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Abstract 

Software security is inevitably dependent on developers’ ability to to design and implement software without security bugs. 
Perhaps unsurprisingly, developers often fail to do this. Our goal is to understand this from a usability perspective, identifying 
how we might best train developers and equip them with the right software tools. To this end, we conducted two comparatively 
large-scale usability studies with undergraduate CS students to assess factors that affect success rates in securing web applications 
against cross-site request forgery (CSRF) attacks. First, we examined the impact of providing students with example code and/or 
a testing tool. Next, we examined the impact of working in pairs. We found that access to relevant secure code samples gave 
significant benefit to security outcomes. However, access to the tool alone had no significant effect on security outcomes, and 
surprisingly, the same held true for the tool and example code combined. These results confirm the importance of quality example 
code and demonstrate the potential danger of using security tools in the classroom that have not been validated for usability. No 
individual differences predicted one’s ability to complete the task. We also found that working in pairs had a significant positive 
effect on security outcomes. These results provide useful directions for teaching computer security programming skills to 
undergraduate students. 
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1. Introduction

Despite a growing emphasis among security experts on secure coding practices, software developers continue to regularly misuse 
or misunderstand secure coding tools. Understanding how to best train students in good security coding practices is critical to 
designing safer software. Recent efforts within the area of usable security research have attempted to enumerate causes for 
developer error leading to security vulnerabilities in software. For example, access to good documentation and reliable example 
code have significant impacts on solving security tasks (Acar et al., 2017; Fischer et al., 2017; Mindermann and Wagner, 2018; 
Mindermann and Wager, 2020), as does priming (Naiakshina et al., 2018). Usability issues can also impact the appropriate use 
of other security-related systems, including Android development (Acar et al., 2016), cryptographic APIs (Acar et al., 2017; 
Acar et al., 2017; Gorski et al., 2018; Naiakshina et al., 2019; Oliveira et al., 2018; Zeier et al., 2019), type systems (Weber et 
al., 2017), HTTPS deployment (Krombholz et al., 2017; Bernhard et al., 2019), OpenSSL (Ukrop and Matyas, 2018), and string 
and I/O APIs (Oliveira et al., 2018). 

Our work builds on previous studies by trying to understand how to better instruct undergraduate computer science students in 
the art of security programming, examining the impact of using code samples, software tools, and group programming in the 
classroom. We wanted to determine if there were benefits in providing students with software code examples and software tools 
that would aid them in testing for code security. We also wanted to determine if working in teams as students was beneficial in 
their learning efforts.  We chose cross-site request forgery (CSRF) as a security problem for our study because it’s still relevant 
to current practice and because of its relative simplicity for use as a teaching tool. We performed two between-subjects usability 
studies, one year apart, with undergraduate computer science students. In study 1 we examined the impacts of example code and 



 
 

International Journal of Computer Science Education in Schools, April 2021, Vol. 5, No. 2 
ISSN 2513-8359 

 

a CSRF detection tool on a student’s ability to repair CSRF vulnerabilities in a test server. In study 2, we examined the effects 
of the students working alone vs. working in pairs. 
 
2. Study 1: Impact of example code and software tools  
 
2.1 Methodology  

We drew our students from the sophomore-level COMP 215 class at Rice University, a highly-selective four-year residential 
college. Rice University had a total sophomore population of approximately 1,000 students, and Computer Science is the most 
popular major on campus, with approximately 19% of 2018 sophomores enrolling in COMP 215. COMP 215 students present 
a relatively uniform pool of students. Most COMP 215 students have never taken a college-level course in Java before, having 
come to Rice University immediately after high school. (Only eight students among the students in this study were transfer 
students.) All COMP 215 students take the same freshman class sequence, including an introductory course in Python, and a 
theory course. To help prepare students for the security task, the COMP 215 lectures during the week of the experiment 
considered “Web 2.0” designs (e.g., Java microservices with JavaScript clients). Students were strongly encouraged to attend 
a security-specific lecture as well. 

2.1.1 Design  
This study used a between-subjects design with two variables: (1) availability of a CSRF testing tool and (2) availability of an 
example web application (code) with CSRF mitigation, resulting in four experimental conditions. The “no tool, no example” 
group, which served as the control group, had access to neither CSRF Testing Tools nor to the example code. The “example-
only” group had access to the example code but not to the tool. The “tool-only” group had access to the tool but not to the 
example code. Finally, the “tool and example” group had access to both the tool and the example code. Students were randomly 
assigned into one of the four conditions. Students in all groups, including those not provided with example code, were allowed 
to search the Internet for examples and instructions but not to ask anyone for help. 
 
We selected CSRF prevention as the task for this study because it is a realistic security problem but also relatively simple, 
allowing us to teach the relevant concepts to our students over a few lectures and construct a short, self-contained study based 
on the problem. In contrast, many other security vulnerabilities, such as buffer overflows, can be very subtle to understand or 
even recognize when looking at the code. 
 
Condition Assignment. Consistent with the other programming assignments in COMP 215, students attempted this task 
individually. (We examine pair programming in Study 2, below.) We controlled for gender and midterm grades when assigning 
students to conditions, to reduce possible confounding factors and to allow us to check for any effects these variables had on 
learning outcomes. We partitioned the remaining students by gender and sorted both lists by midterm grade. We then pulled 
students in blocks of four and distributed them at random among the four groups. Students who did not identify as male or female 
were assigned to groups at random. Despite a small number of drop-outs after experimental group assignment, this strategy 
yielded a consistent demographic distribution, with 44 participants assigned to the control group, 46 to the “example-only” group, 
45 to the “tool-only” group, and 45 to the “tool and example” group. Students were instructed not to discuss or share any aspect 
of the assignment with each other, including their condition assignment, and since the project was graded only on participation, 
they had no academic incentive to disclose their condition assignment to other students. Average age of the students was 19.2 
years (SD 0.8). Each of the groups was composed of approximately 28% females. Java experience was consistent across groups, 
with an average of 2.1 on a 5-point scale, where 5 is expert (SD 1.0).  
 
The dependent variables in this study were effectiveness (how well the students completed the task) and efficiency (how long it 
took them to complete the task) in implementing CSRF prevention in a test server. For groups with access to the CSRF Testing 
Tool, we also measured satisfaction with the provided tool, i.e. how well the tool met the student’s expectations. Effectiveness, 
efficiency, and satisfaction are three standard measures used to assess system usability per ISO 9241-11. 
 
2.1.2 Measures  

Effectiveness. Effectiveness is the degree of success in achieving a goal (ISO 9241-11). Consistent with previous assignments 
in the course, we assigned each student’s work a security score from 0 to 10 using a subtractive grading rubric (Table 1). 
Deductions were capped at 10 points; i.e., a solution with 10 or more deductions received a security score of 0. Most mistakes 
resulted in a one-point deduction, with the exception of failing to employ any kind of server-provided key, which resulted in 
a four-point deduction. 

One of the most common anti-CSRF techniques consists of sending a randomized token from the server to the client, returning 
that token from the client to the server with each request, and verifying on the server that the tokens match. Critically, the 
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client must not return the token via a cookie since cookies associated with a domain are sent automatically with each request 
to that domain. While students were permitted to use whatever method they wanted to complete the task, this is the technique 
students were taught during lecture and the approach they generally took. 
 
Table 1. Security score rubric 

Error Deduction 

Server vulnerable to GET-based CSRF 1 

No server-generated key 4 

Key entropy < 32 bits 1 

Key entropy < 64 bits 1 

No handshake mechanism to prevent back 
doors 

1 

Vulnerable to timing attacks 1 

Server does not attempt to send key 1 

Client does not attempt to retrieve key 1 

Server-to-client methods do not match 1 

Key not delivered server-to-client 1 

Client does not send key for validation 1 

Server does not request key for validation 1 

Client-to-server methods do not match 1 

Key not sent client-to-server 1 

Client sends key insecurely (e.g. via a cookie) 1 

Server does not validate received key 1 

 
We initially considered a scoring system based only on the presence of actual vulnerabilities; however, we decided that such a 
system did not capture how well each student understood the problem or how secure their solution was. For example, many 
students submitted solutions that were correct except that they did not use a one-time key to prevent a fraudulent web form from 
retrieving the CSRF-prevention key, leaving the server vulnerable. These students might receive a zero score from a classical 
security analysis, despite demonstrating significant progress towards a secure solution. Therefore, we instead chose a scoring 
system based on the accumulation of individual errors. While students were free to implement any CSRF mitigation mechanism 
they chose, the vast majority used techniques similar to those described in both the lecture materials and the example code.  

Additionally, we assigned each student a passing or failing functionality score based on whether they broke the original 
functionality of the system. For example, some students made it impossible to perform any transactions at all. For the sake of 
simplicity, we graded solutions with minor changes in functionality (such as reduced responsiveness) as functionally correct.  

Timing. We set the maximum duration for the study to 180 minutes (measured to the nearest minute), opting for this duration 
both to respect the students’ time and to enable most students to complete the study in a single sitting. The time on task does not 
include reading the project specification prior to beginning the task or the post-study survey. We obtained timing data in two 
ways, in an attempt to improve the reliability of the timing data: self-reported time on task and git push/commit times. Even so, 
it was difficult to obtain high-quality timing data under our experimental setup. In cases where the two measurements did not 
align or where the available timing data was clearly wrong (for instance, a full day spent on the task, based on push times), we 
had to discard the data for the purpose of timing analysis.  
Surveys. We used SurveyMonkey for both the demographic and post-study surveys. For those in the experimental groups that 
had access to CSRF Testing Tools, the post-study survey includes a System Usability Scale (SUS) (Brooke, 1996) evaluation in 
the final survey to measure satisfaction with the tool. The SUS is one of the most commonly used, psychometrically validated 
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(Bangor et al., 2008) tools that measure the usability of products, services, and systems. SUS scores range from zero (unusable) 
to 100 (highly usable).  
 
2.1.3 Materials  

Spark Java Server. Spark Java1 is a simple Java web framework. We wrote a Spark Java server and client for a toy 
application called “Fruit Market”, which simulates buying and selling of fruit with fluctuating prices. Students run both the 
server and client locally, changing the server state by clicking the buy and sell buttons. We intentionally left the server open 
to CSRF attacks by implementing the buying and selling functionality using simple GET requests. For instance, a purchase 
of a certain type of fruit can be made by issuing a GET request to /buy/?index=0, and a sale of the same fruit can be made 
through /sell/?index=0. Since there is no CSRF mitigation mechanism, the application is vulnerable to all the standard 
CSRF attacks, such as embedding these URLs in an HTML image element. Note that Spark Java does not include any CSRF 
prevention mechanism.  
Handouts / GitHub Classroom. GitHub Classroom allows instructors to create assignments from template git repositories, 
which students clone when they click on a given link. We created four project PDFs and four Classroom clone links, 
corresponding to our four experimental conditions, written in the same style as our regular weekly project assignments.  
Lectures. We presented a three-lecture sequence considering how web browsers and servers operate, along with the security 
issues they face. We provide PDFs of all lecture slides on our course web page.  
Example Code. Half of the students had access to an example web application, already secure against CSRF attacks. The 
example server, also written in Spark Java, implemented the back-end for a JavaScript read-eval-print-loop (REPL). The JS 
REPL server avoids CSRF by launching the user’s browser with a one-time key in the URL, which the client then returns to 
the server in order to retrieve a CSRF-prevention key, generated randomly at server launch. This key then serves to validate 
subsequent calls to the server.  
CSRF Testing Tools. Half of the students had access to CSRF Testing Tools2, a free, semi-automated CSRF exploit 
generation tool, along with the instructions provided by the tool’s author. The tool consists of two parts: a “FormGrabber” 
bookmarklet that can be used to copy HTML form content from a webpage into the user’s clipboard and a “FormBuilder” 
page that creates a spoofed form from the copied form content. While the README describes how to use the tool to “create 
[HTML] forms that mimic the forms on the site that you're testing”, it does not explain how to interpret the results and whether 
they indicate a CSRF vulnerability. Indeed the README states “I am assuming that you have a good understanding of what 
a CSRF attack is and can figure out how this tool mimics one. Explaining the anatomy of a CSRF attack is not something I'm 
going to do in this documentation.” In short, the ability to change server-side application state via interaction with the spoofed 
form indicates a CSRF vulnerability. 

Students had no prior experience with this tool in the course but were instructed to read the included README describing 
the steps required to set up and utilize the tool to check for CSRF vulnerabilities. As part of its setup process, CSRF Testing 
Tools requires (1) hosting a JavaScript file on a server separate from the server under test and (2) modifying a bookmarklet 
file to point to the hosted file. We gave the students a copy of the latest version of the tool as found on GitHub, with one 
modification: we hosted the file for them and gave them a pre-modified version of the bookmarklet. While performing this 
modification ahead of time changes the experience of using the tool, we determined that requiring the students to complete 
this step themselves would be unreasonably difficult and time-consuming within the limits of the study. As our results show, 
the tool’s measured effectiveness and satisfaction were low, even with this simplification to the process.  

We considered several other free CSRF prevention tools—including Burp Suite3, CSRFTester4, Pinata5, CSRF PoC 
Generator6, and OWASP Zed Attack Proxy (ZAP)7—but in our judgment, CSRF Testing Tools was the most useful among 
these options. 

An anonymized repository with experiment materials can be found at https://github.com/bad-tools-hurt/csrf. This repository 
contains the code, handouts, and lectures used in both studies, with all references to the authors and their institution(s) 
removed. We have removed code that is both irrelevant to the task and unique to the course. In particular, for this repository, 
we replaced a course-specific JSON library with a third-party library. 

 
1 https://sparkjava.com/ 
2 https://github.com/akrikos/CSRF-Testing-Tools 
3 https://portswigger.net/burp 
4 https://github.com/tomasperezv/web-security-tools/tree/master/CSRFTester 
5 https://github.com/ahsansmir/pinata-csrf-tool 
6 https://security.love/CSRF-PoC-Genorator/ 
7 https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project 
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2.1.4 Procedures  

As with any human subjects experiment, we obtained IRB approval before beginning the study. We recruited a total of 194 
students from the fall 2018 COMP 215 class. Students received partial course credit for participating (regardless of their success) 
and had the ability to opt out of the study at any point prior to or during the study. None of the students opted out; however, a 
total of 14 students either dropped the course prior to the completion of the study or otherwise did not complete the study, 
leaving a total of 180 students in the data set. 
 
Once the assignment was given, the students could choose to attempt the three-hour task any time within a five-day period. We 
encouraged the students to attempt the task in one sitting, but they were allowed to take breaks as long as they noted the stop 
and start times via git commit messages. The students had to complete the following steps: (1) read the project specification 
PDF; (2) click the GitHub Classroom assignment link (embedded in the PDF), to set up their repository; (3) add their name and 
student ID to a README file prior to beginning the task and then commit and push to GitHub (the timestamp of this initial 
push allowed us to measure the start of the time on task); (4) secure the test server against CSRF attacks, by whatever method 
they choose, within 180 minutes of their initial push time; (5) after completing the task, running into the time limit, or giving up 
on the task, commit and push their final code; and (6) fill out the post-study survey. 
 
We chose to have the students work on their own time in a setting of their choosing, rather than in a lab, for better scalability 
and to allow the students to complete the task under their usual work conditions, making comparisons with past course 
performance more meaningful. The first author manually graded each submission according to our security and functionality 
rubrics. We used the CSRF Testing Tools to speed up the grading process; however, it was only useful as a first step towards 
measuring security. For instance, many students came very close to a correct solution but did not use a handshake mechanism, 
such as a one-time key, to prevent a fraudulent web form from reading the anti-CSRF key from the HTML. Under our rubric, 
such a solution is graded as 9/10, but its security-relevant behavior is identical to a solution with no CSRF mitigation at all. 
Conversely, some solutions were invulnerable to the particular attack generated by CSRF Testing Tools but used insufficient 
key entropy and thus still lost points. Therefore, we still had to manually inspect each submission in order to understand whether 
a solution was fully secure and, if not, how many points should be deducted. 
 
2.2 Results and Discussion 

We performed an ANOVA for security score, functionality score, and time on task, with experimental condition assignment 
(group) and gender as factors, using Tukey’s HSD to correct for multiple comparisons. 
Security Scores. The mean security score was 1.43 for the control group, 4.15 for “example-only”, 1.53 for “tool-only”, and 
2.71 for “tool and example” (see Figure 1). There was a reliable effect of group assignment on security scores (𝐹(3,173) = 
6.05, 𝑀𝑆𝐸	= 69.42, 𝑝 < .01,  𝜂2 = .09), but there was insufficient evidence of a reliable effect of gender on security scores 
(𝐹(1,173) = .55, 𝑀𝑆𝐸	= 6.35,   𝑝 = .46, 𝜂2<.01). Tukey’s HSD (Table 2) indicates significant differences only for “example-
only” to the control (diff. of means = 2.68, 𝑝 < .01) and “example-only” to “tool-only” (diff. of means = 2.58, 𝑝 < .01). 
Cohen’s 𝑑 for mean “example-only” security score vs. control group security score is .77, which indicates a medium effect 
size. Cohen’s 𝑑 for “example-only” vs. “tool-only” is .73, also a medium effect size. 
 

Figure 1. Mean security scores by study 1 group, with error bars depicting the standard error of the mean. 
 
 
Table 2. Comparison of mean security scores by group, study 1 (Tukey HSD). 

Comparison Difference of Means p 
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Example-only - Control 2.68 <.01 

Tool-only - Control   .10 >.99 

Tool and Example - Control 1.28   .29 

Example-only - Tool-only 2.58 <.01 

Example-only - Tool and Example 1.40   .21 

Tool and Example - Tool-only 1.18   .35 
 
Security scores were highly variable across all experimental conditions. A large number of students failed to make any significant 
progress towards a secure solution (103 out of the 180 students received zero security points). Overall, security scores were quite 
low, and very few students completely secured the application against CSRF (0% in the control group, 24% in “example-only”, 
0% in “tool-only”, and 13% in “tool and example”). 
 
Despite common perceptions, prior work suggests that CS grades are typically unimodal (Patitsas et al., 2016). Consistent with 
past research, Hartigan’s dip test fails to reject the hypothesis that COMP 215 grades are unimodal (𝐷	= .02, 𝑝	= .93). However, 
there is significant evidence of non-unimodality in the “example-only” security scores (𝐷	= .12, 𝑝	< .01). 
 
Functionality Scores. The mean functionality scores were .59 for the control group, .63 for “example-only”, .67 for “tool-only”, 
and .49 for “tool and example” (see Table 3). There was a reliable effect of gender on functionality (𝐹(1,173) = 6.89, 𝑀𝑆𝐸	= .55, 
𝑝	= .01, 𝜂2 = .04), but there was insufficient evidence of a reliable effect of group on functionality (𝐹(3,173) = 1.31, 𝑀𝑆𝐸	= .30, 
𝑝	= .27, 𝜂2 = .02). Table 4 shows the differences of mean functionality scores between the groups, none of which showed evidence 
of a reliable effect. For male vs. female functionality scores, difference of means = .21, 𝑝 = .01, and Cohen’s 𝑑 is .43, indicating 
a small effect. 
 
Table 3. Functionality scores (0 or 1), study 1. 

Group n Mean SD 

Control 44 .59 .50 

Example-only 46 .63 .49 

Tool-only 45 .67 .48 

Tool and Example 45 .49 .51 

 
Table 4. Comparison of mean functionality scores by group, study 1 (Tukey HSD). 

Comparison Difference of Means p 

Example-only - Control .07   .91 

Tool-only - Control .08   .88 

Tool and Example - Control .10   .75 

Example-only - Tool-only .01 >.99 

Example-only - Tool and Example .17   .34 

Tool and Example - Tool-only .18   .30 

 
Time on Task. Timing data is unavailable for a total of eleven students (two from the control group and three each from the 
other groups). There were three types of student error that led to missing or excluded timing data: failure to commit and push 
code before starting the task, large unexplained discrepancies between reported time and time measured via git pushes, and 
breaks taken without reporting the duration. The mean time on task in minutes (Table 5) was 155.7 for the control group (𝑛 = 
42, 𝑆𝐷 = 32.83), 149.1 for “example-only” (𝑛 = 43, 𝑆𝐷 = 34.05), 151.3 for “tool-only” (𝑛 = 42, 𝑆𝐷 = 41.21), and 148.1 for “tool 
and example” (𝑛 = 42, 𝑆𝐷 = 38.59). We did not observe evidence of a reliable effect. 
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Table 5. Time on task, study 1. 
Group n Mean SD 
Control 42 155.7 32.83 

Example-only 43 149.1 34.05 

Tool-only 42 151.3 41.21 

Tool and Example 42 148.1 38.59 
 
Multiple Linear Regression. To gain a better understanding of factors that may contribute to success in repairing CSRF 
vulnerabilities, we performed multiple linear regression on the security scores of each experimental condition, with time on task, 
final grade in COMP 215, GPA, number of the three security lectures attended, and self-reported Java experience (rated from 1-
5) as possible factors (Table 4). In the control group, adjusted 𝑅2 = .24, 𝐹(5,30) = 3.24, DF = 30, and 𝑝 = .02. Final grade was 
the only significant factor. In “example-only”, adjusted 𝑅2 = .32, 𝐹(5,33) = 4.55, DF = 33, and 𝑝 < .01, and the only significant 
factor was time on task. In “tool-only”, adjusted 𝑅2 = .28, 𝐹(5,32) = 3.80, DF = 32, and 𝑝 < .01, and the significant factors were 
lectures attended and Java experience. Finally, in “tool and example”, adjusted 𝑅2 = .22, 𝐹(5,32) = 3.03, DF = 32, and 𝑝 = .02, 
and there were no significant factors. 
 
Table 6. Multiple linear regression, security scores (“Tool” = tool-only, “Ex.” = example code only, “Both” = tool and example 
code). 
 
FACTOR η² t p 

 Control Ex. Tool Both Control Ex. Tool Both Control Ex. Tool Both 
Time on Task .05 .14 <.01 .05 1.41 .56 .09 1.49 .17 .02 .93 .15 
Final Grade .15 .07 .03 .07 2.48 1.80 1.07 1.68 .02 .08 .29 .10 
GPA <.01 <.01 .01 .02 .07 .03 .75 .88 .95 .98 .46 .39 
Lectures 
Attended 

.05 .02 .11 .03 1.43 .88 2.28 1.03 .16 .38 .03 .31 

JAVA 
Experience 

.05 .04 .15 .05 1.47 1.37 2.59 1.45 .15 .17 .01 .16 

 
 
2.2.1 Post-task Survey Results 
 
CSRF Testing Tools. SUS Scores In the “tool-only” group, the mean SUS score for CSRF Testing Tools was 42.94 (𝑛 = 40, 
SD = 19.78). In the “tool and example” group, it was 39.10 (𝑛 = 39, SD = 19.97). We did not observe a reliable effect of example 
code availability on SUS scores, based on Welch’s 𝑡-test (DF = 77, 𝑡 = .86, 𝑝 = .39). According to the adjective rating scale 
developed by Bangor et al. (Bangor et al., 2009), these scores fall between “poor” (mean score of 35.7) and “OK” (mean score 
of 50.9), indicating a very low degree of usability compared to other systems in general (though not necessarily to other CSRF 
mitigation tools). Moreover, it is rare in practice to find SUS scores below 40 for complex multi-step tasks, such as CSRF 
mitigation (Kortum and Acemyan, 2013). 
 
Security and Functionality Confidence. We asked participants to rate their confidence in their solution in terms of security and 
functionality, each on a scale from 1 (low) to 5 (high). Note that self-reported task completion and confidence did not affect 
participants’ participation credit in the course. The mean security confidence was 2.00 in the control group (𝑛 = 37, SD = 1.11), 
2.82 in “example-only” (𝑛 = 38, SD = 1.27), 1.93 in “tool-only” (𝑛 = 40, SD = 1.27), and 2.03 in “tool and example” (𝑛 = 39, 
𝑆𝐷 = 1.20). The mean functionality confidence was 2.65 in the control group (𝑛 = 37, SD = 1.57), 2.92 in “example-only” (𝑛 = 
38, 𝑆𝐷 = 1.65), 2.38 in “tool-only” (𝑛 = 40, 𝑆𝐷 = 1.53), and 2.23 in “tool and example” (𝑛 = 39, 𝑆𝐷 = 1.49). 
 
To measure how well students were able to gauge their own performance, we examined the correlations between confidence and 
actual scores, for both security and functionality. For security, the correlation was .59 in the control group (𝑡 = 4.31, DF = 35, 𝑝 
< .01), .60 in “example-only” (𝑡 = 4.48, DF = 36, 𝑝 < .01), .50 in “tool-only” (𝑡 = 3.57, DF = 38, 𝑝 < .01), and .68 in “tool and 
example” (𝑡 = 5.66, DF = 37, 𝑝 < .01). For functionality, the correlation was .38 in the control group (𝑡 = 2.45, DF = 35, 𝑝 = 
.02), .50 in “example-only” (𝑡 = 3.45, DF = 36, 𝑝 = .01), .21 in “tool-only” (𝑡 = 1.31, DF = 38, 𝑝 = .20), and .65 in “tool and 
example” (𝑡 = 5.15, DF = 37, 𝑝 < .01). In summary, there was a significant and moderately large correlation between confidence 
and actual scores in all cases except for functionality in the “tool-only” group.  
With regard to perceived security, arguably the most dangerous situation is one in which a developer believes strongly that they 
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have protected the system against CSRF when they have not. In this situation, not only does the system remain vulnerable, but 
the developer is unlikely to seek help to repair the vulnerability. To quantify this condition, we define the “false confidence” rate 
as the proportion of students whose submission had a security score of zero for which (1) the student reported that they had 
completed the task and (2) the student rated their confidence in the security of the system as either a four or five on a 1-5 scale. 
The false confidence rates were .035 for the control group (𝑛 = 28), 0 for “example-only” (𝑛 = 16), .107 for “tool-only” (𝑛 = 
28), and .053 for “tool and example” (𝑛 = 19). The false confidence rates are fairly low across the board, which is a reassuring 
result. We did not observe a reliable effect of experimental condition on the rate of false confidence. 
 
3. Study 2: Impact of team programming  

Study 2 examined the impact of working in pairs on the learning process. We recognized that the most successful condition 
(“example-only”) from study 1 gave the students example code, but no CSRF tooling, so we used that as the starting point in 
study 2.  
 
3.1 Methodology  

We drew our students from the 2019 COMP 215 class at Rice University. The 2019 curriculum for this course was similar to 
that of 2018, with the notable exception of the introduction of partners for weekly projects, while the 2018 class projects were 
all performed solo. In 2019, beginning in week 7, students partnered with a different classmate of their choosing for each 
weekly project. The CSRF project occurred during week 11, after three such partnered projects, the same point in the semester 
as in study 1.  
 
3.1.1 Design  

Our goal for study 2 was to understand the impact of single versus two-person teams, so we used a between-subjects design 
with one variable: “Solo” vs. “Duo”. We provided both groups access to example code and neither group access to CSRF 
Testing Tools (i.e., the “example-only” condition). The dependent variables remain the same as in study 1, with the exception 
of SUS results for CSRF Testing Tools since it was unused.  
Condition Assignment. Students were randomly assigned into one of the two conditions, subject to two constraints. First, 
consistent with COMP 215 team policy, no two students were assigned to work on a team who had previously worked together. 
Several COMP 215 students had special exemptions from this rule and were allowed to work with the same partner each 
week; these students completed the assignment but are excluded from the study results. Second, we asked any students who 
may have difficulty collaborating during the study (e.g., due to travel) to inform us so that they could be assigned to work 
alone. Twelve students out of a total of 163 informed us of such difficulties and were assigned to the Solo group. The 
remaining 151 students were split into the two groups uniformly at random. In total, the Solo group had 53 students, and the 
Duo group had 110. Note that there are approximately twice as many individuals in the Duo condition as in the Solo condition, 
in order to maintain an approximately equal numbers of teams.  
 
For logistical reasons, it was not practical to keep it a secret from the students that some of them were working alone and some 
with a partner. Therefore, unlike in study 1, participants in study 2 were aware of their condition assignment. In the Solo group, 
student ages ranged from 18 to 21 years (Mdn = 19, X.  = 19.3, 𝑆𝐷 = .696). Sixteen students identified as female and 36 as male, 
and one gave no response. Self-reported Java experience prior to taking COMP 215 ranged from 1 to 4 (Mdn = 2, X.  = 2.132, 𝑆𝐷 
= .981). In the Duo group, ages ranged from 18 to 26 years, (X̄ = 19.4, Mdn = 19, 𝑆𝐷 = 1.160). There were 28 female students, 
81 male, and one identifying as neither male nor female. Self-reported Java experience ranged from 1 to 5 (Mdn = 2, X.  = 1.926, 
𝑆𝐷 = .924). 
Timing. Unlike study 1, we did not examine git push times. This would have been infeasible for the Duo condition, where each 
student has a separate time-on-task and either student may push to the repository at any time. Instead, we simply asked each 
student to report their personal time on-task in minutes, working with or without their partner, excluding any breaks. We used 
the same timing reporting scheme for the Solo condition, for consistency. 

 
 
3.2 Results and Discussion 

Security Scores. The mean security score was 2.57 for Solo and 4.95 for Duo (Figure 2), and there was evidence of a reliable 
effect (𝑡	= 2.94, 𝐷𝐹	= 105, 𝑝	< .01). Cohen’s 𝑑	= .56, indicating a medium effect size. As in study 1, security scores were variable 
but generally low, with 52 of 108 students receiving zero security points. Only 25% of Duo teams and 17% of solo teams fully 
secured the application against CSRF. Hartigan’s dip test indicates non-unimodality in both Solo (𝐷 = .087,  𝑝 < .01) and Duo 
(𝐷 = .161, 𝑝 < .01) security scores. As in 2018, the 2019 COMP 215 final grades exhibit no reliable non-unimodality (𝐷 = .025, 



 
 

International Journal of Computer Science Education in Schools, April 2021, Vol. 5, No. 2 
ISSN 2513-8359 

 

𝑝 = .70). There was a reliable effect of group assignment (𝐹(1,101) = 9.47, 𝑀𝑆𝐸=161.07, 𝑝 < .01) but not of team gender 
composition (𝐹(3,101) = 1.91, 𝑀𝑆𝐸=32.56, 𝑝 = .13) on security scores. We also note that despite the “example-only” group 
from study 1 and the Solo group from study 2 having similar experimental conditions, “example-only” had a mean security 
score of 4.15 vs. 2.56 for the Solo group. However, despite the apparently worse performance of the Solo group, there was 
insufficient evidence of a reliable effect (𝑡 = 1.90, DF = 94, 𝑝 = .06), and the effect size is small (Cohen’s 𝑑 = .38). 
 

Figure 2. Mean security scores by study 2 group, with error bars depicting the standard error of the mean. 

Functionality Scores. The mean functionality scores (Table 7) were .62 for Solo and .67 for Duo. There was insufficient 
evidence of a reliable effect on functionality scores of either team gender composition (𝐹(3,101) = 1.80, 𝑀𝑆𝐸	= .41, 𝑝	= .15) or 
group (𝐹(1,101) = .57, 𝑀𝑆𝐸	= .13, 𝑝	= .45). 

 
Table 7. Functionality scores (0 or 1), study 2. 

Group n Mean SD 
Solo 53 .62 .49 

Duo 55 .67 .47 

Time on Task. Timing data is unavailable for a total of six teams (four from Solo and two from Duo), due to students 
neglecting to complete the post-task survey. When only one student in a Duo team reported the time on task, we take that 
figure as the team average. The mean time on task in minutes (Table 8) was 181 for Solo (𝑛 = 49, 𝑆𝐷 = 37.6) and 169 for Duo 
(𝑛 = 53, 𝑆𝐷 = 39.8). 
 
Table 8. Time on task, study 2. 

Group n Mean SD 
Solo 49 181 37.6 

Duo 53 169 39.8 

 
Multiple Linear Regression. We performed multiple linear regression once again to try to determine which factors we examined 
contribute most to success in repairing CSRF vulnerabilities. As before, we used time on task, final grade in COMP 215, GPA, 
number of the three security lectures attended, and self-reported Java experience (rated from 1-5) as factors (Table 9). For the 
Duo condition, since there are two students per submission, we used the team average for each factor. In Solo, adjusted 𝑅2 = .32, 
𝐹(5,40) = 5.24, DF = 40, and 𝑝 < .01. The significant factors were time on task, final grade, and lectures attended. In Duo, 
adjusted 𝑅2 = .061, 𝐹(5,47) = 1.67, DF = 47, and 𝑝 = .16, and no factors showed evidence of a reliable effect. 
 
Table 9. Multiple linear regression, Solo and Duo security scores. 
 

FACTOR η² t p 
 Solo Duo Solo Duo Solo Duo 
Time on Task .09 .04 2.40 1.47 .02 .15 
Final Grade .17 .04 3.30 1.53 <.01 .13 
GPA .02 <.01 1.22 .44 .23 .67 
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Lectures Attended .09 .01 2.34 .69 .02 .49 
JAVA Experience .01 .02 .63 1.13 .53 .26 

 
 
3.2.1 Post-task Survey Results 

Security and Functionality Confidence. We again asked students to rate their security and functionality confidence from 1-
5. The mean security confidence was 2.25 (SD 1.15) in Solo and 2.91 (SD1.18) in Duo. The mean functionality confidence 
was 2.71 (SD 1.53) in Solo versus 3.19 (SD 1.41) in Duo. 
 
Tables 10 and 11 show the security and functionality confidence correlations for study 2. For security, the correlation was .60 
in Solo and .33 in Duo. For functionality, the correlation was .29 in Solo and .57 in Duo. There was a significant and moderately 
large positive correlation between confidence and actual scores in all cases in study 2. Using the same definition of “false 
confidence” as in study 1, the rates in study 2 were 0 for Solo (𝑛 = 35) and .147 for Duo (𝑛 = 34). Five individuals from three 
different Duo groups exhibited false confidence, whereas no Solo students did. This time, experimental condition did have a 
reliable effect on the false confidence rate (𝐹(1,61) = 5.86, 𝑀𝑆𝐸	= .41, 𝑝	= .02, 𝜂2 =.09). Cohen’s 𝑑 is .58, a medium effect 
size. Interestingly, in exactly one team with a security score of zero, there was a mismatch of confidence levels, with one 
partner highly confident (4) and one not (zero). 
 
 
Table 10. Confidence-security correlation, study 2. 

Group Pearson’s r t DF p 

Solo .60 5.20 47 <.01 

Duo .33 3.46 97 <.01 

 
 
Table 11. Confidence-functionality correlation, study 2. 

Group Pearson’s r t DF p 

Solo .29 2.10 47   .04 

Duo .57 6.82 97 <.01 

 
We were surprised to see that the Duo group had a higher false confidence rate. One potential explanation is that participants 
working in teams tended to rely on and trust their partners, assuming the teammate knew more than they actually did. This 
result may be cause for some concern and caution when working collaboratively, but in terms of security results, the Duo 
teams still performed much better overall. 

4. General Discussion  

Our results identify important factors for improving student success rates in learning how to repair CSRF vulnerabilities, as 
well as some factors that surprisingly had little or no effect. These results also include a baseline SUS score for any future 
usability studies on CSRF prevention tools, which is valuable for drawing standard and objective comparisons between the 
satisfaction such tools provide users. 

Consistent with our expectations and with previous research (see, e.g., Acar et al., 2017), access to reliable example code had 
a significant impact on the security of students’ solutions, at least when not coupled with CSRF Testing Tools. Students in the 
“example-only” group had moderately higher security scores than both the control group and the group with access to the tool 
alone. These results confirm the efficacy of quality example code in training students to improve code security. Also in line 
with expectations, student teams of two produced significantly more secure solutions than students working alone. To the best 
of our knowledge, this study is the first to empirically demonstrate that working in pairs can result in better outcomes when 
training for computer security tasks. 

Contrary to our expectations, access to CSRF Testing Tools did not reliably improve security scores. Even more surprisingly, 
the tool actually appears to have hurt the security scores for students with example code. We can only postulate what went 
wrong. One possibility is that the students were constrained by the time limit, and the tool distracted students from spending 
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time understanding and adapting the example code. We know that in at least some cases, the tool actively misled students into 
thinking an insecure solution was secure. One student commented in a git commit message that they were done because “[the 
page] runs on FormBuilder”; i.e., the spoofed form generated by the tool worked, and the student interpreted that as an 
indication that the server was secure even though it actually implies the exact opposite. This is an easy mistake to make for a 
developer lacking computer security expertise when using a tool with little documentation. Furthermore, among the 79 
students with access to CSRF Testing Tools who completed the post-task survey, nine (11.4%) specifically mentioned 
understanding the tool as one of the most difficult parts of the assignment. 
In absolute terms, the scores we obtained in study 1 indicate that CSRF Testing Tools is not perceived to be usable by the 
students. However, we cannot conclude that CSRF Testing Tools is necessarily worse in this regard than other CSRF prevention 
tools, since this is the first study to apply the SUS to this class of tools. However, researchers and tool authors can compare the 
satisfaction of existing and future products against this baseline freeware tool, providing empirical evidence for their comparative 
usability. Anecdotally, while a few students commented that the tool was helpful in solving the task, many other students 
indicated that they did not understand how to begin using the tool or how to interpret its behavior. We conjecture that more 
detailed documentation, including a description of what to expect when the CSRF vulnerability has or has not been patched, 
could improve perceived usability.  
Students sometimes erroneously think their code is secure when it is not. In the field, this false sense of security can result in 
security defects making their way into deployed software, putting end users at risk. Previous studies have found differing results 
regarding the correlation between how secure developers think their code is and how secure it actually is (Acar et al., 2017; 
Gorski et al., 2018). In this study, we found that students’ perceptions of their code’s functional correctness and security generally 
matched their actual performance. It is possible that these correlations were driven by the appreciable number of students who 
failed to make any significant progress towards a solution and in that case knew for certain that they had failed. We were surprised 
to see that the Duo group had a higher false confidence rate. One potential explanation is that participants working in teams 
tended to rely on and trust their partners, assuming the teammate knew more than they actually did. This result may be cause for 
some concern and caution when working collaboratively, but in terms of security results, the Duo teams still performed much 
better overall. 
We expected that students with higher GPAs and/or final grades in the course would produce more correct and more secure 
solutions. However, GPA did not have a significant effect, and final grades in COMP 215 were only predictive in the study 1 
control and study 2 Solo groups. We also expected prior experience with Java to have a positive impact on security outcomes, 
but we only observed a significant effect of self-reported Java experience on security secures in the “tool-only” group. 
 
4.2 Limitations  
We limited our students’ time on task to 180 minutes. The primary motivation for restricting the time on task was to prevent 
students from wasting too much time on the assignment if they became stuck. A secondary motivation was to allow us to 
encourage the students to complete the task in a single contiguous block of time, reducing errors in recorded times (e.g., if 
students failed to report breaks). Unfortunately, since many students used the entire allotted time, the time restriction makes it 
difficult to distinguish between students who truly became stuck and students who could have made additional significant 
progress if given more time. One possible mitigation would be to have a prior week’s assignment using the exact same codebase, 
only without security considerations, and thus give the students additional familiarity with the experimental setup. We could also 
try to further simplify the security task, although this particular task is already quite simple, at least for students who understand 
the problem. 

Lecture attendance had a negative correlation with security outcomes in every group except “example-only”, and the effect 
was significant in the “tool-only” and Solo groups. This effect is inconsistent, and one possible explanation is that stronger 
students might not bother attending lectures, in general. However, it is also entirely possible that our security lectures did not 
do a good job of explaining CSRF, and that many students solved the problem simply by transferring the coding pattern from 
the example without understanding how it works or why it is important. Prior research has shown that copying and pasting 
code can lead to security bugs (Fischer et al., 2017), underscoring the importance of reliable code samples but also of security 
awareness and critical thinking on the part of developers. A future study might provide more insight into students’ security 
comprehension, in addition to security performance, by including a series of security questions before and after the 
assignment, to gauge students’ security skills “on paper”. 
 
5. Conclusions and Future Work 

In this work, we conducted two large studies with undergraduate computer science students to investigate which factors affect 
students’ ability to successfully complete a computer security assignment, viz. securing a web app against cross-site request 
forgery. In study 1, we examined the impact of providing students with particular resources during the assignment: a fuzz-testing 
tool and/or example code. In study 2, we looked at the effects of working alone vs. in a pair. 
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We found that providing students with both example code and a software tool does not appear to confer the additive benefit to 
learning outcomes we expected. Our results establish the benefit of access to example code when attempting to teach CSRF 
prevention but also demonstrate that an unusable tool can not only fail to significantly improve learning how to implement good 
security outcomes but actually be detrimental to success in some cases. The results of our follow-up study further demonstrate 
that working with a partner has substantial benefits to learning outcomes when compared with working alone. Prior work both 
in education and industry has demonstrated that collaborative programming increases confidence and satisfaction, reduces 
frustration, improves course and major retention, and otherwise improves outcomes (Williams and Upchurch, 2001; Williams et 
al., 2002; Mcdowell et al., 2002; Mcdowell et al., 2003; Werner et al., 2004; McDowell et al., 2006; Eierman and Iversen, 2018; 
Williams et al., 2000; Williams et al., 2002; Hanks et al., 2004; Smith et al., 2018; Werner et al., 2004; McDowell et al., 2006; 
Arisholm et al., 2007; Begel and Nagappan, 2008; Hannay et al., 2009). As such, it’s unsurprising but important to note that 
working in pairs also improves educational outcomes in training students in security measures.   

Based on these results, we suggest three key recommendations for instructors with regard to teaching students how to implement 
secure code: (1) seek out trustworthy example code to give to students for applying security coding techniques, (2) be wary of 
tools in the classroom whose efficacy is unverified, and (3) when possible, allow students to collaborate in solving these kinds 
of security challenges, rather than working alone. Although we used CSRF prevention as our example, it’s quite likely that these 
findings apply to teaching many other classes of security challenges being taught in the classroom. In sum, example code helps. 
Partners help. Bad tools hurt. 
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