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Abstract. Integrating computational thinking into K-12 Education has been a widely explored 
topic in recent years. Particularly, effective assessment of computational thinking can support 
the understanding of how learners develop computational concepts and practices. Aiming to 
help advance research on this topic, we propose a data-driven approach to assess computa-
tional thinking concepts, based on the automatic analysis of data from learners’ computational 
artifacts. As a proof of concept, the approach was applied to a Massive Open Online Course 
(MOOC) to investigate the course’s effectiveness as well as to identify points for improvement. 
The data analyzed consists of over 3300 projects from the course participants, using the Scratch 
programming language. From that sample, we found patterns in how computational thinking 
manifests in projects, which can be used as evidence to guide opportunities for improving 
course design, as well as insights to support further research on the assessment of computa-
tional thinking.

Keywords: automatic assessment tools, computational thinking, computer science education, on-
line learning.

1. Introduction

In 2013, former US President Barack Obama joined a campaign to encourage computer 
programming and stated:

“Do not just buy a new video game, make one. Do not just download 
the latest app, help design it. Do not just play on your phone, program 
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it. No one’s born a computer scientist, but with a little hard work, 
and some math and science, just about anyone can become one.”  
(Code.org, 2013). 

Additional actions by the Obama administration, such as the Computer Science for 
All (The White House, 2016), exemplify the strength of the debate over the introduc-
tion of computer science into K-12 Education in the United States, particularly during 
the last decade. In the meantime, similar movements gained traction in other countries. 
For instance, Computing was included as a compulsory area of study in the national 
curriculum in England, through its four key stages (Department of Education, 2014; 
Brown et al., 2014). At least 15 other European countries have already incorporated 
computer programming into their curriculum at different levels (Balanskat and En-
gelhardt, 2015). The new version of the Australian Curriculum includes Digital Tech-
nologies as one of its key learning areas, based on the use of computational thinking 
for the implementation of digital solutions (ACARA, 2014; Falkner et al., 2014). In 
Brazil, the new National Common Curricular Base (BNCC, in the Portuguese acro-
nym), highlights the importance of computational thinking for Mathematics Education 
(Brasil, 2018).

As with the traditional areas of STEM (acronym for Science, Technology, Engi-
neering and Mathematics), one of the main motivations for introducing computing 
or programming in K-12 Education involves the growing demand for professionals 
with the skills to understand and produce digital technologies (Manyika et al., 2017). 
However, the discussion on the theme is not recent and the motivations for children 
and youth to learn computer programming languages go far beyond the development 
of a technical skill: it is a strategy to foster metacognition and the creation of powerful 
ideas (Papert 1980; Tissenbaum, 2019), as well as other abilities, such as problem-
solving to critical thinking (Popat and Starkey, 2019). More recently, computer pro-
gramming has been framed as a key practice in computational thinking, based on 
Jeannette Wing’s seminal paper (Wing, 2006), which provided a broader and more 
contextualized importance to the ability to create computer programs, especially for 
K-12 Education. Although there is no consensus about the definition of computational 
thinking, it has been a mandatory skill in national curricula in many countries across 
the globe and has fostered research in fields such as teacher professional development 
and assessment.

In this paper, we describe our findings in how to assess computational thinking us-
ing data collected from learners’ computational artifacts. Here, it is contextualized in 
a Massive Open Online Course (MOOC) to serve as a qualified proof of concept because 
of the large volume of data the course provides. The whole analysis is based on data-
driven approaches for assessment and decision-making. Before detailing our proposal, 
we present key research into relevant topics to this work: automatic strategies for assess-
ing computational thinking in the context of the Scratch programming language, and 
how such strategies have been deployed to enhance learning experiences, particularly in 
online courses.
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2. Background

2.1. Computational Thinking and Scratch Programming Language

In 2006, Wing proposed a wide description of computational thinking (CT), stating that 
it involved “solving problems, designing systems, and understanding human behavior, 
by drawing on the concepts fundamental to computer science” (Wing, 2006), a skill that 
should not be limited to computer scientists. Since then, various researchers and orga-
nizations have proposed different ways to define and to operationalize CT; according to 
Barr & Stephenson, it “is an approach to solving problems in a way that can be imple-
mented with a computer” (Barr and Stephenson, 2011), that includes the following con-
cepts: data analysis, representation, and collection; problem decomposition; abstraction; 
algorithms & procedures; automation; parallelization; simulation. Likewise, Taslibeyaz 
et al. (2020) noticed the literature in CT suggests this skill is predominantly associated 
with analyzing and solving problems, combined with additional definitions such as sys-
tems design and computer programming. Similarly, Selby & Woolard (2013) state dif-
ferent definitions of CT at that time had a consensus on including three terms: the idea 
of a thought process and the concepts of abstraction and decomposition. Grover and Pea 
(2013), based on various definitions from researchers and organizations, propose addi-
tional elements that characterize CT, such as recursive thinking and debugging, besides 
highlighting the importance of computer programming for supporting the development 
of computational thinking. Using a different approach, Brennan and Resnick (2012) pro-
pose a definition of CT based on three dimensions: computational concepts, practices, 
and perspectives. Finally, Shute et al. (2017) present a categorization of CT in six facets: 
decomposition, abstraction, algorithm design, debugging, iteration, and generalization. 
In brief, although there is no single definition for CT, some of its features are widely ac-
cepted and guide different approaches to foster the development of this skill.

In addition to the ongoing research on how to frame CT, different approaches and 
tools have been used to foster its development. Among the existing programming lan-
guages and platforms to nurture computational concepts and practices, Scratch (Resnick 
et al., 2009) is one of the most popular for that purpose, particularly in K-12 settings 
(Moreno-León et al., 2017). In brief, Scratch is a visual or block-based programming 
language and online environment, publicly launched in 2007. It is a free service de-
veloped by MIT and has over 66 million users registered (Scratch, 2021), with a vast 
research literature on its use for developing programming and computational thinking 
skills. For instance, Papavlasopoulou et al. (2019) explored Scratch as a tool for con-
structionism-based experiences in coding, with participants aged 8–17 years old. Weng 
et al. (2010) used Scratch as a learning environment to introduce Boolean logic to ninth 
grade students. Topalli and Cagiltay (2018) used Scratch for introducing programming 
concepts for first-year Engineering students. Cardenas-Lobo et al. (2019) developed 
a Scratch extension to increase the effectiveness of Scratch use in Higher Education. 
Yadav et al. (2017) and Yurkofsky et al. (2019) presented relevant experiences into us-
ing Scratch to introduce computational thinking and programming for preservice teach-
ers. Additionally, Scratch has been an effective tool to develop computational thinking 
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in online environments, via online courses for K-12 students  (Basogain et al., 2018) 
and teachers (Marcelino et al., 2018). Although there are alternative programming lan-
guages and environments for introducing computational thinking to K-12 Education, 
such as Alice, Code.org and even unplugged methodologies, the ease of use and diver-
sity of applications with Scratch supports its relevance in the field.

2.2. Automatic Assessment of Computational Thinking

Assessing computational thinking concepts and practices is still a field with more 
questions than answers (e.g., see Balanskat and Engelhardt, 2015; Basso et al., 2018; 
Grover and Pea, 2013; Haseski and Ilic, 2019). As possible strategies for assessment, 
tasks and challenges facilitate the comparison among large numbers of learners from 
different contexts (e.g., see de Araujo et al., 2013; Berland et al., 2014; Grover et al., 
2014; Izu et al., 2015; Tsukamoto et al., 2017). In turn, there are various studies 
which explore computational artifacts created by learners to evidence and to com-
pare their development (Fields et al., 2016; Seiter and Foreman, 2013). Particularly, 
computational artifacts represent a valuable resource for personalized and formative 
assessment, which can be enhanced by the design and implementation of automated 
analyses methods.

Additionally, automated analyses of computational artifacts can make the assess-
ment of large amounts of productions possible, using comparable parameters at scale. 
Recent studies using different programming languages provide evidence that learning 
analytics techniques can be used to promote a better understanding of how learners 
evolve as they develop programming and CT skills (Alves et al., 2019; Blikstein et al., 
2014; Dasgupta and Hill, 2017; Von Wangenheim et al., 2018). In particular, different 
tools have been developed to analyze, assess, and give feedback to students working on 
the Scratch programming environment. Filvà et al. (2019) developed an approach using 
clickstream techniques to detect patterns in students’ behavior in Scratch programming 
activities aiming to support teachers in evaluation and tutoring. Martin et al. (2016) and 
Brasiel et al. (2017) developed an automated analysis tool to help researchers studying 
the development of computational thinking using Scratch and used it to measure the 
computational thinking components of parallelism, logical thinking, synchronization, 
iterative and recursive thinking, and pattern generalization. 

Among the existing approaches to assess computational thinking with Scratch, the 
web application Dr Scratch (Moreno-León et al., 2015) provides a quantitative analysis 
and categorization based on seven CT concepts (abstraction and problem decomposi-
tion, parallelism, logical thinking, synchronization, algorithmic notions of flow control, 
user interactivity and data representation), grading projects from 0 to 21. For instance, 
the logical thinking concept is assessed as basic (1 point) if the project has an “if” block, 
as developing (2 points) if it has an “if-else” block and proficiency (3 points) if it has 
logic operators. Although it represents a remarkable approach to automatically assess 
projects, the tool makes narrow assumptions to categorize the level of a computational 
thinking concept or practice in a Scratch project, which can cause misleading feedback. 
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Building upon previous research, we propose a data-driven approach to assess com-
putational thinking, based on automatic analysis of data from learners’ computational 
artifacts. We aim to have a greater level of understanding on how data extracted from 
computational artifacts can support instructors and learners in developing different di-
mensions of computational thinking. Section 3 describes that approach, from its prem-
ises to coefficients that describe it, as well as aspects of implementation with the Scratch 
programming language. Section 4 details a proof of concept for this approach to in-
vestigate its feasibility, consisting of four editions from a massive online open course 
(MOOC) on introductory computer programming. Section 5 highlights the conclusions 
and recommendations for future research.

3. An Approach for Assessing Computational Thinking

This section describes the approach proposed to automatically assess computational 
thinking, especially the definition of CT used as a reference and the hypotheses to quan-
tify computational concepts and convert them into numerical coefficients. In addition to 
that, it describes the algorithm used to extract coefficients from a Scratch project, includ-
ing source code and application programming interfaces used, allowing replication by 
further research in the same sample of projects or in different samples.

3.1. Premises for the Assessment Approach

Building upon existing work on the automatic assessment of computational thinking, the 
approach designed herein is based on the following premises:

The approach aims to assess the development of computational thinking concepts  ●
(Table 1). In the context of the Scratch programming language, the definition pro-
posed by Brennan and Resnick (2012) was used as a reference, as it clearly defines 
how specific programming blocks connect with one of the seven computational 
concepts proposed by the authors. That also means that this approach does not 
target assessing computational practices and perspectives, which can be explored 
in future work.
The approach explores the notion of artifact-based assessment, through the analy- ●
sis of learners’ computational artifacts created with Scratch. By that, it values the 
constructionist nature in programming with Scratch (Papert, 1980; Resnick et al., 
2009). Additionally, it assumes that learners master a concept as they apply it to 
an artifact, growing and cumulative repertoire that can be measured (Dasgupta 
and Hill, 2017).
The approach aims to provide quantified measures for each computational concept,  ●
as Moreno-León et al. (2015), exploring data collection and manipulation tech-
niques. As an alternative approac, it proposes coefficients that are more sensitive 
to code variation in Scratch projects. Additionally, it focuses on analyzing large 
volumes of data, applicable to both large groups, such as the summative assessment 
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of a final project in a massive course, and periodic collections from smaller groups, 
such as the formative assessment of projects as students work on it in a classroom.

3.2. Coefficients for Computational Thinking Concepts

This approach proposes numerical coefficients to measure the application of computa-
tional concepts, based on programming blocks and their connections in a Scratch proj-
ect. For that, we build upon the detailed description for computational thinking concepts 
from Brennan and Resnick (2012), summarized in Table 1.

We identified which Scratch programming blocks and structures manifest the appli-
cation of computational concepts, and defined ways to quantify them, considering not 
only the number of blocks and structures used, but also their variety. For instance, a proj-
ect that uses the same loop block twice would have a different coefficient for Loops 
than a project which uses two different loop blocks, once each. Based on that notion, we 
defined seven coefficients, from C1 to C7, as follows:

C1. Sequences: ●  number of functional scripts in a project, that is, at least two 
blocks connected conditioned to an event.
C2. Events: ●  number of events blocks that start a script, known as “hat blocks”, 
multiplied by how many kinds of events are applied to the project.
C3. Parallelism: ●  defined by how many times the same event is used to start at 
least two different scripts.
C4. Loops: ●  defined by the number of loop blocks (“repeat ()”, “forever” and “re-
peat until ( )”) in a project, multiplied by how many kinds of loop blocks are ap-
plied to the project. 
C5. Conditionals: ●  defined by the number of conditional blocks (“if <> then”, “if 
<> then, else”, “repeat until <> and “wait until <>“ ;) in a project, multiplied by 
how many kinds of conditional blocks are applied to the project. 
C6. Operators: ●  defined by the number of operator blocks (all the blocks available 
in the Operator category in Scratch) in a project, multiplied by how many kinds of 
operator blocks are applied to the project. 
C7. Data: ●  defined by the number of data blocks (all the blocks available in the 
Variables category in Scratch) in a project, multiplied by how many kinds of data 
blocks are applied to the project.

Table 1

Computational concepts proposed by Brennan and Resnick (2012)

Sequences Identifying a series of steps for a task
Events One thing causing another thing to happen
Parallelism Making things happen at the same time
Loops Running the same sequence multiple times
Conditionals Making decisions based on conditions
Operators Support for mathematical and logical expressions
Data Storing, retrieving, and updating values
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To make the coefficients more tangible, Table 2 presents the coefficients for a specific 
Scratch project (Fig. 1). In sum, we related the coefficients’ value to the number of func-
tional blocks on the project, using the description of computational concepts proposed 
by Brennan & Resnick (2012) to identify which blocks on Scratch would relate to each 
coefficient. Added to that, we multiplied the number of blocks by the number of different 
blocks used in C4, C5, C6 and C7, to value the diversity of blocks applied to the project.

The coefficients in our approach do not have a maximum value: as blocks are added 
to a project, their coefficients increase. Based on that, there is no single definition of 
what a low or high indicator for a computational concept would be; instead, such defini-
tions are contextual and then customizable by instructors or learners. Simple numeric 
comparisons between coefficients are not relevant in this scenario, as each explores dif-
ferent metrics.

Table 2

Coefficients for Scratch project in Fig. 1

Coefficients Value Rationale

C1 4 4 five different scripts (sets of blocks)
C2 4 4 events * 1 type of event (“when ‘green flag’ clicked”)
C3 1 1 type of block used in parallel (“when ‘green flag’ clicked”)
C4 8 4 loop blocks * 2 types of loop blocks (“forever” and “repeat ( )”)
C5 6 6 conditional blocks * 1 type (“if <> then”)
C6 24 8 operator blocks * 3 types (“() < ( )”, “( ) > ( )”, “<> and <>“)
C7 45 15 data blocks * 3 types (“variable”, “set [] to ()” and “change [] by ( )”)

Fig. 1. Example of a Scratch project interface (Pong game) and  
its corresponding programming blocks.
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3.3. From Data Collection to Visualization

Data from Scratch projects is collected, organized, and visualized by specific routines 
developed with Python programming language. Application programming interfaces 
(APIs) for data extraction and libraries for data visualization were key factors for defin-
ing the programming language. Fig. 2 illustrates the key steps in that process, which are 
detailed in the following paragraphs.

Data is collected from individual Scratch projects, identifiable by a uniform resource 
locator (“url”). This project can be exported into a JSON file (acronym for JavaScript 
Object Notation), with an API available in Python (step 1 in Fig. 2). The JSON file for 
a Scratch project details, among other information, the blocks that compose it as well 
as how they connect with each other. Fig. 3 exemplifies how a set of Scratch blocks is 
described in a JSON file.

Information from the JSON file is used to determine the coefficients for computation-
al thinking coefficients, described in the previous section (step 2 in Fig. 2). From that, 
it is possible to generate visual representations for a project (step 3 in Fig. 2) and use 
them for comparison, such as how the project evolves over time or contrasting it with 
other projects. Moreover, information from a specific project can be stored in a database 

Fig. 3. Example of how information from a Scratch script is represented in a JSON file.

Fig. 2. Key steps for collecting, analyzing, and visualizing data from a Scratch project.
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for analyzing a sample of projects (step 4 in Fig. 2); that includes, for example, multiple 
collections of one project over time. An alternative strategy includes comparing different 
projects from a given context, such as the final project of a course. A similar scenario is 
used as a proof of concept for this approach, which is described in the next section.

4. Proof of Concept with a Massive Online Open Course

This section describes learning outcomes from applying the approach to automatically 
assess computational thinking in a Massive Online Open Course (MOOC), as a proof 
of concept for our proposal. First, we justify why we chose a MOOC as an environment 
for a proof of concept, as well as general information about the course chosen. Second, 
we describe adaptations made to make the approach applicable to such an environment. 
Finally, we share insights from this experience, contextualized for teaching and learning 
in one specific course, but which can contribute to research in similar contexts.

4.1. Choosing a MOOC for Applying the Approach

There are different reasons for choosing a MOOC to run a proof of concept for the pro-
posed tool. In our case, a feature of the programming MOOCs is the presence of several 
different solutions for the proposed projects; in most of these courses, project submis-
sion and tasks involve lines of code. Moreover, the analysis of those projects can ex-
plore different approaches, such as peer-to-peer analysis, in which students provide peer 
feedback on the project. However, assessment based on individual code submissions 
can be an arduous process, either because the work performed grows linearly at scale 
or becomes almost unworkable in open and online courses, such as MOOCs. Different 
scholars have explored the use of automated methods to analyze and assess learners’ 
artifacts at scale, including in the field of computer science education (e.g., see Head 
et al., 2017; Nguyen et al., 2014; Wang et al., 2018), which fits with the requirements of 
massive courses. Those approaches tend to develop an underlying objective simulation 
and similarity between students’ responses in the educational process of computer sci-
ence (Hovemeyer et al., 2016) and not computational thinking competences. This is the 
contribution of this proof of concept with a MOOC.

In this proof of concept, we analyzed the productions from participants in the on-
line course “CodeIot – Learning to code”, offered by Code IoT platform, which also 
includes other courses about basic electronics, robotics, Android apps development, IoT 
concepts and IoT solutions development. Also, it is free of any charges and available in 
Portuguese, English, and Spanish. The “CodeIot – Learning to code” is an introductory 
course, which aims to enable participants to take the first steps into coding, by exploring 
the Scratch programming language. The course had its first edition in 2017 and three 
others in 2018, with more than 1000 participants in total and 3331 artifacts created and 
submitted by them. Other editions have been offered in 2019 and 2020 but were not 
considered in this study.
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With activities distributed along six weeks, the course invites participants to create 
various projects with Scratch, supported by videos, tutorials, and exercises, in addi-
tion to peer reviews for the projects built. It is organized into weekly activities, with 
a total workload of 20 hours. Table 3 presents the course outline from its most recent 
edition (since there were adjustments after the first one):  we focus our analysis into the 
exercises (five in total), as the projects created on them are used to assess participants’ 
computational thinking skills. 

The percentage of participants that submitted activities decreased significantly along 
the course (Table 4), as other learning experiences with MOOCs, which is below 15% 
(Onah et al., 2014; Rothkrantz, 2016). The most significant reduction occurred between 
Exercises 4 and 5, which indicates the need for greater attention to this stage of the 
course.

Table 3
CodeIoT – Course outline

Week Course description

1 Course presentation

2 Theme: animations and stories
Scratch programming language: user interface, online community, microworlds
Computational concepts: sequences, loops, and parallelism 
Scratch feature: Messages
Exercise 1: personal presentation with an animation on Scratch

3 Theme: interactive projects with Scratch
Computational concepts: events and conditionals
Scratch feature: pen
Exercise 2: debug and add interaction to a project in Scratch

4 Theme: Creating games with Scratch
Computational concepts: variables, logical and mathematical operators
Scratch feature: random numbers
Exercise 3: design a game with Scratch

5 Theme: adding features to games with Scratch
Computational concepts: functions and procedures
Scratch features: clones, sensors, functions, stages in a game
Exercise 4: keep working on games with Scratch

6 Exercise 5: Creating a free project
Course evaluation

Table 4

Number of exercises submitted by participants per edition

Course edition Exercise 1 Exercise 2 Exercise 3 Exercise 4 Exercise 5

1st   663 481 398 279 133
2nd   284 227 185 142   78
3rd     62   47   39   32   16
4th     96   64   51   40   14
Total 1105 819 (74%) 673 (61%) 493 (45%) 241 (22%)
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4.2. Adapting the Approach for Assessment to a MOOC Course

To apply the approach to assess computational thinking to the CodeIot Online course, 
we made a few adaptations in the algorithm for data collection and analysis, which are 
mainly described through the following steps:

Organizing the 1. CodeIot platform database from the last four editions of the 
course.
Extracting and analyzing data from Scratch projects on the online Scratch plat-2. 
form.
Parameterizing the coefficients based on maximum and minimum values from the 3. 
sample of projects used on the analysis.

In step (1), the data from the exercises along the course was extracted and organized 
in a .csv file, available on an online repository1, in which each row refers to an exercise 
submission with an associated URL to a Scratch project. In addition to the project URL, 
other relevant information extracted from the database was: a user code identifier, the 
date/time of submission, a grade from 0 to 10 and qualitative feedback, both based on 
peer evaluation. 

In step (2), we extracted data from Scratch projects to calculate their respective coef-
ficients, as described in Table 2 and detailed in Section 3.B. From that, we were able to 
calculate the coefficients of computational thinking concepts, C1 to C7, for each project 
submitted to the course and those values to the database of projects. Fig. 4 describes the 
algorithm for extracting and analyzing the data from our database of Scratch projects 

1 Online repository available at: http://bit.ly/3aq9aS0  

Fig. 4. Algorithm for extracting and analyzing data from a sample of Scratch projects,  
resulting in their coefficients for computational concepts.
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submitted along the course editions. The algorithm was implemented using the Python 
programming language, which is detailed in another work by the same author (Eloy, 
2019) and available on an online repository (http://bit.ly/3aq9aS0).

For each edition of the course, we applied steps (1) and (2). In step (3), the coefficients 
from different courses were parameterized to improve their comparison, especially with 
radar graphs. That is, maximum values registered in all the editions were considered as 
100% for each axis. Table 5 presents the values for the seven coefficients: instead of 
using the maximum absolute value for parameterization, this study considered the maxi-
mum sum of median values, from Exercises 1 to 5, in all the editions. Also, to represent 
a learners’ progression and cumulative domain of each computational concept, we opted 
for representing the sum of coefficients of different artifacts created over time.

When describing an average project in specific circumstances, such an exercise from 
an edition – which we called typical projects, we gave priority to the median over aver-
age values, as the sample has a high standard deviation (relative standard deviation high-
er than 50% for all the coefficients, considering different editions). Besides, by using 
median values, we could find projects in our database to exemplify a specific combina-
tion of coefficients. Based on that, the coefficients from all the editions were multiplied 
by their corresponding parameter, presented in Table 5.

As a limitation, the parametrization used mean values from the sample of projects 
and so the graphs could not represent individual projects with coefficients higher than 
“100” in the same axes; in those cases, we had to adjust the axes to represent them graph-
ically. New editions of the course may have samples with median values higher than 
those registered so far, which will demand a new parametrization of the coefficients.

5. Results and Discussion

We defined the questions below to investigate the outcomes from applying the approach 
to automatically assess computational thinking to the MOOC “Learning to Code” from 
the CodeIot platform.

Table 5
Maximum absolute value and maximum sum of median values for the coefficient

Coefficients Maximum absolute 
value1

Maximum sum of 
median values2

Parameters

C1 Sequences   1010   78         1.28
C2 Events   5050 288.5         0.35
C3 Parallelism         7   11 44083
C4 Loops     852   52.5         1.90
C5 Conditionals   1408   65.5         1.53
C6 Operators 12690 196         0.51
C7 Data 10150 134         0.75

1 Maximum absolute value (for a project, considering all editions).
2 Maximum sum of median values, from Exercises 1 to 5 (considering all the editions).
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Can the approach identify similarities and differences in students’ creations in  ●
different course editions?
Can we use the approach to characterize what is expected from a project for a spe- ●
cific exercise?
Can we use the approach to identify outliers that contrast typical projects? ●
Can the assessment of computational concepts help predict students’ dropout? ●

5.1. Can the Approach Identify Similarities and Differences  
in Students’ Creations in Different Course Editions?

Fig. 6 helps us reflect on that question by showing the typical behavior (median values 
from the sample) of projects from each exercise in the different editions of the course. 
It represents a cumulative repertoire: the green curve, for example, represents the total 
sum of coefficients from Exercises 1 to 3. The parametrization presented in Section 4.2 
took the four editions of the course into account; as observed, the maximum cumulative 
repertoire for all the coefficients was reached in the fourth edition.

Fig. 5 also illustrates that all the editions have similar cumulative graphs for the first 
three exercises but are different for the last two exercises. For instance, the graphs for 
Exercise 1 are similar, although the scale of the graph makes it harder to compare. The 
similarity remains in Exercises 2 (which as expected, given that its proposal is based on 
remixing a project) and Exercise 3. There is a significant difference in Exercise 4, with 
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Fig. 5. Progression of coefficients throughout exercises (cumulative), for all the editions. 

Fig. 5 also illustrates that all the editions have similar cumulative graphs for the 
first three exercises but are different for the last two exercises. For instance, the graphs 
for Exercise 1 are similar, although the scale of the graph makes it harder to compare. 
The similarity remains in Exercises 2 (which as expected, given that its proposal is 
based on remixing a project) and Exercise 3. There is a significant difference in 
Exercise 4, with greater similarity between the first and the third editions, and between 
the second and the fourth editions. The largest variation occurs in Exercise 5, a free 
project, which indicates that deeper analyses among the different editions must be 
performed to understand the results observed. 

From another perspective, Fig. 6 presents the coefficients of variation (CVs) for 
each coefficient, per exercise, considering the four editions of the course; CVs are 
defined by the ratio of the standard deviation to the mean value for each coefficient; 
they are used in this study to express the variability in relation to the mean of a 
population. There is no coefficient of variation for C5, C6 and C7 in Exercise 1 and C6 
and C7 in Exercise 2, as the mean in those cases is equal to zero. The other null values 
in Fig. 6 correspond to CV equal to zero. From Fig. 6, the CVs from exercises 1 to 4 are 
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greater similarity between the first and the third editions, and between the second and the 
fourth editions. The largest variation occurs in Exercise 5, a free project, which indicates 
that deeper analyses among the different editions must be performed to understand the 
results observed.

From another perspective, Fig. 6 presents the coefficients of variation (CVs) for each 
coefficient, per exercise, considering the four editions of the course; CVs are defined by 
the ratio of the standard deviation to the mean value for each coefficient; they are used 
in this study to express the variability in relation to the mean of a population. There is 
no coefficient of variation for C5, C6 and C7 in Exercise 1 and C6 and C7 in Exercise 2, 
as the mean in those cases is equal to zero. The other null values   in Fig. 6 correspond to 
CV equal to zero. From Fig. 6, the CVs from exercises 1 to 4 are low, having only one 
coefficient, C4, with CV over 30%. In Exercise 5, however, the CVs are considerably 
higher, most of them over 50%. That was a expected behavior, as the exercise prompted 
learners to develop free projects.

5.2. Can we Use the Approach to Characterize what is Expected from  
a Project for a Specific Exercise?

We defined typical projects as the ones identical or very similar to what was expected 
from learners to create for each project; in other words, they would have coefficient val-
ues equal to the mean values in the sample of submissions. By using a nearest neighbor 
search algorithm in k-d tree, available in Python, we could identify projects that were 
the closest to the typical value for a given exercise, in terms of their computational 
concepts.

To illustrate that approach, Fig. 7 represents project “Typ. 1”, whose coefficients are 
the closest to a typical project in Exercise 4 for the first edition of the course. This project 
includes all the aspects expected from it: besides being a game (as proposed by Exercise 
4), the project explores resources and concepts presented in the week of the course, such 
as variables for recording the player’s score and random numbers for positioning the 

Fig. 6. Coefficients of variation for each coefficient in different exercises.
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fruits on the screen. This example illustrates how the approach for assessment could help 
identify typical projects for a given exercise. 

When using the same algorithm with the fourth edition of the course (most recent), 
we located project “Typ. 2”, also shown in Fig. 7. Although the projects have distinct 
features, from the theme they explore to their interface, “Typ. 1” and “Typ. 2” can be 
compared by using the coefficients for computational concepts, as shown in Fig. 7: based 
on them, the projects are very similar, except for C3 and C6. Although more systematic 
analysis is required to investigate if this is a common behavior for the whole sample 
of projects, it illustrates how computational coefficients could help identifying typical 
projects, without limiting the diversity of interests and goals that are characteristic of 
projects built with Scratch.

5.3. Can we Use the Approach to Identify Outliers that Contrast Typical Projects?

We used the same algorithm described in 5.2 to identify projects whose coefficients 
were very different from what would be considered typical for that exercise, particularly 
higher – what we called outliers. To illustrate cases as these, the project “Typical”, in 
Fig. 8, is an example of what would be typical for Exercise 1 for the first edition of the 
course. That project contrasts with “Outlier”, whose coefficients are the highest sub-
mitted for Exercise 1 for the first edition of the course. Although the project meets the 
requirements for Exercise 1 (creating a personal presentation with Scratch), “Outlier” 
exceeds the expectation towards the fist exercise of the course.

Outliers as those shown in Fig. 8 help illustrate their potential in the course. By iden-
tifying participants who excel in their creations throughout the exercises, it is possible, 
for example, to engage them in different roles, such as tutors, or to propose more appro-
priate challenges to the skills demonstrated. Conversely, outliers with low value for the 
coefficients can be used to identify participants that deserve a higher level of support.

Fig. 7. Comparison between typical projects from the first (Typ. 1)  
and the fourth edition (Typ. 2), in Exercise 4.
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5.4. Can the Assessment of Computational Concepts  
Help Predict Students’ Dropout?

Given that participants’ dropout is one of the greatest challenges for massive online 
courses, we investigated if the computational coefficients used along the first projects 
created by the course’s participants could be used to describe their inclination to drop 
out. For this, the following scenarios were explored: (1) project profile of participants 
that submitted Exercise 1 and then dropped out; and (2) project profile of participants 
who submitted Exercises 1 and 2 and then dropped out. The first scenario was chosen to 
analyze dropout as soon as it significantly occurs in the course, as shown in Fig. 1. The 
second scenario analyzed whether characteristics of Exercise 1 could help to identify 
them, among those who dropped out after Exercise 2.

For analyzing the scenarios, Fig. 9 compares the coefficients for Exercise 1 in four 
cases: scenarios 1 and 2 for dropout (called “Drop 1” and “Drop 2”, respectively), the 
typical project for that exercise (“Typical”), and the typical project of participants who 
completed the course (“Completed”). The first edition was chosen for that comparison, 
as it has the largest sample of projects.

From Fig. 9, the curve for “Drop 1” has a value in C1 slightly lower than the others; 
also, the curve for typical projects is the same as “Drop 2”; it cannot thus be seen in 
the figure. In turn, the values for C4 in “Complete” (those who concluded the project) 
are significantly higher; the same characteristic was observed in the third and fourth 
editions (especially the latter), but not in the second one. We do not have a strong hy-
pothesis for this behavior; although the use of loops (C4) is not required for developing 
simple animations as required in Exercise 1, it is presented in some of examples shared 
with participants. In any case, this is a topic worth investigating in future work.

Additionally, there are no significant differences between the two profiles of partici-
pants who drop out (orange and green). As there is not a clear pattern in those charac-

Fig. 8. Comparison between the typical project and the outlier for Exercise 1.
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teristics, data from more editions of the course could contribute to strengthen the idea 
of using C4 as a predictor for dropping out. If so, strategies for enhancing its use in 
Exercise 1 could be tested to keep learners engaged.

5.5. Overall Findings

Our results provided evidence that our approach has the potential to represent the diver-
sity of creations and progression of participants and their projects, as well as to verify if 
the set of exercises guide learners in exploring all computational concepts. 

From the analysis of each exercise proposed in the course, we could identify typical 
projects and outliers (both those that go beyond the expected and those that have greater 
dropout risks). In addition, a first approach to predict participants’ dropout was possible, 
by using computational concepts for their description. As is common in massively open 
online courses, the course completion rate is low (about 13%) and better analyses of 
learning outcomes applying that approach can be a promising tool to plan and to imple-
ment actions to prevent dropouts. As more editions are offered, the projects characteriza-
tion may become more specific.

Finally, we could describe learners’ progression using a new approach to character-
ize computational thinking manifested in the Scratch project, by using larger samples of 
data than other strategies available. In that way, this approach provides a set of coeffi-
cients capable of identifying subtle differences in samples of computational artifacts. On 
the other hand, any of the propositions made on this paper are hints on how to describe 
learners’ behaviors o the MOOC course, from typical projects to outliers to students’ 
dropout. At the same time further research is required to strength and validate such as-
sumptions, the use of automatic methods only will probably not be enough to answer, 
which gives room to their integration with qualitative methods of assessment.

Fig. 9. Comparison of projects among participants that have dropped out and that have completed it.
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6. Conclusion and Future Work

With the aim of investigating novel ways to assess computational thinking, this study 
proposed a data-driven approach to assess learners’ manifestation of computational 
concepts, based on the automatic analysis of data from computational artifacts created 
programming languages, as they explore and master computational ideas. As an initial 
proof of concept, this approach was applied to a Massive Open Online Course (MOOC) 
entitled “CodeIot – Learning to Code”. Given students on that course were required to 
design and submit various computational artifacts developed with the Scratch program-
ming language, it provided a suitable context for the assessment approach described 
in this paper. At the same time, analyzing learners’ productions from a CT perspective 
could provide a way to systematically investigate computing ideas they developed as 
they created projects with Scratch. From that application, we could not only have a bet-
ter understanding of how learners progress as they create computational artifacts with 
Scratch but gather relevant evidence to support the improvement in instruction for fur-
ther editions of the course. 

As limitations for this work, the approach is based on the definition of computational 
thinking proposed by Brennan & Resnick (2012) and adaptations should be made to 
apply it to other programming languages. Besides, it focuses on computational con-
cepts, demanding complementary strategies for assessing computational practices and 
perspectives, as well as other aspects present in alternative definitions of CT, such as 
decomposition and abstraction. Regardless, we build on the definition of a system of 
assessments described in Basso et al. (2018) and reinforce the notion of using various 
techniques and tools combined to provide a more comprehensive assessment of com-
putational thinking than any specific method. Additional limitations include the proof 
of concept itself, based on a specific online course with a low number of editions, and 
the need to parametrize the coefficients as new editions are available. Addressing those 
limitations will be important to generalize the results of this work and present possible 
paths for future research.

Finally, we believe this approach has the potential for further research on the assess-
ment of computational thinking. Particularly, ideas that are worth exploring include:

Integrating the approach into the online courses such as “ ● CodeIot – Learning to 
Code”, as a tool to help learners visualize and reflect on their progress, as well as 
a resource for mentors to be more effective in their instruction and support.
Applying the approach to different learning environments, particularly to class- ●
room scenarios, which can enable more in-depth investigation, such as monitoring 
the progress of individual artifacts as they are developed, and integration with 
complementary assessment techniques to analyze computational practices and 
perspectives.
Adapting this approach with other programming languages and platforms to  ●
broaden its impact, which includes reviewing the concepts and how to identify 
them in different coding structures and adjusting the algorithms for data collection 
and analysis.
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