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Abstract: The testlet comprises a set of items based on a common stimulus. When 

the testlet is used in the tests, there may violate the local independence assumption, 

and in this case, it would not be appropriate to use traditional item response theory 

models in the tests in which the testlet is included. When the testlet is discussed, 

one of the most frequently used models is the testlet response theory (TRT) model. 

In addition, the bi-factor model and traditional 2PL models are also used for testlet-

based tests. This study aims to examine the item parameters estimated by these 

three calibration models of the data properties produced under different conditions 

and to compare the performances of the models. For this purpose, data were 

generated under three conditions: sample size (500, 1000, and 2000), testlet 

variance (.25, .50, and 1), and testlet size (4 and 10). For each simulation condition, 

the number of items in the test was fixed at i = 40 and 100 replications were made 

under each condition. Among these models, it was concluded that the TRT model 

gave less biased results than the other two models, but the results of the bi-factor 

model and the TRT were more similar as the sample size increased. Among the 

examined conditions, it was determined that the most effective variable in 

parameter recovery was the sample size. 

1. INTRODUCTION 

Item response theory (IRT, Lord & Novick, 1968) is a model that is widely used for test 

development and test scoring, because of its strong mathematical modeling. One of the 

important assumptions of this theory is local independence (LI). This assumption is generally 

expressed as “the examinee's trait (ability or proficiency) value, denoted provides all the 

necessary information about the examinee's performance, and once trait level is considered, all 

other factors affecting examinee performance are random” (Wainer et al., 2000, p.248). 

However, this assumption can be violated when the items share a common stimulus. In the 

literature, such items are generally referred to as testlets. 

The concept of testlet, first expressed by Wainer and Kiely (1987), is the name given to a group 

of items associated with a single comprehensive stimulus. The testlet shows a set of items that 
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share a single common stimulus, such as a reading passage or an information graph, and where 

performance on each item depends on both a general ability and a specific ability related to a 

specific content or situation (Li, 2017). Such items are widely used in many national and 

international large-scale tests because of their various advantages. For example, testlets allow 

over one item to be asked based on the same stimulus, allowing over one information to be 

collected from a stimulus, thus improving the efficiency of the test (information per unit time) 

(Wainer et al., 2000). Another advantage of testlets is that they help develop a more realistic 

and context-based test (Li, 2017). Through these context-dependent items, measuring higher-

level skills may become more workable (DeMars, 2006). It is known that testlets provide a 

significant advantage in computer adaptive test (CAT) applications. In CAT applications, there 

is a specific item selection algorithm for each person. Here, there is a context-effect caused by 

the content of the items. However, this effect is reduced, as individuals will encounter the same 

context when they take the same testlet. In short, the use of testlets in CAT applications provides 

greater control of the negative effects of single items, allowing as much fairness as possible 

among test takers (Pak, 2017). However, in such items, some students have a special interest or 

better prior background knowledge in a passage than other students, in this situation they are 

likely to perform better on the items related to this passage than on other items of the same 

difficulty level, or they tend to perform better than other students with the same general ability 

level (Li, 2017, p.1). Therefore, testlets lead to the emergence of additional sources of variance, 

such as content knowledge (Chen & Thissen, 1997). DeMars (2006) states that responses to 

items in a testlet may be related to testlet-specific background knowledge or skills, or to a 

secondary characteristic, such as testlet-specific interest or other motivational factors. This 

situation has revealed the necessity of a special examination of testlet items.  

Another disadvantage of testlets is that testlets violate the LI assumption of the unidimensional 

IRT. Although this assumption is violated, the use of unidimensional IRT models for such items 

leads to inaccurate in parameter estimations (Sireci et al., 1991; Wainer & Wang, 2000; Yen, 

1993). Therefore, different models have been developed to handle testlets. The psychometric 

framework that deals with testlets is known as testlet response theory (TRT) models (Bradlow 

et al., 1999; Wainer et al., 2000; Wainer et al., 2007). This model includes one more parameter 

explaining the interaction between each item and each examinee within a testlet, besides the 

parameters in the traditional IRT model for dichotomous items. Another solution to model the 

dependency among test items in testlets is the bi-factor model (Rijmen, 2010). Recently, 

multilevel models have also been used to address local item dependence among items (Jiao et 

al., 2005; Jiao et al., 2012). These models consider local item dependence because of item 

clustering. In addition, although there are testlets, it is very common to apply the traditional 

IRT model to items that are scored dichotomously. Because when the testlet effect is determined 

to be low, the negligibility of this effect or the usability of traditional IRT estimations, which 

are more familiar to researchers, are discussed in the literature (Glas et al., 2000; Eckes, 2014; 

Eckes & Baghaei, 2015; Min & He, 2014). It has also been examined with polytohomus IRT 

models that treat testlets as a single item, and it has been stated that there is a need for models 

that give more information about testlets (Wainer, 1995). 

Since unidimensional, testlet and bi-factor models are widely used in testlet examinations, it is 

important to evaluate whether the parameters estimated from these models can be accurately 

estimated. Since all conditions cannot be tested on the real data set, this study was carried out 

on simulation data. The advantage of knowing the real parameter values in simulation studies 

makes the accuracy of the estimation method is measurable. This study, it is aimed to examine 

the data produced under different testlet conditions with traditional two-parameter logistic 

(2PL), the TRT, and the bi-factor models by varying the sample size, the size of the testlet 

variance, and the number of testlets. Koizol (2016) stated that the bi-factor model did not 

receive enough attention in testlet reviews. Liu and Liu (2012) stated that it is not clear to 
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practitioners in which cases traditional IRT models should be used instead of a newly proposed 

testlet model. In this study, it is aimed to provide more helpful information to practitioners by 

considering many possible conditions. It is expected that this study, which also includes the bi-

factor model in testlet examinations, will contribute to filling the gaps in this subject. Because 

of this study, determining the conditions under which local item dependency has serious effects 

on parameter estimations with the help of many conditions tested can guide the researchers in 

choosing the right model. 

1.1. Calibration Models 

There are strategies developed over different models to deal with the local independence 

assumption violation caused by testlets. Traditionally, the items in the testlets have been treated 

as independent items like other items in the test, and traditional IRT models have been used as 

the calibration model. The traditional 3PL model for dichotomous data is specified as 

𝑃𝑛𝑖  (1) = 𝑐𝑖 +  (1 −  𝑐𝑖) 
exp[𝑎𝑖  (𝛳𝑛 −  𝑏𝑖 )]

1 + exp[𝑎𝑖  (𝛳𝑛 −  𝑏𝑖 )]
,                                        (1) 

where Pni(1) is the probability of response 1 (correct) for person n on the ith item; ai, bi, and ci 

are the discrimination, difficulty, and guessing parameters, respectively; and θn is person’s 

ability. However, this approach has been found to cause biased parameter estimation and 

overestimation of test reliability (Sireci et al., 1991; Thissen et al., 1989; Tuerlinckx & De 

Boeck, 2001; Wainer & Thissen, 1996; Wainer & Wang, 2000; Yen, 1993).  

In another approach, the testlets were evaluated as a single item and scored in polytomous. 

Although this approach has been found to yield partially good results (Wainer, 1995), it has 

several shortcomings. For example, this approach is insufficient for situations that require more 

information about the items in the tests. Because of this approach, the testlet score is represented 

by the sum of the correct number (Wainer et al., 2000). These total scores lose answer pattern 

knowledge for each individual test taker. This loss of information can lead to an increase in 

measurement errors, which directly reduces overall test reliability (Keller et al., 2003; Sireci et 

al., 1991; Yen, 1993; Zenisky et al., 2002). Since polytomous models were not used in this 

study, the details of the model were not included.  

Although it is stated that the violation of local independence does not cause serious problems 

when the length of the testlets is moderate (4-6 items/testlet), it is stated that as the testlets get 

longer, a special psychometric model is needed that can control local dependence (Wainer et 

al., 2007). In addition, in these models, attention should be paid to maintaining the item level 

as the unit of analysis. Bradlow et al. (1999) proposed a TRT model by adding a parameter (a 

testlet effect parameter) to the traditional 2PL model for items nested in the same testlet. This 

parameter represents the dependence between items within the same testlet, and the variances 

of the random testlet effects were assumed to be constant across testlets (Wang & Wilson, 

2005). Later, this model was developed for 3PL (Wainer et al., 2000). The model is 

𝑃𝑛𝑖  (1) = 𝑐𝑖 +  (1 −  𝑐𝑖) 
exp[𝑎𝑖  (𝛳𝑛 −  𝑏𝑖 −  𝛾𝑛𝑑(𝑖))]

1 + exp[𝑎𝑖  (𝛳𝑛 −  𝑏𝑖 −  𝛾𝑛𝑑(𝑖))]
,                           (2)  

As seen, in this model, unlike Equation 1, there is a γnd(i) parameter. γnd(i) is the random effect 

for person n on testlet d(i), which describes the interaction between persons and items within the 

testlet. The testlet effect is a random effect variance caused by local item dependency (LID), 

and the greater the variance, the greater the effect in the testlet (Wainer & Wang, 2000). The 

size of the variance shows the size of the dependence between the items. When the testlet 

random effect is zero, this model is equal to the traditional 3PL model.  
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The advantages of this model compared to polytomous models are expressed as follows (Wang 

et al., 2000; Wang & Wilson, 2005). The unit of analysis is the test items, not the testlets, so 

that the information in the response patterns within the testlets is not lost. The second advantage 

is that familiar item parameter concepts, such as item discrimination and item difficulty, are 

still valid and functional. Another advantage is that the standard item scoring scales (1 for a 

correct answer and 0 for an incorrect answer) remain unchanged. Thus, an easy transfer from 

the traditional IRT model to using the TRT model is provided. 

This model uses the same item discrimination for both the theta and testlet traits, and this has 

been discussed as a limitation of the model (Li et al., 2004). When the data do not fit this 

constraint, the model is misspecified (Koziol, 2016). To handle discrimination parameters for 

these traits separately, the responses to the testlet items can be handled within the bi-factor 

model, which is a multidimensional model. It is already known that the testlet model is a special 

case of the bi-factor model (Rijmen, 2010). The answers given to the items in the bi-factor 

model are a function of both the primary trait and one of the secondary traits, and when this 

model is considered in the context of the testlet, secondary traits are testlet traits (DeMars, 

2006). In this model, unlike the 3PL testlet model, the discrimination of an item on theta is not 

constrained proportionally to the discrimination on the corresponding testlet trait. The bi-factor 

model for dichotomous data is 

𝑃𝑛𝑖  (1) = 𝑐𝑖 +  (1 −  𝑐𝑖) 
exp(𝑎𝑖𝑝𝛳𝑛𝑝 + 𝑎𝑖𝑠𝛳𝑛𝑠 + 𝑑𝑖 )

1 + exp(𝑎𝑖𝑝𝛳𝑛𝑝 + 𝑎𝑖𝑠𝛳𝑛𝑠 + 𝑑𝑖 )
,                         (3) 

where aip is the ith item slope parameter for the primary trait, ais is the ith item slope for the sth 

secondary trait, θnp is the nth person latent trait score for the primary dimension, θns is the nth 

person latent score for the sth secondary trait, di is the ith item intercept parameter (di = -aibi), 

and ci is the ith item guessing parameter. So, the TRT model in equation 2 can be viewed as a 

special case of the more general the bi-factor model in equation 3. 

The testlet effect was investigated by simulation studies under different conditions. In these 

studies, different estimation methods improved item estimations (Luo & Wolf, 2012), equating 

methods were examined (Tao & Cao, 2016), evaluation of model comparison criteria (DeMars, 

2012), ability parameter estimations were improved in CAT applications (Pak, 2017). The focus 

is on cases such as examining the effects when there are the different number of response 

categories (Wang et al., 2002). There are also studies in the literature evaluating parameter 

estimations got from different models with a similar purpose to the current study (Bradlow et 

al., 1999; DeMars, 2006; Koziol, 2016). The difference of this research from the mentioned 

studies is that it deals with more simulation conditions together. 

2. METHOD 

2.1. Simulation Design 

Three independent variables were manipulated: a) sample size: 500, 1000, and 2000; b) testlet 

number: 40 dichotomous items in 4 or 10 testlets (10 items per each of 4 testlets and 4 items 

per each of 10 testlets); c) variance of the testlet effect: .25, .50, and 1, representing small to 

large effects. Wang and Wilson (2005, p.133) stated that the variances of the testlets in the real 

tests can be very diverse (from as small as almost zero to as large as the variance of the latent 

trait). In this study, the latent trait was generated with a standard normal distribution [θ ~ N(0, 

1)]. Therefore, the largest variance of the testlet was chosen as 1.00. In this study, total 18 

simulation conditions are considered, since a fully crossed design is used. Number of items was 

fixed to 40 to mimic a test of relatively medium length.  
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2.2. Data Generation 

Similar to DeMars (2012), item discrimination and difficulty parameters were generated from 

a log-normal distribution N(0,1) ranging from .5 to 2.0 and a standard normal distribution 

N(0,1), respectively. Ability parameter and testlet variance were also generated from N(0,1) for 

the three possible testlet variance values determined by the specific simulation condition (same 

as Luo and Wolf, 2019, p.71). Based on these specifications, 40 dichotomously scored item 

response data were randomly generated. 100 replications were implemented for 18 conditions. 

Data generation was carried out through the R program. 

2.3. Data Analysis 

Each simulated data set for the traditional IRT, the TRT, and the bi-factor and model was 

calibrated using the mirt package (Chalmers, 2020) in R programme with the full information 

with the maximum likelihood estimation method with expectation-maximization (EM) 

algorithm. The stopping rule of the EM algorithm was set to the number of iterations = 500 or 

when maximum change = .00010. The models mentioned in the calibration model title in the 

previous section are as 3PL models. However, the guessing parameter was not considered in 

this study and the 2PL versions of the models were used. Because the three-parameter TRT 

model may encounter the problem of model convergence in practice (Wainer et al., 2007). 

The performance of the three models is assessed using four criteria: the root-mean-square-error 

(RMSE) (i.e., total error), the bias (i.e., systematic error), mean absolute error (MAE), and the 

correlation between the estimated parameters and the true parameters. They are defined as; 

𝑅𝑀𝑆𝐸 (�̂�) =  √
∑ ∑ (�̂�𝑟 −  𝜋)2𝑅

1
𝑁
1

𝑅 𝑋 𝑁
 ,                                                      (4) 

𝐵𝑖𝑎𝑠 (�̂�) =  
∑ ∑ (�̂�𝑟 −  𝜋)𝑅

1
𝑁
1

𝑅 𝑋 𝑁
,                                                         (5) 

𝑀𝐴𝐸 (�̂�) =  
∑ ∑ |(�̂�𝑟 −  𝜋)|𝑅

1
𝑁
1

𝑅 𝑋 𝑁
,                                                   (6) 

where �̂�𝑟  is the estimated model parameter for the 𝑟th replication, π is the true model parameter, 

R is the number of replications, and N is the number of items. 

3. FINDINGS 

The recovery of item discrimination and item difficulty parameters across calibration models 

and testlet size conditions are presented in Figure 1 and Figure 2, respectively. Also, the 

complete set of results are summarized in the appendix as Table A1 and Table A2, respectively. 

3.1. Recovery of Item Discrimination Parameters 

As seen in Figure 1, under all conditions, the TRT model outperformed the traditional 2PL and 

bi-factor models concerning to the RMSE, the bias, the MAE of the estimated item 

discriminations, and correlations between the estimated and true item discriminations. For 10 

items per each of 4 testlets, the performance of the TRT model outperformed with increased 

sample size but nearly remained stable across testlet variance (which RMSES were .17, .12 and 

.08 across sample size 500, 1000, and 2000, respectively). With same pattern, MAEs were .13, 

.9, and .7 across sample size 500, 1000, and 2000, respectively. The bi-factor model showed 

better recovery with increased sample size, but its performance slightly decreased with 

increased testlet variance.   

The bi-factor model performed equivalently to the TRT model when the sample size was 

especially 1000 and 2000, which differences of RMSE and of correlation between the estimated 
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and true item discriminations never exceeded .01 and MAE never exceed .02. This model 

showed the worst recovery under N = 500 condition when the criterion was correlation. Overall, 

the traditional 2PL model was the worst, showing large number of non-convergence conditions 

with increased testlet variance compared to both the TRT model and the bi-factor model. This 

means that EM cycles terminated after 500 iterations, not when the maximum change = .00010.  

Figure 1. Recovery of item discrimination. 

 

The bias showed that under all conditions, the traditional 2PL model underestimated the 

discrimination parameters than the true ones but the opposite tendency for the TRT and bi-

factor models. For 4 items per each of 10 testlets, a similar pattern was held for the three 

calibration models with worse recovery, and the TRT model outperformed the other calibration 
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models. The largest difference in RMSE between 10 items per each of 4 testlets and 4 items per 

each of 10 testlets was .07, .05, and .20 for the traditional 2PL, the TRT, and the bi-factor 

models, respectively. The bi-factor model showed more non-convergence conditions, 

especially when the sample size was 500. According to the correlation, the performance of the 

bi-factor model decreased with compared to the 10 items per each of 4 testlets, although the 

performance of the other two models nearly remained stable (which the differences never 

exceed .01). 

3.2. Recovery of Item Difficulty Parameters 

As seen in Figure 2, under all conditions, the TRT model slightly outperformed the traditional 

2PL and bi-factor models with respect to the RMSE, the bias, the MAE of the estimated item 

difficulties, and correlations between the estimated and true item difficulties.  

Figure 2. Recovery of item difficulty. 
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When the outcome criteria was RMSE for 10 items per each of 4 testlets, the performance of 

the TRT model performed better with increased sample size and slightly better with increased 

testlet variance under N = 500 but remained stable across testlet variance when the sample size 
was 1000 and 2000. Besides, for the MAE under all sample sizes, the TRT model performed 
stable across testlet variance. The bi-factor model outperformed recovery with increased sample 
size, but its performance slightly decreased with increased testlet variance. Considered RMSE, 

this model showed the worst performance under the N = 500 condition. The traditional 2PL 
model had the same pattern as the bi-factor model when the criteria were MAE under both 10 
items per each of 4 testlets and 4 items per each of 10 testlets conditions. Again, the magnitude 
of bias ranged from .00 to .01, and correlations between the estimated and true item difficulty 

ranged from .98 to 1.00 and were the same across three calibration models and testlet size 
conditions. The differences in RMSE and in MAE were quite small, the largest difference 
between 10 items per each of 4 testlets and 4 items per each of 10 testlets was .02, .02, and .03 
for the traditional 2PL, the TRT, and the bi-factor models, respectively. 

4. DISCUSSION and CONCLUSION 

Using testlets in tests violates the LI assumption. The TRT model and the bi-factor model have 

been widely used by researchers and practitioners to address local item dependency among the 
items in the same testlet. Besides these models, traditional 2PL models continue to be used for 
tests with testlets. In this study, dichotomous data simulated under different conditions (sample 

size, testlet size, and testlet variance size) were handled with three calibration models, the 
traditional 2PL, the TRT, and the bi-factor models, and the performances of the item parameters 
got from these three models were compared.  

The TRT model outperformed the traditional 2PL and the bi-factor models regarding testlet size 

conditions, types of parameters, and outcome criteria. When the sample size was small, the 

performance of the bi-factor model was the worst under all other conditions and showed an 

irregular pattern. The reason is why a few item parameters in several replications were 

estimated quite differently from the true values, insomuch that RMSE was even .80 within in 

the replication itself. Besides, such a situation was not encountered in small samples for MAE, 

which produced more regular results. In this study, the stopping rule of the EM algorithm was 

set to the number of iterations = 500 or when maximum change = .00010. In all conditions 

where N = 500 and in some conditions for N = 1000, the EM cycles in the bi-factor model 

estimations stopped when they reached the maximum iteration. This had been an attempt to 

increase errors of the model estimation a little more than the normal. For the TRT model, a 

similar situation was observed in far less replication for N = 500. The time of the TRT and the 

bi-factor model estimations got longer under conditions of the large number of testlet, but the 

estimation time for the traditional 2PL model was barely or never impacted. 

For both the traditional 2PL model and especially the bi-factor model, discrimination parameter 

recovery accuracy was negatively affected by increased testlet variance and the number of 

testlet but almost remained stable in the TRT model. The three calibration models themselves 

performed similar difficulty parameter recovery under conditions of the small number of items 

per testlet and the large number of items per testlet. Increased number of sample size was 

positively affected by both two types of parameter recovery for the three calibration models, 

especially the traditional 2PL and the bi-factor models. These findings are in line with the 

findings of DeMars (2006), Liu and Liu (2012), and Koziol (2016), who generated the data 

according to the TRT model (as was done in our study), that the performance of the TRT model 

was the best to the traditional 2PL model and the bi-factor model. Koziol (2016) examined the 

recovery of the parameters under only sample size was 1000 and used MAE to compare the 

efficacy of the three calibration models for recovery of item and person parameters. Our 

findings on recovery of the item discrimination and parameters with MAE (in Appendix, Table 
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A1 and Table A2) under N = 1000 were highly consistent with Koziol (2016). In contrast, 

Koziol (2016) reported that recovery of the item difficulty parameter only suffered under the 

largest testlet dependency condition (i.e., the large testlet variance and the large number of items 

per testlet condition). The difference between the current study and Koziol's findings (2016) 

could arise out of the estimation methods used within these two studies. 

Sample size had a bigger impact on item parameter estimates than the other testlet conditions. 

Because the data followed the TRT model in this study, item parameters recovered the best with 

this model, as expected. In case of fully crossing the data generation according to calibration 

models in additional research, recovery and accuracy of parameters can be examined. However, 

under a large sample size and a small number of testlet, the performance of the bi-factor model 

could be as good as the TRT model. Also, under small testlet variance for any sample size, 

performing the traditional 2PL model could be as good as the TRT model. It should not be 

forgotten that even minor differences can have significant consequences in high-stakes 

contexts. Therefore, it is considered that more studies are needed on the parameter recovery and 

accuracy of modeling approaches. As with all studies, the results based on this study are limited 

to the conditions (i.e., testlet variance, the number of items per each of testlet, sample size, 

calibration models) given by the method. In this study, only the recovery of the item parameters 

was examined, the recovery of the ability parameter could be examined to vary outcome criteria 

and testlet conditions for future research. Also, another limitation of the present study is that 

we only used a medium-length test. The size of the number of items in the test can also be 

considered as a condition of the study.  

Although testlet item structures are used in large-scale testing applications or classroom 

assessment, testlet dependency is generally ignored when calculating the test scores of 

individuals. As in this study, the effect of testlet dependency may be small or insignificant, but 

we do not know the exact magnitude of this effect in real-world testing situations. Therefore, 

as Koziol (2016) pointed out, it needs to be investigated whether test results will be biased if 

the testlet dependency is neglected or modeled incorrectly. To conclude, the findings of the 

current study show that the testlet and the bi-factor models provide to handle with LID and 

these two models give similar results in large samples. 
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APPENDIX 

Table A1. Recovery of item discrimination parameters. 

Calibration Model 
Conditions 

Testlet Size 

10 items per each of 4 testlets 4 items per each of 10 testlets 

SS TV RMSE Bias MAE Corr RMSE Bias MAE Corr 

Traditional 2PL 

500 .25 .16 .02 .12 .93 .17 .05 .13 .92 

 .50 .17 .05 .14 .91 .20 .10 .15 .90 

 1.00 .22 .08 .17 .86 .27 .18 .21 .86 

1000 .25 .12 .03 .09 .96 .13 .06 .10 .96 

 .50 .14 .05 .11 .94 .18 .11 .14 .94 

 1.00 .20 .09 .15 .89 .26 .18 .20 .91 

2000 .25 .09 .03 .07 .98 .11 .06 .09 .98 

 .50 .12 .05 .09 .96 .17 .11 .13 .97 

 1.00 .18 .09 .13 .91 .25 .18 .19 .94 

Testlet Response 

Theory 

500 .25 .17 -.01 .13 .93 .19 -.02 .14 .92 

 .50 .17 -.01 .13 .92 .21 -.03 .15 .91 

 1.00 .18 -.02 .13 .92 .23 -.03 .17 .89 

1000 .25 .11 .00 .09 .96 .12 -.01 .09 .96 

 .50 .12 .00 .09 .96 .14 -.01 .10 .95 

 1.00 .12 .00 .09 .96 .15 -.01 .11 .94 

2000 .25 .08 .00 .06 .98 .09 .00 .07 .98 

 .50 .08 .00 .07 .98 .09 .00 .07 .97 

 1.00 .09 .00 .07 .98 .10 .00 .08 .97 

Bi-factor  

500 .25 .25 -.04 .15 .89 .45 -.13 .24 .76 

 .50 .19 -.02 .14 .91 .37 -.09 .21 .82 

 1.00 .21 -.02 .16 .90 .34 -.07 .20 .84 

1000 .25 .12 -.01 .09 .96 .22 -.05 .13 .90 

 .50 .13 -.01 .10 .96 .20 -.03 .13 .92 

 1.00 .14 -.01 .11 .95 .19 -.03 .12 .92 

2000 .25 .08 -.01 .07 .98 .14 -.02 .09 .95 

 .50 .09 -.01 .07 .98 .13 -.02 .08 .96 

 1.00 .10 -.01 .08 .97 .12 -.01 .08 .96 

Note. RMSE: Root mean square error, MAE: Mean absolute error, Corr: Pearson correlation coefficient. 
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Table A2. Recovery of item difficulty parameters. 

Calibration Model 
Conditions 

Testlet Size 

10 items per each of 4 testlets 4 items per each of 10 testlets 

SS TV RMSE Bias MAE Corr RMSE Bias MAE Corr 

Traditional 2PL 

500 .25 .19 -.01 .12 .98 .20 .00 .13 .98 

 .50 .19 -.01 .13 .98 .21 -.01 .13 .98 

 1.00 .20 -.01 .14 .98 .21 .00 .14 .98 

1000 .25 .13 .00 .09 .99 .13 .01 .09 .99 

 .50 .13 .00 .09 .99 .13 .01 .09 .99 

 1.00 .15 .00 .11 .99 .14 .01 .10 .99 

2000 .25 .09 .00 .06 1.00 .09 .00 .06 1.00 

 .50 .10 .00 .07 1.00 .09 .00 .06 1.00 

 1.00 .12 .00 .09 1.00 .10 .00 .07 1.00 

Testlet Response 

Theory 

500 .25 .19 -.01 .12 .99 .20 .00 .13 .98 

 .50 .18 -.01 .12 .99 .20 .00 .13 .98 

 1.00 .17 .00 .12 .99 .20 .00 .13 .98 

1000 .25 .12 .00 .09 .99 .12 .00 .08 .99 

 .50 .12 .00 .09 .99 .12 .00 .08 .99 

 1.00 .12 .00 .09 .99 .13 .00 .09 .99 

2000 .25 .08 .00 .06 1.00 .09 .00 .06 1.00 

 .50 .08 .00 .06 1.00 .09 .00 .06 1.00 

 1.00 .08 .00 .06 1.00 .09 .00 .06 1.00 

Bi-factor  

500 .25 .22 -.01 .13 .98 .21 -.01 .13 .98 

 .50 .23 -.01 .14 .98 .22 -.01 .13 .98 

 1.00 .27 -.01 .16 .97 .24 -.01 .14 .98 

1000 .25 .14 .00 .09 .99 .13 .00 .09 .99 

 .50 .14 .00 .09 .99 .13 .00 .09 .99 

 1.00 .16 .00 .11 .99 .14 .00 .09 .99 

2000 .25 .09 .00 .06 1.00 .09 .00 .06 1.00 

 .50 .10 .00 .07 1.00 .09 .00 .06 1.00 

 1.00 .11 .00 .07 1.00 .10 .00 .07 1.00 

Note. RMSE: Root mean square error, MAE: Mean absolute error, Corr: Pearson correlation coefficient. 

 


