, it will be difficult to detect a trend in the predicted points, as
they are mixed with observed points that are subject to periodic variation. Moreover, the year effects on the dropped-out
points are also included in prediction, as displayed in Figures 5 and 6; as a comparison, those results in Figures 7 and 8
without including the year effects fell farther away from the dots representing the mean score. Alternative ways to split the
data for the out-of-sample cross-validation are also suggested. A rotation design of jackknife grouping has been proposed
to estimate the jackknifed variance of prediction at each admin point with the point itself not included in modeling for
sequential data with seasonality. An algorithm of the rotation design is provided in Appendix A. The statistic RMPRESS
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Figure 10 Comparison of root mean squared errors of prediction and root mean predicted residual error sum of squares of the models
for four skills (above, full models; below, selected models).

estimates the average prediction error using leave-one-out cross-validation for HR models. It can be directly compared
with three types of R-squared, RMSE of prediction.

In our analysis, the R2 of the fitted models for Skill C were very high in value, greater than 0.9. A due diligent check was
warranted regarding whether the HR model in Equation 1 can be used to QC the Skill C data, that is, whether the high
R2 was due to model overfitting (Babyak, 2004). The analysis and comparisons of the R2, R2

adj, and the R2
pred indicated that

the model fitting for Skill C was due to remarkably high explanatory and prediction power of the yielded models rather
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Figure 11 Comparison of Akaike’s information criterion for the models for four skills, Year 1–Year 5 admins versus Year 1–Year 6
admins (above, full models; below, selected models).

than model overfitting. The result was also confirmed by the cross-validation analysis in the Model Adequacy Checking:
Out-of-Sample Cross-Validation section.

In general, the results of the cross-validation analysis demonstrated that the selected HR models were adequate for the
data. The model adequacy checking revealed neither signs of poor prediction by the fitted models nor those of model
overfitting.

For future studies, to further improve the accuracy of predicted means yielded by the validation data, enhanced fore-
casting techniques can be used to improve the prediction of the year effects. In addition, we can consider using case
weights to obtain a more generalized model that has a weighted distribution that is consistent with the target population
distribution of test takers. See Lee and Haberman (2021) for an up-to-date study related to this topic.
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Notes
1 The test date t starts from the beginning time point of Year 1; there are in total 2,191 days (2,191 = 365× 6 + 1) across Year

1–Year 6 including 1 day from a leap year (2016).
2 Akaike’s information criterion (AIC). For a sample of n administrations, the formula of AIC is AICp = n ln (SSE) − n ln (n) + 2p .

In the formulas, n = sample size and p = number of regression coefficients in the model being evaluated (including the intercept).
Notice that the Bayesian information criterion is close to the AIC and has a difference in the multiplier of p, which equals ln (n).
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Appendix A

An Algorithm of Assessing the Point Prediction Errors in the Out-of-Sample Cross-Validation
With Sequential Data

In this study, a rotation design of jackknife grouping is proposed under the framework of period-based partition for the
out-of-sample cross-validation, and an algorithm has been developed to assess the jackknifed prediction errors at each
point for sequential data with seasonality.

Let ℝ be the sequential data set used in analysis with K indexed cases. In assessment QC, the cases in a dataset can be
admins as in the samples used in this paper. The total cases in ℝ confirm a sequential order k = 1, 2, … K. To simplify
the notations in the algorithm, assume the yearly cases for assessment are the same and the factor of a leap year is not
considered. Let M be the number of cases in the sequence dropped in the out-of-sample cross-validation; usually, M can
be the number of yearly admins.

Let v = Mod (b + M − 1,M) be a modulo function, where b + M − 1 is number, M is divisor, and b = 1, 2, … K. Cre-
ate a sub data set ℝ(b) (b = 1, 2, … K) from ℝ with a sequence of cases, indexed from b to v, being dropped. That is, M
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cases are dropped. Because v is employed in creating ℝ(b), if the sequential index is larger than K, the sequential index
will be equal to the remainder, that is, rotating back to the beginning of the data set.

For each round of HR model fitting under the rotation design, the first step is to create the jackknife replicated results
from each rotation round. Because of the modulo function, each case will have M replicated values for sequential data with
seasonality. This is the feature of a rotation design, though the algorithm is analogous to repeated resampling approach
(Wolter, 2007). The second step is to estimate the jackknifed variances; the estimated variances include the errors due to
different factors in the estimation, such as year effects etc.

The rotation of fitting HR regression is based on data ℝ(b) (b = 1, 2, … K). The total number in the rotated HR model
fitting is K times. Therefore, the algorithm described below is computation intensive.

The proposed algorithm is composed of the following steps.
a. For b = 1, 2, … K, we complete the following process. The first round (b = 1) of HR fitting is based on data ℝ(1).

Define batch number u = INT
[
(k − b) ∕M

]
where INT [·] is integer function and k = 1, 2, … K. In the first round,

the batch numbers, INT
[
(k − 1) ∕M

]
, are assigned to each case. For all the cases, we yield a set of predicted values.

Let ŷ(k,1,u) be the predicted value yielded in Round 1 for the admin with index k and batch number u. The vector
(k, 1, u) is called the status segment of ŷ(k,1,u). The predicted value set is

{
ŷ(k,1,u) ∣ k = 1, 2, … K

}
. Then start the

second round (b = 2) of fitting HR model and yielding the batch number u for each case and the set of the predicted
values

{
ŷ(k,2,u) ∣ k = 1, 2, … K

}
. Continue this process until b = K.

b. For admin point k = k0, based on the status segments of all the predicted values for the admin with index k0, define
Rk0,b,0 =

{(
k0, b, u

)
∣ u = 0, for any b

}
; the size of Rk0,b,0 is M.

c. For k = k0, calculate the mean of the predicted values in Rk0,b,0,

ŷ(k0,·,0) = M−1
∑

(k0,b,u)∈Rk0 ,b,0

ŷ(k0,b,u);

and the jackknifed variance of ŷ(k0,·,·) is estimated by

vJ1

(
ŷk0

)
= M − 1

M

∑
(k0,b,u)∈Rk0 ,b,0

(
ŷ(k0,b,u) − ŷ(k0,·,0)

)2

(Haberman et al., 2009; Wolter, 2007). vJ1

(
ŷk0

)
measures a variance excluding admin point k0 itself in modeling. The

jackknifed standard error is then computed by

seJ1

(
ŷk0

)
=
√

vJ1

(
ŷk0

)
.

d. Let yk0
be the mean score of admin point k0. An alternative jackknifed variance estimation is

vJ2

(
ŷk0

)
= M − 1

M

∑
(k0,b,u)∈Rk0 ,b,0

(
ŷ(k0,b,u) − yk0

)2

(Wolter, 2007). vJ2

(
ŷk0

)
is also derived based on resampling method and measures the overall errors excluding admin

point k0 itself in modeling.
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Appendix B

Summary of the Statistics, Processes, and Methods in HR Model Adequacy Checking

Table B1 Statistics Used to Examine Harmonic Regression Model Fit

Statistics Symbol
Equation

in text Function Note

Root mean squared
error of prediction

RMSE 5 Measures the error of prediction

R-squared R2 6 Examines model fit, measuring how
close the data are to the fitted
regression line

Conventional way to check
goodness of fit

Adjusted R-squared R2
adj 7 Examines model fit with adjusted

degrees of freedom to the squared
terms in R2

To apply when a model has many
independent variables

Predicted R-squared R2
pred 9 Examines model fit based on

leave-one-out cross-validation of
the terms in R2

To apply in judging when a model is
possibly overfitting

Predicted residual
error sum of squares

PRESS 8 Measures the predicted residual
error sum of squares residual
based on leave-one-out
cross-validation

Provides an appropriate summary
measure of the model fit for
prediction

The root mean-PRESS RMPRESS 10 Defined as the root of the mean
PRESS

Same as PRESS

Table B2 Processes and Methods Used in Harmonic Regression Model Adequacy Checking and Cross-Validation

Task Method Goal Note

Check sequential data
with seasonality

Plot, e.g. Figures 1 and 2 To confirm seasonality in
sequential data

Assuring appropriateness of using HR.
See sections: Model Selection and
Results

Determining the
harmonic terms of a
HR

The process based on the
principle of employing
harmonic terms in pairs

To determine the full H of a
HR

Including validated harmonic terms in
HR. Unique for data with seasonality.
See sections: Process to Determine
the Harmonic Term Pairs and Model
Selection

Model adequacy:
regular checking

Check R2 and compare it with
R2

adj

To examine model fit,
measuring how close the
data are to the fitted
regression line

Using R2
adj is more appropriate for a

model with many independent
variables. See sections: Harmonic
Regression Model & Model Selection

Model adequacy:
out-of-sample
cross-validation

Use a subsequence of admins
(excluded from training
data) to perform
cross-validation by
comparing its plot with the
plot of the predicted values
yielded from training data

To evaluate model adequacy
based on the out-of-sample
data. In the example, the
training data consist of
Year 1 to Year 5 and the
validation data consist of
Year 6

Conducting cross-validation by
comparing the plots based on the
training and out of training samples,
focusing on prediction. Unique for
sequential data with seasonality. See
section: Process to Conduct
Out-of-Sample Cross-Validation

Model overfitting:
leave-one-out
cross-validation

Check R2
pred and compare it

with R2
adj and RMPRESS;

check the plots of the mean
scale scores for Skill C data
in Figure 2 display clear
curves across years

To evaluate model adequacy
and overfitting by using
R2

pred and RMPRESS,
estimated by leave-one-out
data, can be compared
directly

Using statistics based on leave-one-out
principle is more appropriate in
cross-validation for model adequacy,
judging model overfitting. See
sections: Three Types of R-squared,
RMSE of Prediction, and RMPRESS
and Model Adequacy Checking:
Model Overfitting
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Table B3 Processes and Methods Used in Checking Major Regression Assumptions

Task Method Goal Note

The residuals have zero
means and are
uncorrelated

Evaluate if the residuals have zero
means across the predicted values
and the random dispersion
around the X axis without trends.
Also use the residual plot in
Figure 3

To confirm the residuals have
zero means and are
randomly distributed
without a trend

See Draper & Smith, 1998;
Weisberg, 2014

The residuals are
normally distributed

Examine the plot of residuals vs. the
predicted values and/or normal
QQ plots for the residuals of the
HR models in Figure 3.
Sometimes use a normal
Predicted Probability (P–P) plot

To confirm if the residuals
follow a normal
distribution

See Draper & Smith, 1998;
Weisberg, 2014

Homogeneity of
variances

Conduct ANOVA, or examine the
scatterplots of the predicted
values and residuals, such as in
Figures 3 and 4

To confirm if the residuals
have constant variances

See Draper & Smith, 1998;
Weisberg, 2014

The predictor variables
in the regression
have a linear
relationship with the
outcome variable

Check the residual plot without
linear or seasonal trends; evaluate
normality and homoscedasticicity
in residuals; examine the normal
Predicted Probability (P–P) plot

To confirm the linearity of
regression

See Draper & Smith, 1998;
Weisberg, 2014

No apparent
autocorrelation
between adjacent
cases in the
residuals (Draper &
Smith, 1998)

Statistical test based on
Durbin–Watson d statistic

To detect autocorrelation,
correlation

See Draper & Smith, 1998;
Durbin & Watson, 1971;
Weisberg, 2014
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