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Abstract: Online learning for primary and secondary students has expanded significantly 
in the United States during the last two decades. In addition to the sustained growth of 
online learning, many schools and districts used online learning to respond to the 
coronavirus pandemic. As school leaders and policymakers move more students into 
online courses, they need information about which students succeed and struggle online. 
We examine the relationship between student traits and academic success in a statewide 
online learning program. We find that students identified with specific exceptionalities, 
students who identify as male, students from disadvantaged socioeconomic backgrounds, 
and students from cities or fringe rural areas were more likely to struggle in their online 
courses. This information comes at a vital time as school leaders seek to determine the 
effects of widespread online learning, make decisions about the support students will need 
after the pandemic ends, and develop the best online learning approaches when in-person 
schooling returns. 
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Brechas digitales: Perfiles de estudiantes K-12 y aprendizaje en línea 
Resumen: El aprendizaje en línea para estudiantes de primaria y secundaria se ha 
expandido significativamente en los Estados Unidos durante las últimas dos décadas. 
Además del crecimiento sostenido del aprendizaje en línea, muchas escuelas y distritos 
utilizaron el aprendizaje en línea para responder a la pandemia del coronavirus. Los líderes 
escolares y los legisladores mueven a más estudiantes a cursos en línea, necesitan 
información sobre qué estudiantes tienen éxito y luchan en línea. Examinamos la relación 
entre los rasgos de los estudiantes y el éxito académico en un programa de aprendizaje en 
línea a nivel estatal. Encontramos que los estudiantes identificados con excepcionalidades  
específicas, los estudiantes que se identificaron como hombres, los estudiantes de entornos 
socioeconómicos desfavorecidos y los estudiantes de ciudades o áreas rurales marginales 
tenían más probabilidades de tener dificultades en sus cursos en línea. Esta información 
llega en un momento vital cuando los líderes escolares buscan determinar los efectos del 
aprendizaje en línea generalizado, tomar decisiones sobre el apoyo que los estudiantes 
necesitarán después de que termine la pandemia y desarrollar los mejores enfoques de 
aprendizaje en línea cuando regrese la educación presencial. 
Palabras-clave: Aprendizaje en línea K-12; cursos online; educación especial; coronavirus; 
geografía 
 
Divisões digitais: Perfis de alunos do ensino fundamental e médio e aprendizagem 
online 
Resumo: O aprendizado online para alunos do ensino fundamental e médio se expandiu 
significativamente nos Estados Unidos durante as últimas duas décadas. Além do 
crescimento sustentado do aprendizado online, muitas escolas e distritos usaram o 
aprendizado online para responder à pandemia do coronavírus. À medida que os líderes 
escolares e formuladores de políticas movem mais alunos para os cursos online, eles 
precisam de informações sobre quais alunos são bem-sucedidos e têm dificuldades online. 
Examinamos a relação entre as características dos alunos e o sucesso acadêmico em um 
programa de aprendizado online em todo o estado. Descobrimos que alunos identificados 
com excepcionalidades específicas, alunos que se identificam como homens, alunos de 
origens socioeconômicas desfavorecidas e alunos de cidades ou áreas rurais periféricas 
eram mais propensos a ter dificuldades em seus cursos online. Essas informações chegam 
em um momento vital, enquanto os líderes escolares buscam determinar os efeitos do 
aprendizado online generalizado, tomam decisões sobre o apoio que os alunos precisarão 
após o fim da pandemia e desenvolvam as melhores abordagens de aprendizado online 
quando a escola presencial retornar. 
Palavras-chave: Aprendizagem online K-12; Cursos online; Educação especial; 
coronavírus; geografia 
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Digital Divides: K-12 Student Profiles and Online Learning 
 
In March of 2020, the global community faced an unprecedented health crisis. As the novel 

coronavirus spread, governments worldwide prohibited millions of K-12 school children from 
learning in their school buildings for several months. These circumstances left districts and parents 
scrambling to determine the best way to educate their children. According to nationwide tracking of 
82 school districts across the United States, many districts moved to remote instruction to provide 
curriculum, instruction, and progress monitoring online (Dusseault & Pillow, 2020). This tracking of 
districts includes a small sample, but it reflects that districts rapidly scaled their online learning use 
during the pandemic. 

The purpose of this article is to consider how student profiles relate to academic 
performance in K-12 online learning. It is too soon to measure data and explore the consequences 
of online learning for students amidst the coronavirus pandemic (and unclear if such data will ever 
be available). Therefore, we instead examine robust data on a statewide online program that 
previously scaled to fill educational programming gaps for other reasons, mainly staffing issues, 
credit recovery, and geographic isolation. These unique data allow us to consider students’ profiles 
based on several traits: exceptionality, socioeconomic status, gender, and the geographic 
classification of their home school district.  

We consider the implications of our findings for students who were forced to enroll in 
online learning during the coronavirus pandemic. While the conditions were different with a 
heightened level of stressors and exogenous factors, the data from our sample allow us to make 
reasonable estimations as to who will need educational interventions upon return to face-to-face 
classrooms. To achieve these goals, we examine a statewide online program in the southeast of the 
United States. We ask the questions: What student traits relate to K-12 students scoring lower in 
their online courses? What student characteristics relate to students being more likely to have below 
a 70 average?  

In the remainder of this article, we first discuss past research in K-12 online learning, 
showing the need for understandings of student profiles and performance. Next, we describe 
features of the statewide online program that we study, including why students enroll and how 
teaching and learning are managed. Then, we describe methods and findings. We conclude with 
implications and how school leaders and policymakers could use our research as they reopen their 
buildings, including how to think about online learning placements moving forward once the 
coronavirus pandemic ends.  

We do not intend to make comparisons of quality between online learning to traditional 
classrooms. We believe online education is here to stay and will continue to shape teaching and 
learning in schools. As the coronavirus pandemic shows, sometimes there are situations in which 
there are no other learning options for students. With this in mind, we examine data from a state 
where students participated in online classes for various reasons, including a substantial share of 
students who took online courses based on circumstances out of their control. We do not argue who 
should and who should not be learning online because there are situations where students do not 
have a choice. Instead, we provide information on who may need more support during the online 
learning process or after their need for online learning ends.  

 

A Brief Overview of Online Learning Research 

K-12 online course attendance has grown from limited use at the turn of the 21st century 
with hundreds of students enrolling in thousands of courses, to hundreds of thousands of students 
enrolling in a million or more courses within a decade, to now uncounted (likely exceedingly high) 
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numbers of students enrolling, at least for a brief time, online because of a pandemic (DLC, 2019; 
Dusseault & Pillow, 2020). Despite this growth, research initially struggled to keep pace, but studies 
in recent years have investigated the efficacy of online learning and how students fare (Mann & 
Baker, 2017; Woodworth et al., 2015). Some quantitative studies focus on academic performance in 
K-12 online schools, but there are many unanswered questions (Means et al., 2014). One of the key 
questions that previous research has sought to understand is how students fare in various online 
settings compared to face-to-face environments.  

The most robust research on full-time K-12 online schools’ performance compared to brick-
and-mortar schools focuses on online schools that operate under the charter governance structure. 
Early studies show mixed results depending on school context, student population, and study design 
(Cavanaugh, 2009). As this research has expanded, findings consistently show negative performance 
in cyber charters compared to traditional schools, including statistically significant lower learning 
growth rates in cyber charters as measured on statewide tests (Ahn & McEachin, 2017; Woodworth 
et al., 2015). However, if students persist in online schools, their performance improves over time 
(Lueken et al., 2015). 

In addition to these analyses, a group of researchers for the National Education Policy 
Center (NEPC) has tracked K-12 online and blended learning trends for many years. The latest 
NEPC report at the time of writing this article is Molnar et al. (2019), and one of the chapters of the 
reports was reframed into an academic article for Education Policy Analysis Archives (Gulosino & 
Miron, 2017). The NEPC reports have advanced the field in providing knowledge on general 
challenges related to forms of online and blended learning. The researchers of the NEPC reports 
show concerning trends. These trends include a lack of oversight and a lack of effectiveness of 
online programs.  

Studies on supplementary K-12 online learning settings have used sophisticated analyses and 
raised questions on the effectiveness of online learning compared to face-to-face courses. 
Researchers in one study conducted a randomized control trial to examine success rates in online 
versus face-to-face in Algebra 1 credit recovery classes. This study shows scores were lower in 
virtual environments (Heppen et al., 2017). Other studies using quasi-experimental and inferential 
methods show lower scores for students in virtual settings (Heissel, 2016). Relatedly, some studies 
use randomized control trial techniques in postsecondary education settings. These studies at times 
found no discernible effects related to modality, and sometimes adverse effects of online courses on 
student performance (Bowen et al., 2014; Figlio et al., 2013; Hart et al., 2018; Xu & Jaggers, 2011).  

Despite past studies showing adverse effects in various online settings compared to face-to-
face options (full-time and supplementary), a recent study used a fixed-effect model to analyze 
performance and persistence in high school online courses (Hart et al., 2019). The study shows that 
students in online courses, both first-timers and re-takers, were more likely to pass than students in 
face-to-face versions of the course. These results are consistent across different subgroups of 
students. These results raise the possibility that online courses are improving, and there is a need for 
continued research on learning in online environments. 

One clear gap in this research, both in investigations of supplementary and full-time online 
settings, is that researchers tend to compare online learning to face-to-face learning. This strategy 
becomes an issue when online learning may be the only option for students for various reasons, 
such as a global pandemic. We take a different approach to performance than seen in past research. 
Instead of analyzing whether students perform better or worse in online settings, we analyze 
students within online courses and identify characteristics associated with students who struggle. 
Our rationale is that, at least for a brief time following the global pandemic, school leaders and 
policymakers need to know which students were likely to struggle while they were away from their 
buildings because there were no comparable face-to-face options. 
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There are good reasons to consider student background in a study of online learning 
performance. Students differ in the support they have at home for online learning. For example, 
working-class or low-income families have less flexibility to monitor online learning progress. 
Additionally, some studies explain the diversity of student needs and how they interact with online 
programs in unique ways. Students with exceptionalities have needs not met in online settings 
(Basham et al., 2015; Rice & Carter, 2015). Students from marginalized backgrounds or isolated 
geographic locations may face unique challenges in online schools, especially since it is unclear how 
equity and diversity unfold in online spaces (Mann, 2019). Course content may have subtle racial 
signals or biases, like what was found in other educational tools (Kranzler et al., 1999). Based on 
these concerns about the effect of online learning across different populations of students and the 
context of mass enrollment into online learning during the global pandemic, it is imperative to learn 
more about students’ traits and how they relate to struggles in online classes. 

 

Three Digital Divide Levels and Their Relationship to Educational Access  

We conceptualize the study through a common organizing framework for issues related to 
the diffusion of technology: the digital divide. The Organization for Economic Cooperation and 
Development defines the digital divide as “the gap between individuals, households, businesses and 
geographic areas at different socioeconomic levels with regard both to their opportunities to access 
ICT and to their use of the Internet” (OECD, 2001, p. 32). This term organizes our interpretations 
of findings. It forces us to ask how the implementation of online learning programs leads to 
equitable outcomes for members across marginalized and minoritized groups of students. Scholars 
have long studied how education relates to the digital divide and call for understanding the digital 
divide across social and cultural characteristics of individuals (Clark & Gorski, 2002; Cruz-Jesus et 
al., 2016). A digital divide conceptual framework justifies examining educational outputs based on 
race and other characteristics (Clark & Gorski, 2002). Additionally, scholars have shown 
discrepancies in students’ digital competencies with exceptionalities (Wu et al., 2014). This research 
motivates us to consider how students with exceptionalities fare in their online courses.   

There are three components or levels to the digital divide: access, skills, and use. The early 
research on the digital divide focused on the first level, which is access and infrastructure. This 
research examined the tools, such as broadband access and hardware, available to individuals and 
how this availability differed for marginalized and minoritized people. For example, to determine the 
extent to which a digital divide exists in the United States, one group of scholars showed how 
regional variability and the size of technology sectors relate to those regions’ socio-demographic 
characteristics (Azari & Pick, 2005). The first-level argument is still relevant, especially as researchers 
recently reconceptualized the first level to consider material needs as a digital divide issue (Van 
Deursen & Van Dijk, 2019).  

Researchers added to these understandings through examining the second level of the digital 
divide. Scholars looking at the second level consider the inequitable distribution of skills and 
knowledge, or competencies, as a component of unequal opportunities related to technology (Peña-
López, 2010). Scholars of the second level also consider related issues linked to technology use, such 
as behavioral and motivational characteristics and the traits of individuals (Areepattamannil & 
Khine, 2017). If individuals have not mastered the skills and competencies needed to gain from 
technology, then the expansion of infrastructure and hardware is not enough to close the digital 
divide (Ferro et al., 2011).  

Scholars are now moving to the third level of the digital divide, discussing who gains the 
most from the utilization of online tools and how these advantages differ not only based on 
infrastructure and competencies but also through use patterns (Ragnedda & Kreitem, 2018). The 
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third-level digital divide merges the intersection of online and offline social conditions. Scholars 
focusing on this level suggest that there are various services and opportunities available on the 
internet. A third-level digital divide emerges if individuals use these tools in ways that perpetuate 
unequal offline conditions for marginalized and minoritized groups (Van Deursen & Helsner, 2015). 
The third-level digital divide becomes especially important as individuals blur the line between their 
online and offline lives. 

Educational equity relates to all three levels of the digital divide. The first-level digital divide 
influences education because students cannot learn without the appropriate tools. The second-level 
digital divide influences education because students with ineffective online skills will not learn course 
material. The third-level digital divide influences education because even if students have adequate 
access and skills but are still not learning, there exists a divide based on use patterns. At all levels, the 
goals of an equitable education system are not met.  

In our discussion, we consider what our findings mean concerning the different levels of the 
digital divide. We argue that online programs cannot fully achieve their goals unless they address all 
three levels of the digital divide. This means our study’s conceptual goal is to consider how the levels 
of the digital divide emerge based on student traits ranging from socioeconomic to ability 
differences. As revealed later in the article, we show a digital divide can still exist in programs even 
with widespread first-level access. Educational equity goals are not achieved unless students from 
differing backgrounds learn at similar rates in online settings. These learning rates are the product of 
all levels, not just the first, of the digital divide. 

 

Context: A Statewide Online Program 

This research analyzes Statewide Online Program (or SOP, which is the pseudonym used 
here). SOP began in 2004 with the purpose of serving rural school children across an entire 
southeastern state. At the time, approximately one-third of the state’s children lived in rural 
communities and attended school districts with staff capacity issues. These capacity issues included 
providing certain classes to students and attracting and hiring highly qualified teachers. Originally, 
SOP was designed as an online supplement so that students could enroll in their traditional public 
school while taking state-provided online courses in content areas not offered in their home school 
district. The scope of SOP has expanded and now serves students in every school district in the 
state, and students may take courses based on a variety of reasons and personal preferences. Current 
SOP student enrollments range from 7th to 12th grade; however, most are at the high school level 
and take classes to fulfill high school graduation requirements. Some students even fulfill all their 
educational responsibilities full time with SOP. 

SOP is divided into regions, with each school being supported by one of three centers. 
These ‘Support Centers’ assist in hiring and monitoring online teachers, enrolling students in classes, 
and assisting schools as they implement the SOP program. One of the three support centers is also 
responsible for developing and disseminating courses. Each regional support center is funded 
through a line item in the state education budget. SOP classes predominately are delivered in an 
asynchronous manner (more than 95% of the course are asynchronous); however, a few classes 
(American Sign Language, Floral Design, Forestry, and some sections of Spanish) are taught 
synchronously using video conference equipment. Since SOP is a state-funded program, students 
can enroll in Advanced Placement (AP), elective, and other courses to which they may not otherwise 
have access. There is no cost to the student or their school district for enrollment.  

All content for SOP courses is developed and taught by state-certified teachers. The SOP 
teachers represent a culturally diverse background that ranges from three to almost 40 years of 
teaching experience. Teachers may have one to several course sections at a given time, but are 
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limited in the number of students that they teach. Full-time teachers can have 150 students on their 
class rosters, while part-time teachers can have a maximum of 60 students.  

SOP courses are standardized through the creation of a master course which is loaded into a 
learning management system (LMS). Individual sections of each course are created from the master 
course, allowing the SOP program to ensure that each course is delivered with fidelity. Teachers may 
supplement content and have personalized pedagogical online practices that influence how well 
students perform with the standardized material. However, the courses are structured in ways where 
students’ experiences are consistent, including assessments. 

The most popular SOP courses are foreign language and health courses. For example, in the 
2017 calendar year, nearly 13% of all enrollments were in a health class, and 28% of all enrollments 
were in a foreign language. The rest of the coures were split along various subject areas. This 
distribution shows that SOP is mainly used for schools with difficulty finding teachers in specific 
content areas (especially foreign languages). Another use of the program is for students to either 
retake courses from the school year or take higher-level courses that their districts do not offer. A 
small number of students even use SOP to take courses full time to pursue talents outside of the 
school setting, such as in sports or acting. 

The SOP program has served a diverse array of students. More than 27,000 students took 
more than 55,000 classes in 2017 alone. These students range in demographic and geographic 
backgrounds, offering a substantial set of students who can help us understand the composition of 
students who succeed and struggle in this type of educational setting. 

 

Methods and Data 

Data 

Data come from the National Center for Education Statistics (NCES) and the state 
department of education (SDE) that funds SOP. SDE collects data on SOP course enrollment, 
student performance and activity, teacher activity, and student demographics. These demographic 
data include exceptionality status, free and reduced lunch status, reported race, reported gender 
identity (reported in the dataset only as male or female) and sending school district. The SDE store 
these data in an electronic database and shared them with researchers as part of a data-sharing 
agreement with the researchers’ university. The data reflect enrollments that spanned annual years 
2016, 2017, and 2018 (ending in the 2018 fall semester). The data are reported annually, which is 
different than typical education studies that report school years. We pulled data from all courses 
available each year, as students enroll in classes during the school year and the summer. 

We merged data from the NCES to the students’ home districts. Based on a district 
identifying code, we identified information about each student’s home district. The primary variable 
from the NCES data was the district’s locale, as we wanted to determine a geographic proxy for each 
student. The description of the geographic locale designations is listed in Table 1, as the NCES uses 
a combination of size, distance from urban clusters, and other census definitions when classifying 
districts. Based on the rationale to examine students’ locale based on their district, we dropped 
students from the dataset who were enrolled in the online program from a non-district organization. 
These only included 51 students out of the more than 60,000 students in the dataset. The rest were 
attending school in a state school district and were using the SOP program as a supplement. 
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Table 1 

NCES Classifications of Geographic Locale 

Designation Description 

City – Large 
Territory inside an Urbanized Area and inside a Principal City with 
population of 250,000 or more. 

City – Midsize 
Territory inside an Urbanized Area and inside a Principal City with 
population less than 250,000 and greater than or equal to 100,000. 

City – Small 
Territory inside an Urbanized Area and inside a Principal City with 
population less than 100,000. 

Suburban – Large 
Territory outside a Principal City and inside an Urbanized Area with 
population of 250,000 or more. 

Suburban – Midsize 
Territory outside a Principal City and inside an Urbanized Area with 
population less than 250,000 and greater than or equal to 100,000. 

Suburban – Small 
Territory outside a Principal City and inside an Urbanized Area with 
population less than 100,000. 

Town – Fringe 
Territory inside an Urban Cluster that is less than or equal to 10 miles from 
an Urbanized Area. 

Town – Distant 
Territory inside an Urban Cluster that is more than 10 miles and less than 
or equal to 35 miles from an Urbanized Area. 

Town – Remote 
Territory inside an Urban Cluster that is more than 35 miles from an 
Urbanized Area. 

Rural – Fringe 
Census-defined rural territory that is less than or equal to 5 miles from an 
Urbanized Area, as well as rural territory that is less than or equal to 2.5 
miles from an Urban Cluster. 

Rural – Distant 

Census-defined rural territory that is more than 5 miles but less than or 
equal to 25 miles from an Urbanized Area, as well as rural territory that is 
more than 2.5 miles but less than or equal to 10 miles from an Urban 
Cluster. 

Rural – Remote 
Census-defined rural territory that is more than 25 miles from an Urbanized 
Area and more than 10 miles from an Urban Cluster. 

Note. Descriptions from the NCES user manual: 
https://nces.ed.gov/programs/EDGE/docs/NCES_LOCALE_USERSMANUAL_2016012.pdf 

The combined dataset includes 62,910 student cases and 111,665 courses delivered 
(averaging 1.775 courses per student). Most students (61.4%) took one course during the data 
period, and 12.3% took two courses. This distribution means 83.7% of students took only one or 
two courses. This pattern reflects the program’s goal to be a supplement. A few students (0.5%) 
took more than 10 courses and used online learning as their full-time educational option. 
 

Student Sample vs. Statewide Population 

As shown in Table 2, the composition of students enrolling in the SOP program was similar, 
but not identical, to the student demographic composition of the state. The differences likely relate 
to the fact that the SOP’s goal is to provide online programming primarily to rural students who 
would not previously have access to course content without an online option, shifting the SOP 
demographic data to reflect certain rural regions more than in statewide data. More than 34% of the 
students in the SOP dataset live in rural districts, while only about 20% of the state’s students live in 
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rural districts. The SOP dataset also skews more female, white, and economically advantaged than 
the rest of the state. The dataset includes student classifications by exceptionality status, which is a 
variable we do not have access to at the state level, so we have no point of comparison. 

A limitation to the data is there are no reported Hispanic students in the SOP dataset in 
some years and only a few hundred in other years. This lack of reporting occurs for reasons we were 
not able to determine. We communicated these issues with the data provider and could only 
determine that there were reporting issues with the data, and we could not remedy these reporting 
issues. Many Hispanic students were likely reported as white students in the dataset, and thus our 
results based on race may merge white and Hispanic students. While this is an issue, we feel 
confident reporting the results, but with a caveat on the reporting issue. Hispanic students comprise 
less than 8.5% of the statewide student population during the time analyzed, and we did not focus 
our interpretations of results based on reported race or ethnicity.  

 
Table 2 

Statewide Student Demographics Compared to SOP Student Demographics 

 
Statewide Student 

Population, 2018-19 
% Statewide 
Student Pop. 

SOP Dataset, 
2017-19 

% SOP 
Dataset 

Total 739,716  62,910  

Free Lunch 407,040 55.03% 26,102 41.49% 

Reduced Lunch 44,789 6.05% 3,084 4.90% 

Male 379,760 51.34% 28,952 46.02% 

Female 359,956 48.66% 33,958 53.98% 

Am. In./AK Natv. 6,918 0.94% 1,795 2.85% 

Asian or Pac. 
Islander 

10,887 1.47% 976 1.55% 

Black 240,190 32.47% 18,659 29.66% 

White 401,066 54.22% 40,910 65.03% 

Other Racial 
Designation 

80,655 10.90% 571 0.91% 

City: Mid-size 140,729 19.02% 3,392 5.39% 

City: Small 64,782 8.76% 3,269 5.20% 

Suburb: Large 160,433 21.69% 6,739 10.71% 

Suburb: Mid-size 18,709 2.53% 541 0.86% 

Suburb: Small 16,031 2.17% 1,850 2.94% 

Town: Fringe 10,040 1.36% 2,344 3.73% 

Town: Distant 71,834 9.71% 8,697 13.82% 

Town: Remote 5,168 0.70% 483 0.77% 

Rural: Fringe 75,450 10.20% 6,794 10.80% 

Rural: Distant 144,880 19.59% 21,538 34.24% 

Rural: Remote 31,660 4.28% 7,180 11.41% 

No exceptionality   45,471 72.28% 

Autism   286 0.45% 

Emotional 
Disturbance 

  120 0.19% 

Gifted   10,517 16.72% 
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Table 2 cont. 

Statewide Student Demographics Compared to SOP Student Demographics 

 
Statewide Student 

Population, 2018-19 
% Statewide 
Student Pop. 

SOP Dataset, 
2017-19 

% SOP 
Dataset 

Hearing Impairment   68 0.11% 

Multiple Disabilities   8 0.01% 

Orthopedic 
Impairment 

  32 0.05% 

Other Health 
Impairment 

  647 1.03% 

Specific Learning 
Disabilities 

  2,649 4.21% 

Speech & Lang. 
Impairment 

  3,070 4.88% 

Traumatic Brain 
Injury 

  19 0.03% 

Visual   23 0.04% 
Note.  The “Other Racial Designation” category statewide disaggregated shows 62,089 (8.39% statewide) 
Hispanic students, 881 (0.12% statewide) Hawaiian Native/Pacific Islander students, and 17,685 (2.39% 
statewide) Two or More Race students. The reason for collapsing these categories is that there were small 
populations of these students represented in the SOP database (571 combined total). These omissions 
occur for reporting issues not correctable by the researchers. 

 
While we report the race and ethnicity data results in the findings, we do not focus on them 

in the discussion. We made this decision based on the reporting issues and also because when 
students return to their face-to-face settings once the pandemic ends, they likely will be returning to 
schools that are mostly racially homogeneous, an unfortunate reality of the demographic makeup of 
schools in the United States (Reardon & Owens, 2014). As such, racial data are less helpful to 
practitioners than other student covariates in the context of this data. However, we concede this is a 
limitation to the study and we strongly encourage the field to continue examining online course 
performance as it relates to racial identity. 

 

Dependent Variables 

The first outcome measure is the average of a student’s scores in their online learning 
class(es). This score is equivalent to their “online school GPA” to determine how a student, on 
average, performs in their online class(es) overall. These scores are on a 0–100 scale. The covariates 
can be understood as how many more points a student scores than a reference group (for example, 
females scored, on average, about 8 points higher than male students, as shown in the following 
findings section).  

The second outcome measure is a binary measure of students scoring lower than a “C” 
(below an average of 70) in their online courses. This measure provides a straightforward 
interpretation for policymakers and is consistent with a recent study that uses a similar measure 
when determining online student success (Hart et al., 2019). This outcome variable allows us to 
change the statistical analysis from linear regression to a logistic regression, which adds robustness to 
the findings. 
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Independent Variables 

As shown in Table 2, there are several traits we examined when considering scores in online 
courses. We focused our analysis on a category in the data called “exceptionality.” The districts 
report this variable with accuracy due to federal law requiring schools to report and monitor 
students with exceptionalities. We report findings related to exceptionalities first due to past 
concerns raised about students with exceptionalities and needs not being met in online settings 
(Basham et al., 2015; Rice & Carter, 2015). 

We also included student traits such as economic status, gender, race, and geographic 
location. The economic status variable we used was free and reduced-price lunch for students, which 
is a proxy indicating the financial resources. The sending school district reported race and gender 
with self-reported information by students and families. We could not confirm these covariates’ 
accuracy, as students may identify their gender or race differently than what the district reports. As 
mentioned, race and ethnicity variables had irregularities, such as very few Hispanic students 
reported in the dataset and small numbers of students from several racial groups such as Hawaiian 
Native/Pacific Islander students and Two or More Race students. We collapsed these categories into 
an “Other Racial Designation” variable and acknowledge this as a limitation to our analysis.  

 

Analytic Methods 

We use two primary analytic techniques to understand the relationship between online 
learning mean score (or online school GPA) and student traits. All models use statistically required 
reference groups across each student trait (the reference categories are no exceptionality, no FRL, 
female, white, and large suburb). For the first analysis, to account for the nature of the nested data, 
we use a three-level model (students nested within schools, and schools nested within districts) 
analyzing students’ average test scores (Raudenbush & Bryk, 2002): 

 

𝑆𝑐𝑜𝑟𝑒𝑖𝑗𝑘 = 𝛽0 + 𝐒𝐓𝐢𝐣𝐤𝚩𝟏 + 𝐃𝐈𝐤𝚩𝟐 + 𝑟𝑘 + 𝑢𝑗𝑘 + 𝑖𝑗𝑘 , 

Where 𝑆𝑐𝑜𝑟𝑒𝑖𝑗𝑘  represents the average test score for student i in school j within district k; 𝛽0 is the 

intercept; 𝐒𝐓𝐢𝐣𝐤 is a row vector of student background characteristics including SES, gender, race, 

and exceptionality; 𝐃𝐈𝐤 is a row vector of district location dummy variables; 𝑟𝑘 and 𝑢𝑗𝑘  are the 

district-level and school-level random effects, respectively; and 𝑖𝑗𝑘  is the student-level error term.  

The second analytic technique we use is a three-level logistic regression model for 
understanding the likelihood a student trait associated with a student having an average score of 70 
or lower (Raudenbush & Bryk, 2002): 

 

𝑙𝑜𝑔 [
𝑃(𝑌𝑖𝑗𝑘=1)

1−𝑃(𝑌𝑖𝑗𝑘=1)
] = 𝛽0 + 𝐒𝐓𝐢𝐣𝐤𝚩𝟏 + 𝐃𝐈𝐤𝚩𝟐 + 𝑟𝑘 + 𝑢𝑗𝑘, 

 

In this model, 𝑌𝑖𝑗𝑘  is a binary indicator coded as one if the average score for student i in school j 

within district k is less than 70 and coded as zero if the average score is equal or greater than 70;  𝛽0 

is the intercept; 𝐒𝐓𝐢𝐣𝐤 is a row vector of student background characteristics including SES, gender, 

race, and exceptionality; 𝐃𝐈𝐤 is a row vector of district location dummy variables; 𝑟𝑘 and 𝑢𝑗𝑘  are the 

district-level and school-level random effects, respectively. We report the logit coefficients as odds 
ratios for ease of interpretation. 
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Analytic Limitations 

There are limitations based on the available data and methodological choices (in addition to 
data limitations mentioned earlier). The first limitation is that there are aspects to the scenario 
presented in this study that may not represent the nature of online learning nationwide. The state at 
focus is a rural state with no students classified as attending school in a large city. Large cities like 
New York and Los Angeles might have differences when compared to the findings presented here. 
Also, the reasons for students enrolling in the SOP program are different than students enrolling in 
online learning due to the circumstances based on the coronavirus pandemic. The next limitation is 
we do not know the students’ previous experience with online learning, nor do we know their prior 
academic achievement. It would help to control for these student traits, but data reflecting these 
traits were not available to us. Another limitation is that there may be some confounding variables 
that influence the findings. These include teacher quality and experience with online teaching and 
student variables such as internet cost, bandwidth, and stability. Since most of courses were 
asynchronous, we believe these factors are somewhat mitigated, but they present an area for future 
research. A final limitation is we took an aggregate measure of student performance. This measure 
can be understood as their SOP final average (akin to a high school GPA). This measure does not 
account for the nature of the class(es) the students took. We made this choice because providing a 
general score is the most useful in the scenario currently facing our society, where many students are 
taking multiple courses online during the pandemic. 

School leaders should use these findings as a starting point rather than an endpoint. Our 
findings allow us to understand the composition of students who succeed and struggle in the online 
learning experience of SOP. These findings help inform policymakers in the state. Additionally, 
policymakers in other settings may use the findings as they begin to consider how they overlap with 
their settings. 

 

Results 

Table 3 

Statewide Student Performance in SOP Online Courses by Student Traits  

Variable Multi-level Regression Multi-level Logit 

Autism 
-0.67 
(1.44) 

0.84 
(0.11) 

Emotional Disturbance 
-14.41*** 

(2.68) 
2.60*** 
(0.59) 

Gifted 
8.72*** 
(0.24) 

0.49*** 
(0.01) 

Hearing Impairment 
1.06 

(3.28) 
0.59* 
(0.16) 

Multiple Disabilities 
0.03 

(11.46) 
1.66 

(1.31) 

Orthopedic Impairment 
-11.84** 

(4.35) 
1.26 

(0.48) 

Other Health Impairment 
-12.60*** 

(1.40) 
2.11*** 
(0.19) 

 



K–12 Online Student Profiles  13 

 

 
 

Table 3 cont. 

Statewide Student Performance in SOP Online Courses by Student Traits 

Variable Multi-level Regression Multi-level Logit 

Specific Learning Disabilities 
-9.83*** 
(0.71) 

2.02*** 
(0.09) 

Speech & Language Impairment 
0.63 

(0.34) 
0.97 

(0.04) 

Traumatic Brain Injury 
-7.41 
(5.41) 

1.70 
(0.85) 

Visual Impairment 
-4.06 
(3.58) 

0.86 
(0.39) 

(Reference No Exceptionality Reported)   

Free 
-8.23*** 
(0.44) 

1.92*** 
(0.04) 

Reduced 
-4.15*** 
(0.46) 

1.43*** 
(0.06) 

(Reference Non-FRL)   

Male 
-7.70*** 
(0.46) 

1.86*** 
(0.03) 

(Reference Female)   

American Indian/Alaskan Native 
1.88* 
(0.87) 

0.88* 
(0.05) 

Asian 
10.42*** 

(0.79) 
0.46*** 
(0.04) 

Black 
-3.45*** 
(0.30) 

1.28*** 
(0.03) 

Other Racial Designation 
-1.85 
(1.01) 

1.11 
(0.10) 

(Reference White)   

City: Mid-size 
-7.11*** 
(1.51) 

1.47*** 
(0.07) 

City: Small 
1.40 

(1.49) 
0.86** 
(0.04) 

Suburb: Mid-size 
-1.90 
(2.43) 

1.07 
(0.11) 

Suburb: Small 
4.15*** 
(0.74) 

0.79*** 
(0.05) 

Town: Fringe 
5.90*** 
(0.85) 

0.70*** 
(0.04) 
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Table 3 cont. 

Statewide Student Performance in SOP Online Courses by Student Traits 

Variable Multi-level Regression Multi-level Logit 

Town: Distant 
2.62** 
(0.94) 

0.86*** 
(0.03) 

Town: Remote 
7.82*** 
(1.05) 

0.58*** 
(0.06) 

Rural: Fringe 
-3.18** 
(1.22) 

1.34*** 
(0.06) 

Rural: Distant 
2.74** 
(0.85) 

0.88*** 
(0.03) 

Rural: Remote 
2.86*** 
(0.64) 

0.92 
(0.04) 

Location-Missing 
0.88 

(5.18) 
0.94 

(0.33) 

(Reference Large Suburb)   

Intercept 
70.49*** 

(0.74) 
N/A 

Pseudo R2 0.11 0.12 

N+ 60,008 60,008 

Note. Exponentiated coefficients; standard errors are in parentheses and *p<0.05, **p<0.01, *** p<0.001. 
+Students with no scores reported were dropped from the dataset; this accounted for 2,902 students or 
about 4.61%. Pseudo R2 was calculated as the square of the Pearson correlation coefficients between the 
outcome and the fitted value.  

 

Exceptionality  

The reference group for exceptionality was students labeled without an exceptionality. As 
shown in Table 3, students identified with autism, hearing impairments, multiple disabilities, speech 
and language impairments, traumatic brain injuries, and visual impairments did not have statistically 
different scores than students without exceptionalities. Gifted students scored 8.72 points higher 
than students without exceptionalities. Students identified with emotional disturbance scored 14.41 
points lower, orthopedic impairments scored 11.84 points lower, other health impairments scored 
12.01 points lower, and specific learning disabilities scored 9.83 points lower than students without 
exceptionalities. 

The logit models show similar trends as the multi-level regression models. Students without 
an exceptionality designation were the comparison group. Gifted students were less likely to have an 
average below 70; students with emotional disturbance were 2.6 times more likely to score below 70; 
students with other health impairments were 2.11 times more likely to score below 70; and students 
with specific learning disabilities were 2.02 times more likely to score below 70. These likelihoods 
were all the highest among any of the categories in the dataset, emphasizing the need to consider the 
special needs of students with exceptionalities as they participate in online courses.  
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Free and Reduced Lunch 

Compared to students who receive neither free nor reduced lunch, students who receive 
these benefits fared significantly worse in online courses. Students who were identified as receiving 
free lunch scored an average of 8.23 points lower in their online courses, while students receiving 
reduced lunch scored an average of 4.15 points lower.  

The logit models show that compared to students without free or reduced lunch, students 
with free lunch were 1.92 times more likely to have an average of below 70, and students with 
reduced lunch were 1.43 times more likely to have an average of below 70. 

Males and Females 

Students reported in the dataset as male performed significantly worse than students in the 
dataset reported as female. Male students, on average, scored 7.70 points lower than female students. 
The logit models reveal that male students were 1.86 times more likely to have an average of below 
70 in their online classes than female students. 

Geographic Location 

There were differences in scores based on geographic location. The reference was the large 
suburb category because it contained the most students of all geographic classifications. Compared 
to students from large suburbs, students from small suburbs scored 4.15 points higher, town fringe 
students scored 5.90 points higher, town distant students scored 2.62 points higher, town remote 
students scored 7.82 points higher, rural distant students scored 2.74 points higher, and rural remote 
2.86 points higher. Meanwhile, students from mid-size cities (there were no large cities in the 
dataset) scored 7.11 points lower, and students from rural fringe districts scored 3.18 points lower.  

In the logit models, when compared to large suburban districts, students from mid-size cities 
and rural fringe were more likely to score below a 70 in their online courses. Students from small 
cities, small suburbs, town fringe, town distant, town remote, and rural distant, were all less likely to 
score below 70. 

Race 

There were differences in online course performance among students across racial identities, 
but these results come with limitations, as mentioned in the methods. Compared to white students, 
black students scored 3.45 points lower and Asian students scored more than 10 points higher. In 
the logit models, black students were 1.28 times more likely, and Asian students were less likely than 
white students to score below 70. 

 

Discussion and Conclusion 

The findings reveal three themes related to the issues we raised in the first half of the article. 
First, the findings expand on the academic conversation about the digital divide. Second, if our 
findings persist during widespread online learning during the pandemic, then administrators will 
have to account for the emergent difficulties that relate to all levels of the digital divide. School 
administrators may need to establish learning mitigation strategies even if they adequately provided 
infrastructure and tools for students to learn online. Student access and skills development is not 
enough to assure that online learning unfolds in an equal and equitable manner. Third, as online 
education continues in a post-pandemic world, leaders should consider digital divide issues in future 
online learning placements. 

This knowledge expands on past research because previous studies examine online learning 
compared to face-to-face instruction (Ahn & McEachin, 2017; Woodworth et al., 2015). We analyze 
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students only enrolled in an online setting. The sample is a subset of pre-pandemic students who 
needed or decided to use online learning to access courses they would not have had otherwise or 
courses they used for credit recovery in districts that did not have staffing in the summer. The 
sample of students we analyze is not the same as the sample of students forced to remain at home 
due to the coronavirus pandemic. These differences are an important note of caution, but we hope 
our findings are instructive to the pandemic reality. Additionally, our results come with a limitation 
in that they are not value-added. They may represent similar patterns seen in face-to-face settings. 
School administrators may look at these results and determine that the students struggling in online 
courses are the same students who struggle face-to-face. 

Despite the cautions, our results show patterns related to student learning in the program we 
analyzed. The program achieved its goals because it provided infrastructure and course content 
across geographic boundaries in ways not available before online learning. However, the results 
presented here suggest that despite the spread of access in terms of course content, other levels of 
the digital divide created unequal learning outcomes. 

It is challenging to extrapolate from our dataset what is causing the levels of digital divide. 
These could be a product of unidentified first-level divides such as lack of available resources. They 
could also be undetected differences in skills that are challenging to capture through our data. They 
could also be differences in use patterns leading to differences in grades. Some of our findings give 
us clues that suggest a combination of these issues are at play. 

Third-level divides are a product of multiple forces, including first and second-level divides. 
Van Deursen & Van Dijk (2019) show us that the resources students require are not only 
technological, but also other materials and forms of sustanance. We can not identify precisely who 
has a lack of access to these types of resources, but our data allow us to consider these issues. For 
example, low-income students as measured by free and reduced lunch status, and students from 
minoritized and vulnerable backgrounds, score lower than students with more advantages. While we 
cannot know for sure the reason for this outcome gap without more research, the finding captures a 
concern about material need and its effect on digital divides. 

Our geographic data paint an uneven picture of results as they relate to online programming. 
Some students in particular geographic locations score lower than other students in the dataset, 
including those in rural fringe and mid-size cities. These areas should have fewer connectivity issues, 
which reinforces that the first-level digital divide is complex. To be sure first-level divides are 
mitigated, each leader in their context should closely examine these issues and determine if students 
in their areas have the materials and resources to thrive in an online setting. We know from our 
research that those most disadvantaged economically struggle in online courses. Future research can 
detect if this is directly because of a first-level digital divide. 

In addition to the first level of the digital divide, administrators must account for the second 
and third levels. The second level suggests that differences in skills lead to unequal access to online 
learning (Areepattamannil & Khine, 2017; Ferro et al., 2011; Peña-López, 2010). Scholars have also 
shown discrepancies in skills in relationship to students with exceptionalities (Wu et al., 2014). We 
find evidence to support this past work. This means that leaders should think about if their students 
have the resources to succeed and also if they have the skills and abilities to succeed. Leaders should 
consider modification and intervention strategies to help alleviate the second-level divide, especially 
for students with exceptionalities. 

While there is a third-level digital divide evident through considering student results, there 
also may be clear indicators that how online tools are used may, in some cases, help drive these 
trends. For example, we find a relationship between reported gender identity and online learning 
outcomes. Students across gender backgrounds, on aggregate, likely have similar rates of other traits 
that relate to use patterns. This understanding suggests that the systematic differences in 
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performance based on gender likely also relate to other patterns, such as how online learning is used. 
While IT skills may reflect a gender gap, we believe a better interpretation is that there is probably a 
use and engagement differential pattern in online spaces. 

Overall, these findings add complexity about how online learning relates to digital divides. 
We find evidence to suggest that school leaders need to consider three key features when deciding if 
their students have actual opportunities in online courses: access, skills, and use. Implementing 
material improvements and physical resources is the first step in providing access to online courses. 
The second is to enhance the skills of individuals. The third is to ensure all students are using the 
platform appropriately to learn the course content. School leaders will need to continue to consider 
these issues as the number of online students increases. 

These understandings come at a critical time as America’s students were forced to go online 
due to the coronavirus pandemic. Based on our findings, school leaders will have students they need 
to monitor upon return to face-to-face instruction following the pandemic. Of course, many 
students will be impacted by the pandemic and will likely not receive the type of education they 
would have had if the pandemic had not occurred. However, the pandemic will likely affect some 
students’ academic trajectory more than others. Additionally, administrators will continue to make 
challenging online learning placement decisions after the pandemic in which they weigh students’ 
personal needs with considerations of academically appropriate environments.  

Understanding the profile of students who struggled in the SOP online environment help 
identify appropriate past and future placements. Past research raised concerns about students’ needs 
from diverse backgrounds, especially those identified with an exceptionality (Basham et al., 2015; 
Rice & Carter, 2015). Our findings elevate those concerns because we show students identified with 
certain exceptionalities were most likely to struggle. We also show students who identify as male, 
students from disadvantaged socioeconomic backgrounds, and students from cities or fringe rural 
areas were more likely to struggle than those students without these backgrounds. School leaders 
should consider identifying if they have students with these traits in their settings. They should 
assess if these students experienced challenges in their online environments and then provide them 
with remediation. 

We hope this information will help leaders and policymakers determine the students who 
may need extra support upon return to the classroom, especially in situations where students have 
no choice but to use online learning based on their circumstances. Currently, this includes many 
students due to the current global pandemic. In a post-pandemic world, we expect administrators to 
continue working with students and families to decide if they should enroll in online courses or stay 
in face-to-face courses.  
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