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Abstract

Due to their abstract nature, representation of mathematical 
concepts through different registers favors their 
understanding. In the case of ‘‘sequences and regularities’’, 
it becomes propitious the exploration of different registers of 
representation in the institution of topics, such as term, order, 
formation law, and generating expression. Considering 
these assumptions, a teaching experiment was performed 
to understand the contribution of multiple representations 
in the learning of ‘‘sequences and regularities’’ by 3rd-grade 
students. The study adopted a qualitative methodology 
and the findings of the study reveal that students initially 
presented a smaller variety of representations, which 
increased during the teaching experience. Students showed 
a greater preference for pictorial representations and made 
explicit connections between different representations 
throughout their resolutions. Pictorial representations 
and tables allowed close and distant generalizations, the 
determination of the formation law, and the generating 
expression. The greatest difficulties of the students resulted 
from the interpretation of the statements of the proposed 
tasks, which were also evident in the representation (natural 
language), showing a greater number of incorrect answers. 
This result shows that some students still have difficulties in 
justifying their reasoning, either in writing or orally. 

Introduction

Mathematics is characterized by the abstract nature 
of the objects that constitute it. To a certain extent, 

mathematics serves as a justification for the difficulties that 
some students have in its learning. Such difficulties constitute 
an obstacle to understanding certain mathematical 
concepts (Canavarro & Pinto, 2012), which impel students to 
manifest an attitude of rejection to this discipline. One way 
to alleviate such difficulties emerges from exploring different 
representations of mathematical concepts. Representations 
are a configuration that translates something, such as 
an object, an idea, or a mathematical content (Goldin, 
2008). Duval (2012) argues that the lack of understanding 
of representations necessarily causes a misunderstanding 
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of the mathematical content. This finding aroused 
our interest in exploring multiple representations in 
learning ‘‘Sequences and Regularities’’. The multiple 
representations of mathematical objects can help 
students give shape and visibility to their thoughts 
and communicate their ideas. An example of this can 
be seen in the content ‘‘Sequences and Regularities’’, 
which is favorable to the exploration of different 
registers of representation in the establishment of its 
specific topics, such as term, order, formation law, and 
generative expression. Considering such assumptions, 
this study aims to investigate the contribution of 
multiple representations in the learning of 'Sequences 
and Regularities' by students in the 3rd grade.

Sequences and Regularities in the First Years 

The exploration of ‘‘sequences and regularities’’ 
is transversal to the different academic years, as 
suggested in the Curriculum Management Guidelines: 
“[the content 'sequences and regularities'] should be 
worked in every year of schooling to allow a progressive 
development of algebraic thinking in students, 
in particular the ability to generalize” (Ministry of 
Education and Science [MEC], 2016, p. 6). Consciously 
or unconsciously, the human being is constantly 
looking for new patterns (Baratta-Lorton, 2009). Several 
authors (Devlin, 2002; Orton, 1999; Sawyer, 1995; Steen, 
1998), have defined mathematics as the ‘‘science of 
patterns’’, as when a pattern is identified, there will 
inevitably be the possibility of doing math. Vale and 
Pimentel (2010) explained that any interaction the 
mind makes with patterns establishes relationships, 
even in everyday activities such as reading and 
shopping. Establishing relationships is essential in the 
students' path to counteract the tendency of being 
“limited to remembering a set of facts, concepts and 
procedures in isolation” (Vale & Pimentel, 2010, p. 33). 

According to Vale (2009), ‘‘sequences and regularities’’ 
enhance the ability to abstract and communicate 
using multiple representations. Moments when 
students are encouraged to communicate and share 
their ideas allow them to develop their reasoning 
(National Council of Teachers of Mathematics [NCTM], 
2000). For Lannin et al. (2011), reasoning in mathematics 
is an evolutionary process that involves “conjecturing, 
generalizing, investigating why, and developing 
and evaluating arguments” (p. 13). According to 
some studies (Branco, 2008; Pimentel et al., 2010; 
Rivera & Becker, 2009) working with ‘‘sequences and 
regularities’’ enhances algebraic reasoning ability, 
an important aspect for learning Algebra, which 
“is very useful for the student in his/her everyday 
life and further studies” (Borralho et al., 2007, p. 193). 
Hence, all students should learn Algebra (NCTM, 2000; 
Kiziltoprak & Köse, 2017), as early algebraic thinking 
and working with patterns encourage students to 
identify relationships and make generalizations. 

Pimentel et al. (2010) and Ponte (2005) argued that 
it is necessary to formulate generalizations starting 
from sequences and regularities, from the first years 
of schooling, as generalizing sequences students 
develop their algebraic thinking (Radford, 2010). In 
the study of sequences, Ponte et al. (2009) reported 
that one of the biggest obstacles for students arises in 
studying repetitive pictorial sequences, which is due 
to a lack of understanding, as only after assimilating 
the sequence will they be able to generalize. The 
generalization difficulty in this type of sequence is 
due to the relationship between term and order. On 
the one hand, children at an early learning level do 
not understand that sequences can be extended in 
both directions (Warren, 2005). On the other hand, 
children with more advanced levels have difficulty 
in the symbolic writing of a generalization and the 
attribution of a meaning to the letters of a numerical 
expression framed in a functional context (Saraiva & 
Pereira, 2010). In exploring growing pictorial sequences, 
Lannin (2003) reported that several children only use 
the additive strategy in describing generalizations, 
revealing difficulty in using other strategies. This can 
be explained by the fact that students only focus 
on presented dataset and do not understand the 
relationship between the datasets (Warren, 2005). 
Rivera and Becker (2008) and Ponte and Velez (2011) 
advocated that students had difficulties in justifying 
their reasoning, either in writing or orally, and 
they failed to formulate a valid justification for the 
generalization. The exploration of ‘‘sequences and 
regularities’’ also enables students use of multiple 
representations, such as gestures, tables of values, 
letters, and natural language (Warren, 2009). They 
are the main instruments students use in the first years 
of schooling (Alvarenga & Vale, 2007; Pimentel et al., 
2010).

Mathematical Representations 

Mathematical representations translate mathematical 
objects as these “are not directly accessible to 
immediate intuitive perception or experience” (Duval, 
2012, p. 268), unlike everyday palpable objects. As 
such, it is necessary to create representations that 
signify, produce, and resemble them so that it is 
possible to reason for them and “give visibility to what 
we think” (Canavarro & Pinto, 2012, p. 53). According 
to Duval (2012), there are several ways to represent 
mathematical objects: a number, a function, a vector, 
and figures. However, a mathematical representation 
only makes sense when observed in a certain context, 
with defined rules and meanings (Ponte & Velez, 
2011). For example, thinking of the number 3, it could 
refer to the ‘‘three little pigs’’, or represent something 
immaterial like the cardinal of a set of three elements.

Goldin (2008) claimed that understanding a 
mathematical concept implies that the subject 
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can distinguish the mathematical objects from the 
representation that makes it accessible. If students 
confuse mathematical objects with the representation 
made of these same objects. In that case, this 
can lead to “a loss of understanding and acquired 
knowledge quickly becomes unusable throughout 
their learning context” (Duval, 2012, p. 268). Goldin 
(2008) distinguished two types of representations: 
external and internal. External representation is 
palpable and observable and can be found on paper, 
screens, or other support. They include mathematical 
symbols (symbolic writing); algebraic writing; pictorial 
representations (figures, images, and icons); objects, 
and verbal language (written). Goldin differentiated 
some external representations observed in a classroom 
context: mathematical symbols, verbal language, 
figures, and objects. As for internal representation, 
Goldin and Kaput (1996) considered cognitive 
constructions formed in students' minds. These are 
“mental images built on reality, referring to cognitive 
models, concepts or mental objects, and therefore 
not observable” (Almeida & Viseu, 2002, p. 195). Duval 
(2012) presented a similar thesis, distinguishing two 
types of representations: mental representations, 
where the subject uses a set of personal images that 
help give meaning to the mathematical objects in 
question; and semiotic representations, which are 
productions constituted using symbols belonging to a 
system of representations. It can, thus, be concluded 
that semiotic representations result from an 
exteriorization of mental representations. For Vygotsky 
(2008) and Piaget (1990), mental representations are 
an interiorization of what the subject assimilates 
and that depends on the interiorization of semiotic 
representations.

Ponte and Velez (2011) showed that, for a long time, 
only symbolic representations were worked in 
schools and, as emphasized by Dufour-Janvier et al. 
(1987), external representations are introduced in the 
school, “there appearing to be few opportunities for 
students to explore their numerical representations” 
(p. 119). According to NCTM (2000), children should 
learn conventional forms of representations, but they 
should also be guided to develop and create their 
representations that will support their learning. 

The ‘‘iceberg model’’ developed by researchers at the 
Freudenthal Institute (Webb et al., 2008) is a metaphor 
illustrating the students' experience of the wide range 
of representations. At the top of the iceberg, there is 
a formal representation and at the submerged and 
broader part of it appear pre-formal and formal 
representations. Webb et al. (2008) emphasized three 
phases of learning: the informal phase, the pre-formal 
phase, and the formal phase. In the informal phase, 
the concepts are approached in a familiar context in 
a concrete way (with informal representations, such 
as figures, drawings, etc.). In the pre-formal phase, 

complexity increases, and representations appear 
more abstractly (for example, number lines). Finally, 
the formal phase implies that students resort to formal 
representations. When the students reach the formal 
stage, it does not mean that they will never resort to 
informal or pre-formal representations. Goldin (2000) 
and Webb et al. (2008) considered that students can 
resort to these representations again in moments of 
insecurity or confusion.

According to Duval (2012), “the use of many 
registers seems to be a necessary condition so that 
mathematical objects are not confused with their 
representations” (p. 270). The primary objective of 
representations is to give access to the represented 
object, which, for Duval (2012), brings together a 
set of necessary conditions promoting conceptual 
apprehension, implying the coordination of multiple 
representations. First, students must form an identifiable 
representation through the composition of a text, a 
drawing, a scheme, geometric figures, formulas, etc. 
Afterward, students should process, that is, transform 
a given representation into the same record in which 
it was initially created. This can be conceived through 
calculus, a way of handling symbolic expressions. 
Finally, students can perform a conversion, which 
means transforming this representation into a 
new one, keeping all or part of the content of the 
initial representation. It is important to emphasize 
that cognitive activities between conversion and 
treatment are distinct and independent, being two 
radically different types of semiotic representation 
transformation (Duval, 2012). A 2nd-grade student, 
for example, might look at a drawing with four 
circles and add those four circles to another three 
in a new drawing. The student will be able to get 
the sum of four and three without converting the 
drawing to another representation, such as for the 
numerals 4 and 3 or even for the symbolic writing 
of ‘‘4 + 3’’. However, students capable of converting 
the mentioned representations will show that they 
have mastered the mathematical content as they 
can apply it through multiple representations. The 
hypothesis underlying Duval's theory (2012) is that the 
complete understanding of a concept occurs in the 
coordination of at least two representation registers, 
and this manifestation occurs through cognitive 
conversion activity. The recommendations in the 
Curriculum Management Guidelines (MEC, 2016) are 
in line with Duval’s theory, suggesting that the teacher 
should allow students to appropriately, consistently, 
and gradually use the "symbolic representation of 
data, ideas, concepts, and mathematical situations in 
various forms" (p. 16) and emphasize the importance 
of students being able to "pass information from 
one representation to another, to obtain different 
perspectives of the same situation" (p. 16). Carraher 
and Schliemann (2007) highlighted that working 
with ‘‘sequences and regularities’’ allows exploring 
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geometric and numerical representations, where the 
ordinal positions (order) are related to the number 
of elements in that position (term). Alvarenga and 
Vale (2007) reinforced that "students, from the early 
years of schooling, can and should be encouraged to 
observe patterns and represent both geometrically 
and numerically, starting the study of algebra in a 
strongly intuitive and informal way" (p. 2). Students 
must be aware that there are multiple representations 
of the same situation and must “be able to move from 
one (representation) to the other understanding that 
the rules are equivalent” (Vale & Pimentel, 2005, p. 
15). In working with ‘‘sequences and regularities’’ this 
allows them to “see,” that is, understand, the existing 
pattern or relationship (Orton, 1999), regardless of how 
it is presented to them.

Methodology

Considering the importance of representations 
in the learning of sequences and regularities, the 
study investigated the contribution of multiple 
representations in the learning of ‘‘sequences and 
regularities’’ in third-grade students. The study was 
conducted in the academic year of 2019–2020 in the 
context of the supervised teaching practice of the 
first author of this work. The study participants were 
26 3rd-grade students, nine boys and 17 girls. All the 
participants are eight years old. More than half of the 
class (58.3%) indicated mathematics as the subject 
in which they had more difficulty; however, most 
students (66.7%) reported that they liked it.  Regarding 
performance in mathematics, most students obtained 
‘‘good’’ and ‘‘very good’’ levels and no student obtained 
insufficient level in their assessment at the end of each 
period of the school year. Given the nature of the 
objective outlined, this study adopted a qualitative 
and interpretive approach to understand the students' 
mathematical activities in solving the proposed tasks in 
the classroom context (Bogdan & Biklen, 1998). Twelve 
tasks were developed and explored in four classes to 
challenge students to develop their strategies, using 
their previous knowledge and multiple representations 
in the topic ‘‘sequences and regularities’’, with the 
students organized into 12 work pairs. Data were 
obtained from the students' resolutions and collected 
before their discussion in the class group. In this work, 
the study focused on the analysis of three tasks only. 
The analysis that results from the resolution of the tasks 
focuses on the following dimensions: (i) identification 
of numerical regularities; (ii) determination of the 
generating expression of a sequence; and (iii) 
transformation of representations. In each dimension, 
the types of representations used, and possible 
connections between the different representations 
are also analyzed. The strategies used by students 
in obtaining the following terms from the sequences 
are also analyzed. These strategies are classified 
using the typology of Ponte et al. (2009) as follows: 

(1) ‘‘representation and counting strategy’’, where 
students represent all the terms of the sequence until 
they determine the term that was asked of them; 
(2) ‘‘additive strategy’’, where students perceive the 
change that occurs from term to term and from there 
obtain the next term; (3) ‘‘whole object strategy’’, in 
which students, through one term, determine other 
multiple terms of that term; (4) ‘‘term decomposition 
strategy’’, where students decompose the term, thus 
realizing how it was constructed.

Presentation and Analysis of Results

Identification of Numerical Regularities 

In determining the formation law of a sequence, the 
students started by solving Task 1, which asked them 
to identify the regularity that characterizes obtaining 
a given term from its predecessor and establish close 
generalizations.

Task 1. Look at the following sequence of figures. 
In each figure, each square is formed by four equal 
toothpicks.

1.	 What happens to the number of toothpicks from one term 

to the next?

2.	 What is the formation law regarding the number of sticks in 

the sequence?

3.	 How many toothpicks are there in the order 6 figure? And 

in the order 8?

From the analysis of the answers given to each 
question, most of the students answered correctly in 
the first two questions. As for the first question, nine 
pairs correctly illustrated the formation law of the 
sequence, as exemplified by the answer given by pair 
P10, which represented each term and understood 
that six more toothpicks would be needed to form 
each subsequent figure (Figure 1).

Figure 1
The Correct Answer of Pair P10 to Question 1 of Task 1 
[“It's Always Six More Toothpicks”]
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According to the resolutions of three pairs of students 
who answered incorrectly, two pairs miscounted 
the number of toothpicks to be added, and one pair 
considered the number of squares that increased 
from one figure to the next (Figure 2).

Figure 2
The Incorrect Response of Pairs P11 and P6 to Question 
1 of Task 1 

(Note: Pair P11's answer to Question 1 of Task 1: “What 
happens to the number of toothpicks from one term to 
the next is to add eight more toothpicks”)

In the second question, nine out of 12 pairs of students 
answered correctly and reported that they related 
the formation law of a sequence to the phenomenon 
that occurs from one term to the next, successively, as 
illustrated by the response of pair P10 (Figure 3).

Figure 3
The Correct Answer of Pair P10 to Question 2 of Task 1 

(Note: “The formation law is always more six 
toothpicks”)

Two pairs gave partially correct answers as they 
made the correct association of the formation law 
to the phenomenon that happens next; however, as 
they incorrectly answered the previous question, the 
formation law presented does not correspond to the 

sequence under study, such as the response of the P11 
pair suggests (Figure 4).

Figure 4
The Partially Correct Answer of Pair P11 to Question 2 
of Task 1

(Note: “The formation law always adds more eight 
toothpicks”)

One of the pairs gave an incorrect answer. In the 
first question of the task, the pair understood what 
happens from one term to the next in the sequence; 
however, they could not relate this event as the 
formation law of the sequence, so they presented a 
different answer to the second question (Figure 5).

Figure 5
The Incorrect Response of Pair P2 to Question 2 of Task 
1 

(Note: Pair P2's answer to Question 1 of Task 1: “add six 
more toothpicks.”] [Pair P2's answer to Question 2 of 
Task 1: “The formation law is more 1 toothpick”)

Finally, in the third question, the students were asked 
to identify the terms of two distinct nonconsecutive 
orders. Three strategies used by the students to solve 
the problem stand out: the ‘‘term decomposition 
strategy,’’ the ‘‘representation and counting strategy’’ 
and the ‘‘additive strategy.’’ The ‘‘additive strategy’’ 
was presented by two pairs, who realized they had to 
successively add the formation law of the sequence 
(+6) to obtain the following terms. The P2 pair managed 
to achieve valid conclusions (Figure 6).
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Figure 6
The Correct Answer of Pair P2 to Question 3 of Task 1 

(Note: “Figure 6 has 34 toothpicks and Figure 8 has 46 
toothpicks”)

Pair P3 used this strategy and got a partially correct 
answer. This pair resorted to symbolic writing but 
could not visualize the sequence and realized that 
the orders requested were not consecutive nor 
immediately following those presented (Figure 7).

Figure 7
The Partially Correct Answer of Pair P3 to Question 3 
of Task 1

(Note: “The term 6 is the number 28. The term 8 is the 
number 40.”)

As shown in Figure 7, the pair P3 added to the number 
of order fourth sticks (22) six units and assumed that the 
number of order sixth sticks would be 28. This shows 
that the representation used did not allow students to 
visualize the sequence and determine the following 
term (order 5 term) only. One can understand that 
in the second part of the task, in determining order 
8, students started from the number of toothpicks 
they considered to be in figure 6 (28) and added six 
units, obtaining the order 7 term. To this result (34), 
they added another six units, reaching the order 8 
term. Although the result is incorrect, students already 
showed a certain understanding of the formation 
law of the sequence. The choice of symbolic writing 
probably made it difficult to solve the task as it did not 
allow them to visualize the continuity of the sequence, 
as the degree of abstraction of students in this age 
group is still low.

As for solving strategies, it was observed that the 
‘‘term decomposition strategy’’ was used by three 
pairs. Students represented, through pictorial 
representations, only the terms they intended to 
determine, which indicates that they understood how 
the figure was constructed. Students, through pictorial 
representation, were able to generalize a situation, 

realizing that the number of the figure is equal to 
the number of squares horizontally and the number 
of squares vertically; however, although pairs were 
able to represent the sequence correctly, they were 
not able to draw valid conclusions, probably due to 
little experience with the manipulation of pictorial 
representations. Students represented the terms 
correctly but were not able to accurately count the 
number of toothpicks in the figure. Figure 8, referring 
to the resolution of pair P9, depicts a counting error 
of one unit per figure, which translates into a partially 
correct answer.

Figure 8
The Partially Correct Answer of Pair P9 to Question 3 
of Task 1 

(Note: “Figure 6 has 33 toothpicks. Figure 8 has 45 
toothpicks”)

The use of the ‘‘representation and counting strategy’’ 
was also observed. It implies that students represent all 
the terms in the sequence until they obtain the desired 
term (Ponte et al., 2009). This strategy was used by a 
pair who incorrectly answer the question, and it may, 
once again, be a matter of lack of interpretation of 
the pictorial representation (Figure 9).

Figure 9
The Incorrect Response of Pair P4 to Question 3 of Task 
1 

(Note: “The term 6 has 44 toothpicks. And the term 8 
has 60 toothpicks”)

According to Figure 9, pair P4 correctly represented 
the terms, but the toothpick count is quite different 
from reality, with the order sixth term exceeding 10 
units and the order eighth term exceeding 14 units.

Representations
In the analysis of the resolutions to the proposed 
questions, it is verified that the different pairs resorted 
to multiple representations (Table 1).
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Table 1 shows that students mostly used natural 
language. The use of this type of representation 
allowed half of the pairs to obtaining a correct answer 
to the first question of the task. The predominance 
of this representation may be because the task is 
presented through a pictorial sequence, and the 
students do not feel the need to proceed with the 
treatment of this representation. Students may have 
understood the question only by analyzing the 
pictorial sequence, presenting their answer in natural 
language, without explaining the reasoning that 
resulted in the same answer. 

The pictorial representation, being an informal 
representation, despite being less used, resulted only 
in correct answers. This may mean that, as it is a more 
visual representation, it facilitated understanding, 
which is corroborated by Vale (2009), who argues 
that exploring generalization through different 
representations of visual support is essential for 
understanding mathematical topics under study.

A pair of students chose to present their resolution with 
a pre-formal representation, the schema; however, 
this greater complexity in the representation may 
have led to confusion in the interpretation of the task, 
which led them to obtain an incorrect answer.

In the second question of the task, all pairs used 
natural language to present their answers, with nine 
pairs getting correct answers, in the third question, 
within the representations used, no representation 
stands out, as only three pairs managed to get a 
correct answer. 

Connections between representations 

A representation that was not used by any student 
was introduced in the discussion of resolutions in class. 
The aim was to offer new possibilities and develop the 
students’ capacities in the treatment and conversion 
of representations. As the different representations 
previously used by the students were already 
registered on the board, (e.g., pictorial representations 
and symbolic writing), these same representations 
were used to build a table to organize the data (Figure 
10).

Figure 10
Table Built in the Blackboard 

This moment provided the class with the development 
of greater resourcefulness in the connections between 
multiple representations and allowed students to 
understand the mathematical content, even when 
represented in different ways. 

A geometric figure (triangle) was assigned to the order 
to familiarize students with algebraic expressions. In 
determining the order sixth term, the numeral 5 of 
the symbolic expression in the table was converted 
using the following formula: ‘‘Δ-1.’’ The conversion 
of representations and their respective treatment, 
in working with ‘‘sequences and regularities’’ 
allow students to understand the mathematical 
objects under study and develop the capacity for 
generalization and abstraction (Vale, 2009).

Table 1
Frequency of the Types of Records Used by Students in Task 1 (n=12)

Response types

C PC I

Question PR NL S SW T PR NL S SW T PR NL S SW T

1 3 6 0 0 0 0 0 0 0 0 0 2 1 0 0

2 0 9 0 0 0 0 2 0 0 0 0 1 0 0 0

3 1 1 0 1 0 2 1 0 1 0 2 2 0 0 0

Total 4 16 0 1 0 2 3 0 1 0 2 5 1 0 0
Note: PR: pictorial representation; NL: natural language; S: schemes; SW: symbolic writing; T: tables. C: Correct 
answer; PC: Partially correct answer; I: Incorrect answer.
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Determining the Generating Expression of a Sequence 

In determining the terms of a sequence defined by a 
formation law that allows obtaining each term from 
the previous ones, knowing the first terms, students 
solved Task 2.

Task 2. In a school canteen, four students can sit at 
a table. The tables are all the same. six students can 
seat, when two tables are combined.

1.	 How many students can sit at five and 10 tables? 
Justify your answer.

2.	 How many tables will be needed for 20 students 
to seat? Justify your answer.

3.	 Could there be a table with 31 students and all 
seats occupied?

Only four of the 12 pairs transformed the presented 
representation into a new representation. Two pairs 
converted the statement to a pictorial representation, 
one pair to a schema and one pair to a table with 
symbolic writing, meaning that most pairs answered 
the questions in Task 2 correctly. 

Ten pairs answered the first question correctly, while the 
other two gave a partially correct answer. However, 
different strategies emerged (Ponte et al., 2009). Eight 
of the 12 pairs developed the ‘‘term decomposition 
strategy.’’ Although it is not explicit in their resolution, it 
is clear that students have decomposed the terms to 
understand that each one presents the same number 
of tables as the order to which it corresponds. In this 
case, when students draw the terms of the orders only, 
they aim to determine them with the number of tables 
corresponding to the desired order, as illustrated by 
the response of pair P5 (Figure 11).

Figure 11
The Correct Answer of Pair P5 to Question 1 of Task 2

(Note: [“In the fourth table can seat 10 students, and in 
the table 8 can seat 18 students”])

The ‘‘additive strategy’’ was used by two pairs who 
obtained the correct answer by successively adding 
two to the previous term, as this is the formation law 
of this sequence, as illustrated by the answers of pairs 
P11 and P9 (Figure 12).

Figure 12
The Correct Answer of Pair P11 and Pair P9 to Question 
1 of Task 2

(Note: [Pair P11's answer to Question 1 of Task 2: “In the 
fourth table can seat 10 students, in the table 8 can 
seat 18 students.”] [Pair P9's answer to Question 1 of 
Task 2: “In the fourth table can seat 10 students, and in 
eighth table can seat 18 students”]).

Finally, two pairs chose to resort to the ‘‘whole object 
strategy,’’ which implies the determination of a term 
starting from a multiple term. However, this strategy is 
not feasible in this case, because, despite the number 
of tables doubling, the number of people seated does 
not correspond to the double, since two more places 
have to be considered at the head of the tables. Thus, 
students were able to answer the number of people 
who can sit at four tables correctly, but wrongly as to 
the number of people who can sit at eight tables, as 
illustrated by the responses of pairs P6 and P1 (Figure 
13).

Figure 13
The Correct Answer of Pair P6 and Pair P1 to Question 
1 of Task 2
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(Note: [Pair P6's answer to Question 1 of Task 2: “We 
conclude that the eighth table is the double of the 4th. 
There are 20 students.”] [Pair P6's answer to Question 1 
of Task 2: “Can seat in four tables 10 students.”] [Pair 
P1's answer to Question 1 of Task 2: “At the fourth table, 
there are 10 students. At the eighth table there are the 
double”)

Nine pairs managed to determine the correct solution 
in the second question, and only three had an 
incorrect answer. Of the correct answers, seven pairs 
only drew the figure corresponding to the solution to 
the problem, so they may have obtained this result by 
trial and error, as illustrated in Figure 14. 

Figure 14
The Correct Answer of Pair P7 to Question 2 of Task 2

(Note: “Will be needed nine tables?”)

Two other pairs obtained the correct answer through 
the ‘'additive strategy’’, as to each term the formation 
law is added to obtain the next term (Figure 15).

Figure 15
The Correct Answer of Pair P9 and Pair P11 to Question 
2 of Task 2

(Note: Pair P9's answer to Question 2 of Task 2: “Will be 
needed nine tables”] [Pair P11's answer to Question 2 of 
Task 2: “Will be needed nine tables?”)

Finally, two pairs had an incorrect answer, determining 
terms where the condition of sitting only 20 students is 
not verified, as shown in the answer of pair P7 (Figure 
16).

Figure 16
The Incorrect Answer of Pair P7 to Question 2 of Task 2

(Note: “Will be needed 10 tables to seat 20 students?”)

In the third question, it is confirmed that 10 pairs 
answered the question correctly. Students found 
different conditions justifying it was not possible for 31 
people to seat and occupy all seats. For example, pair 
P6 noticed that it was not possible because the terms 
are all equal, so 31 does not belong in the sequence, 
and pair P12 chose to design the tables, ending up 
verifying the impossibility of seating 31 people and 
having all seats occupied (Figure 17).

Figure 17
The correct Answer of Pair P6 and Pair P12 to Question 
2 of Task 2

(Note: Pair P6's answer to Question 2 of Task 2: “No 
because they only end in even numbers”] [Pair P12's 
answer to Question 2 of Task 2: “Yes there may be but 
the seats are not occupied”)

Representations

Multiple representations were used in solving the 
questions in Task 2, which prompts us to analyze which 
ones contributed the most for the students to solve the 
presented task (Table 2) effectively.

According to Table 2, it appears that most of the correct 
answers result from the pictorial representation. 

Connection between representations 

When discussing the resolutions of Task 2, the students 
were asked about the relationship between the 
term and the order of the sequence. This interaction 
resulted in a new representation: algebraic writing 
(Figure 18).
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Figure 18
Generating Expression of the Sequence That Translates 
the Number of Students Who can Sit at a Set of Tables

Although students are still at an embryonic stage in 
the development of their algebraic thinking, given 
the interest and resourcefulness shown by them in the 
proposed tasks, we think it is opportune to explore the 
representations that emerged to obtain the algebraic 
expression of the sequence, replacing the ‘‘number of 
tables’’ using the following formula: ‘‘n”.

Transformation of Representations 

To determine a formation law compatible with a 
partially known sequence and formulate it in symbolic 
language, students explored Task 3.

Task 3. Look at the following sequence of figures

1.	 How many hearts are needed for Figures 6 and8? 
Justify your answer using two different resolution 
methods.

2.	 Is there a picture with 100 hearts? Justify your 
answer.

3.	 Construct the generating expression of the terms 
of the sequence.

Only a pair of students gave partially correct answers 
to the first question, while the rest answered correctly. 
Three pairs resorted to the ‘‘representation and 
counting strategy’’ to obtain the desired terms, as 
suggested by the resolution of pair P12 (Figure 19).

Figure 19
Correct Answer of Pair P12 to Question 1 of Task 3

(Note: “Figure 6 has 13 hearts and Figure 8 has 17 
hearts”)

The ‘‘additive strategy’’ was applied by seven pairs, 
adding the formation law to each term to obtain the 
next term. Six pairs obtained the correct answer, as 
illustrated by the answer of pair P9 (Figure 20).

Table 2
Frequency of the Types of Records Used by Students in Task 2 (n=12).

Response types

C PC I

Question PR NL S SW T PR NL S SW T PR NL S SW T

1 8 0 1 1 1 1 0 0 1 0 0 0 0 0 0

2 7 0 1 1 0 0 0 0 0 0 2 0 0 1 0

3 5 6 1 0 0 0 0 0 0 0 0 0 0 0 0

Total 20 6 3 2 1 1 0 0 1 0 2 0 0 1 0

Note: PR: pictorial representation; NL: natural language; S: schemes; SW: symbolic writing; T: tables. C: Correct 
answer; PC: Partially correct answer; I: Incorrect answer.
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Figure 20
The correct Answer of Pair P9 to Question 1 of Task 3 

(Note: “It is necessary 13 for the figure 6 and for the 
figure 8 it is necessary 17”)

However, pair P6, another pair that opted for this 
strategy, translated these representations into a 
partially correct answer, despite providing a correct 
pictorial representation and symbolic writing (Figure 
21).

Figure 21
The Partially Correct Answer of Pair P6 to Question 1 of 
Task 3

(Note: “Figure 6 will have 11 hearts. Figure 8 will have 
17 hearts”)

Finally, the correct answers include the "term 
decomposition strategy" used by three pairs. For 
example, P3 solved the question correctly by dividing 
the figure into three parts and realizing that the 
number of hearts is twice the number of the figure 
plus one (Figure 22).

Figure 22 
The Correct Answer of Pair P3 to Question 1 of Task 3

(Note: “In the figure 6 there are 13 hearts. In the figure 
8, there are 17 hearts”)

Nine of the 12 pairs answered the second question 
correctly, as suggested by the resolution of pair P5 
(Figure 23).

Figure 23
The Correct Answer of Pair P5 to Question 2 of Task 3

(Note: “There are none with 100 hearts because they 
are all odd, and an odd number + an even number 
gives an odd number”)

Two pairs of students answered the question 
incorrectly, probably because they did not distinguish 
the characteristics of the sequence, as illustrated by 
the resolution of pair P12 (Figure 24).

Figure 24 
The Incorrect Answer of Pair P12 to Question 2 of Task 3 

(Note: “Yes. Because 98+2=100 and we must have 100 
hearts, and in the pictures, it is always +2”)

In the last question, half of the pairs identified the 
generating expression obtaining a correct answer, as 
suggested by the resolution of pair P11 (Figure 25).

Figure 25
The Correct Answer of Pair P11 to Question 3 of Task 3

(Note: “The generating expression of the terms of the 
sequence is 2x a number in the figure +1. For example, 
2×3=6;6+1=7”)

Four of the remaining six couples did not give any 
response. Two pairs gave the wrong answer as they 
presented the formation law of the sequence instead 
of its generating expression, which were requested, as 
observed in the resolution of pair P8 (Figure 26).
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Figure 26 
The Incorrect Answer of Pair P8 to Question 3 of Task 3

(Note: “From figure 1 to figure 2 add +2. And it always 
continues”)

Also, in question 3, a pair of students gave partially 
correct answers. Although they presented an example 
in which they applied the generating expression, they 
were not able to identify its entirety (Figure 27).

Figure 27
The Partially Correct Answer of Pair P9 Pair to Question 
3 of Task 3

(Note: It is 2x the number of the figure. Example: 
100×2=200;200+1=201”)

Representations

The analysis of students' responses to Task 3 identified 
which representations were used the most and which 
ones were used the most in correct answers (Table 3).

The first question asked students to present two 
different methods of resolution, which prompted 
them to use several representations in the same 
question. Of the pairs that with the correct answers, 
one pair only gave one representation, six pairs 
gave two representations, and four pairs gave three 
representations. As shown in Table 3, the students 
mainly used pictorial and table representations in 
solving the first question.

In the conversions between multiple representations, 
it was found that all pairs maintained the veracity of 
their solution, demonstrating a possible understanding 
of the mathematical objects, considering Duval's 
theory (2012) that a student able to coordinate two 
different representations would have achieved a 
complete understanding of the content under study.

In the second question, 11 pairs presented their answer 
in natural language, and nine of them answered 
correctly. As for the last question of the task, four 
correct answers, presented in symbolic writing, were 
obtained.

Connections between representations 

In the first question, all pairs of students were able 
to convert representations without losing the 
‘‘mathematical object’’ in question, revealing that 
they mastered in the mathematical contents. To 
understand the connections that students established 
between representations, a moment of discussion 
was created to discuss them. 

As most of the students used pictorial representations, 
in the first moment, this representation was used to 
invite P8 to present their resolution on the board, which 
converted the pictorial representation into a table. 
A different reasoning was, then, explored using the 
pictorial representations used by pair P1 pair (Figure 
28).

Figure 28
Exploitation of Item 1 by Pair P1

The discussion generated in the class group favored 
the determination of the generating expression 
(Figure 29).

Table 3
Frequency of the Types of Records Used by Students in Task 3 (n = 12).

Response types

C PC I

Question PR NL S SW T PR NL S SW T PR NL S SW T

1 11 0 3 3 10 1 0 0 1 0 0 0 0 0 0

2 0 9 0 0 0 0 1 0 0 0 0 1 0 1 0

3 0 2 0 4 0 0 0 0 1 0 0 1 0 1 0

Total 11 11 3 7 10 1 1 0 2 0 0 2 0 2 0

Note: PR: pictorial representation; NL: natural language; S: schemes; SW: symbolic writing; T: tables. C: Correct 

answer; PC: Partially correct answer; I: Incorrect answer.
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Figure 29 
Sequence Generating Expression 

To continue with the familiarization of algebraic 
expressions, ‘‘figure number’’ is replaced by ‘‘l’’. 
Although the expression was not formally presented 
as an algebraic expression, students understood its 
meaning as they participated in its construction.

Conclusions

From the analysis of students' resolution of the 
sequence of tasks presented in the teaching, we 
conclude from experience that the students preferred 
the pictorial representations, with one of the most 
used representations being natural language.

Initially, students mainly resorted to this representation, 
and there was no variety of registers. It was also found 
that most students were not able determine near and 
far generalizations at first.

During the teaching experience and using a greater 
variety of representations, students were observed 
to respond more assertively to questions about 
near and distant generalizations and questions 
involving the determination of the formation law 
and the generating expression. This result leads to 
the conclusion that the exploration and connections 
between different representations stimulate the 
improvement of students’ ability to argue and reason 
as they discuss important mathematical ideas (Lannin, 
2003; Viseu et al., 2021). 

Although pictorial representations stand out for 
facilitating understanding, students also encountered 
other representations such as tables during the 
teaching experience.

However, this representation almost always appeared 
to support other representations, and students 
solved the tasks with another register and, then, 
made connections between the previously used 
representations and the table.

Regarding the exploration of multiple representations, 
different pairs were able to make connections 
between different representations, which indicates 
that they helped determine generalizations. Despite 
their age range, the students showed improvement in 
their algebraic thinking, namely in generalization. 

In this process, pictorial representations were the most 
helpful representations in constructing meanings of the 
mathematical objects under study, allowing them to 
express their reasoning more confidently and clearly, 
as they provided visual support that attenuated the 
abstract nature of the mathematical concepts and 
gave them meaning (Ozsoy, 2018). 

The first difficulty arose in the interpretation of the 
statement of tasks. Although students resorted to 
strategies, such as the ‘‘representation and counting 
strategy’’, which implies a representation of all terms 
of the sequence up to the desired term, they obtained 
the wrong solution to the question presented. 

This result is in line with the findings of the study 
by Duval (2012), where the greatest difficulties in 
mathematical thinking arise from the lack of proper 
understanding of a mathematical representation, 
originating the incomprehension of the mathematical 
objects. While natural language was one of the most 
used representations by students and gave rise to the 
most correct answers, it was also the most frequent 
representation in the incorrect answers. The students 
who used this register to develop their resolution had 
difficulties and often failed to obtain a valid answer to 
the questions. 

Students perceived their greatest difficulties as 
‘‘understanding the questions’’ and ‘‘understanding 
the texts’’. Also, most students reported natural 
language as the representation they found most 
difficult to learn. Tables and drawings were the most 
highlighted representations as the tables provided 
faster, easier, and more specific reasoning, and the 
drawings helped them understand the concepts. 
Regardless of the representation, it was concluded 
that involving students, from the early years of 
schooling, in the translation of their mathematical 
thinking promotes learning with understanding of 
concepts, communication, and reasoning skills.
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