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Abstract

Multilevel structural equation modeling (MSEM) allows researchers to model latent
factor structures at multiple levels simultaneously by decomposing within- and
between-group variation. Yet the extent to which the sampling ratio (i.e., proportion
of cases sampled from each group) influences the results of MSEM models remains
unknown. This article explores how variation in the sampling ratio in MSEM affects
the measurement of Level 2 (L2) latent constructs. Specifically, we investigated
whether the sampling ratio is related to bias and variability in aggregated L2 con-
struct measurement and estimation in the context of doubly latent MSEM models
utilizing a two-step Monte Carlo simulation study. Findings suggest that while lower
sampling ratios were related to increased bias, standard errors, and root mean
square error, the overall size of these errors was negligible, making the doubly latent
model an appealing choice for researchers. An applied example using empirical sur-
vey data is further provided to illustrate the application and interpretation of the
model. We conclude by considering the implications of various sampling ratios on
the design of MSEM studies, with a particular focus on educational research.
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Clustered data structures can present challenges for general linear models that assume

independence of observations (Bentler & Chou, 1987; Raudenbush & Bryk, 2002).

Yet clustered data structures can provide an opportunity for understanding how vari-

ables are related at more than one level. Multilevel modeling (MLM) adjusts for the

violation of the homoskedasticity (or exogeneity) assumption of single-level linear

regression, in which residual variance are no longer independent (Bentler & Chou,

1987; Rabe-Hesketh & Skrondal, 2008; Raudenbush & Bryk, 2002). MLM is fre-

quently used to account for clustered data, where data are often clustered within

higher level units, and thus continues to grow in popularity among applied research-

ers in the social and behavioral sciences (Raudenbush & Bryk, 2002; Snijders &

Bosker, 1999). For instance, students may be clustered within schools, teachers may

be clustered within districts, and individuals may be clustered within neighborhoods.

By partitioning variation at different levels, multilevel modeling allows researchers

to explore relationships among variables at two or more levels, and at the same time

control for violations of independence that can have an adverse impact on the stan-

dard errors of model parameter estimates.

While observed variable multilevel analysis has a long-standing history in the

social sciences, multilevel structural equation modeling (MSEM) continues to make

substantial progress both in theory and application (see Hox & Maas, 2001; Jia &

Konold, 2019; Muthén & Asparouhov, 2011; Preacher et al., 2010). MSEM is useful

in accounting for measurement and/or sampling error, where Level 1 (L1) and Level

2 (L2) substantive latent constructs are estimated from a set of manifest observed

variables. MSEM has spurred a number of theoretical and methodological research

investigations that have focused on the performance of these models in applied set-

tings. Some examples include estimating reliability of the L2 construct (Bliese,

2000), as well as formulating latent substantive constructs on the basis of latent-

manifest variables (Lüdtke et al., 2011; Marsh et al., 2009).

One critical issue that has been underexamined in the MSEM literature is the sam-

pling ratio. The sampling ratio represents the proportion of L1 cases sampled out of

the total number of L1 cases within each L2 group that are potentially available.

Often in educational and social sciences, researchers utilize cluster sampling designs

to obtain a random sample of units from within each cluster, such as randomly sam-

pling students in schools (Konold, 2018). Prior research by Lüdtke et al. (2008) and

Marsh et al. (2009), for example, has explored measurement issues related to the

sampling ratio in multilevel models, with focus on sampling error that arises when

individual responses are aggregated to manifest L2 variables. Findings by Lüdtke

et al. (2008) suggest that the sampling ratio may be related to bias in contextual

effect estimates, in which an aggregated L2 variable has some effect on an outcome

after controlling for L1 characteristics. This work was based on a formative aggrega-

tion process in which L1 units (e.g., individuals) respond to variables as they person-

ally relate to themselves (e.g., I have been bullied this year). By contrast, reflective

L2 constructs are measured through variables in which the referent is at L2 (e.g., rat-

ings obtained by L1 students that are asked about the climate of their L2 school).
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Moreover, they focused on contextual effect estimates, in which aggregated group-

level effects for an outcome are compared with individual-level effects. However, it

has yet to be explored how sampling ratios are related to the measurement of L2

latent constructs themselves.

The overarching goal of this article is to more fully explore the sampling ratio in

terms of how it is related to estimates of L2 factor loadings based on latent aggrega-

tions of L1 data. Toward that end, we build upon prior research by Lüdtke et al.

(2008) who considered the role of the sampling ratio on sampling error in MSEM

models. Specifically, we leverage previous research that has focused on L2 unrelia-

bility in contextual effect estimates due to sampling error, which includes both bias

and efficiency. To address these gaps, we explored the role of the sampling ratio in

MSEM models, by specifically examining the average relative bias and variability in

estimates of L2 factor loadings through Monte Carlo simulations.

We begin by first considering how manifest multilevel models can be extended to

MSEM for purposes of accounting for sampling error, measurement error, or both.

Next, we discuss variability and reliability in MSEM models. We then distinguish

between reflective and formative L2 constructs and consider theoretical and the mod-

eling implications. Finally, we consider the interchangeability assumption and its

relationship with the sampling ratio and the measurement of L2 latent constructs.

After describing the setup of the simulation study, we summarize the various results.

Last, we provide a general discussion of the findings, offering guidance for applied

researchers, while also proposing future directions for additional research.

Multilevel Structural Equation Model Framework

The general MSEM framework proposed by Preacher et al. (2010) integrates confir-

matory factor analysis (CFA)/structural equation modeling (SEM) and MLM into a

single approach. A particular advantage of MSEM is that it decomposes observed

individual ratings into two orthogonal L1 and L2 latent components, allowing for a

more nuanced understanding and modeling of error sources. The terms latent compo-

nents, latent constructs, and latent factors are used interchangeably throughout the

text, and are akin to the concept of a latent trait in the context of item response the-

ory (IRT) models. When evaluating L2 group effects through L1 responses, Lüdtke

et al. (2011) argue that two types of unreliability may be present: measurement error

in the indicators of L1 and L2 constructs, as well as sampling error due to the sam-

pling of L1 individuals within each L2 group that are obtained for the purpose of

responding to the manifest variables. They described a 2 3 2 taxonomy of ML mod-

els that account (or fail to account) for these different types of unreliability that may

be present. We outline these four models below in relation to a two-level structure in

which individuals (e.g., students) nested within groups (e.g., schools) respond to four

manifest variables (e.g., individual students responding to four questions about the

climate of their respective schools). Figure 1 provides a graphic representation of all

four models.
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The doubly manifest model (Model 1) is the most basic model in that it assumes

both measurement and sampling error are zero by failing to explicitly take these

sources of variance into account. Here, the manifest observed variable is decomposed

into two orthogonal L1 and L2 components. At the within-level, a single observed

composite score �Xij is calculated by averaging across the p items for each individual

i in school j:

�X ij = 1
p
�
PP
p = 1

xpij ð1Þ

At the between-level, a single observed composite score �Xj representing the group (or

cluster) mean is calculated by averaging across the p items and the nj students in each

school j:

�X j = 1
P�nj
�
Pnj

i = 1

PP
p = 1

xpij ð2Þ

Model 1 in Figure 1 provides a graphic representation of this hypothetical model.

This model is doubly manifest in that it combines observed variables to create a com-

posite score (i.e., ignores measurement error) and that it uses a manifest aggregation

from L1 to L2 (i.e., ignores sampling error). Moreover, this model ‘‘may be a highly

unreliable measure of the unobserved group average’’ when a small number of L1

individuals are sampled from within each L2 group (Lüdtke et al., 2011, p. 450).

The issue of sampling error arises when individual responses are averaged within

L2 units to compute an observed group-mean that is then used to represent L2 con-

structs (Nagengast & Marsh, 2011). Because L2 reflective traits are typically assessed

through ratings obtained on a sample of L1 informants (e.g., students or teachers),

different random samples may produce different estimates of the L2 trait. The sam-

pling error inherent in a sample estimate like the mean can lead to bias in estimating

substantive associations between L2 school climate constructs and other L2 outcomes

(Shin & Raudenbush, 2010). This bias can become increasingly pronounced as the

absolute size of the L1 units vary across L2 units. Here, greater weight is given to

schools with a larger number of informants when ratings are aggregated across

schools (Wang & Degol, 2016). According to Marsh et al. (2012), sampling error in

L2 constructs obtained through aggregation of L1 response ratings are ‘‘a function of

the average agreement among individuals in the same group and the number of

sampled individuals in each group’’ (p. 111). When there is strong agreement on a

large number of items among informants within the same school, estimates of sam-

pling error will be smaller. Consequently, these L1 responses will provide better esti-

mates of the L2 school trait being measured.

To help control for sampling error, the manifest-measurement/latent-aggregation

model (Model 2) separates the manifest observed variable into two orthogonal latent

components at L1 and L2 (B. O. Muthén, 1989, 1990, 1994) that are then aggregated

to obtain the L1 and L2 substantive trait variables. However, this model is still
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manifest-measurement in that it assumes no measurement error through the aggrega-

tion of the indicators. In this model, each observed indicator variable is measured at

the within level, and may be decomposed as the sum for each group plus an individ-

ual deviation from the group average (Asparouhov & Muthén, 2007a; L. K. Muthén

& Muthén, 2017):

Xij = UWij + UBj ð3Þ

where Xij is the observed response to item x for individual i in school j, UBj is a latent

variable at the between-level representing the true cluster average, and UWij is a latent

variable at the within-level representing individual deviation from the cluster average.

Thus, a single observed composite score �Xij at the within-level is calculated as

�X ij = bW UWij + εij ð4Þ

where bW represents an estimated regression coefficient, and εij represents an indi-

vidual residual error term. Similarly, a single observed composite score �Xj at the

between-level is calculated as

�X j = m + bBUBj + εj ð5Þ

where m represents the overall grand mean of X, bB represents a regression coeffi-

cient, and εj represents a group-specific residual error term. This is sometimes

referred to as a multilevel latent variable covariate approach (Lüdtke et al., 2008;

Marsh et al., 2009). Moreover, this decomposition of an observed L1 indicator into

two uncorrelated L1 and L2 latent variables is the default setting in Mplus when the

variable is not mentioned on the ‘‘within’’ statement (Asparouhov & Muthén,

2007a). Model 2 in Figure 1 provides a graphic representation of this hypothetical

model. The main distinction between this model and the doubly manifest model

regards the assumption of an unknown group mean at L2.

Figure 1 also represents a hypothetical latent-measurement/manifest-aggregation

model (Model 3), with a single factor structure at both the within-level and between-

level. This model can be conceived of as an extension of model 1 in that the L1 and

L2 trait indicators are manifest, but substantive traits are formed as latent variables in

a manner consistent with confirmatory factor analysis. This model accounts for mea-

surement error in the indicators as the substantive trait factors represent shared var-

iance across indicators, and residual sources of variance in the indicators modeled.

The model is latent-measurement in that it takes into account measurement error at

both L1 and L2 by estimating latent substantive factors that are measured by multiple

L1 and L2 indicators. However, it is manifest-aggregation in that the observed group

mean L2 indicators are the result of manifest aggregations from L1 to L2, thus not

taking into account sampling error.

In the latent-measurement/manifest-aggregation model, the L2 latent factor Xj is

based on a manifest aggregation of observed indicators. That is,
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Xj =
1

nj

�
Xnj

i = 1

xpij

Letting Xpij represent a single observed score on item p for person i in group j, the

within-level model can be expressed as

Xpij � Xj = mpx + lpW � Uxij + Epxij ð6Þ

where mpx represents the overall grand mean of item p; lpW represents the L1 factor

loadings; and Uxij and Epxij represent the unobserved true score and error score at L1,

respectively. Similarly, the between-level model is

Xj = mpx + lpB � Uxj + Epxj ð7Þ

where lpB represents the L2 factor loadings, while Uxj and Epxj represent the unob-

served true score and error score at L2, respectively.

Model 4 in Figure 1 represents a hypothetical doubly latent model. This model

builds on the latent-measurement/manifest-aggregation model (Model 3) by not only

controlling for measurement error at L1 and L2 but also controlling for L2 sampling

error through the latent L2 indicator aggregation process described for Model 2. In

classical test theory, an individual’s observed score X is equal to the sum of the

(unobserved) true score UX plus the error score EX (Lord & Novick, 1968).

Following Marsh et al. (2009) and Muthén (1990), this can be extended for multile-

vel data, where, at the within-level, a single observed score on item p for person i in

group j can be decomposed as

Xpij = nj + lpW � Uxij + Epxij ð8Þ

while the between-level model is

nj = mpx + lpB � Uxj + Epxj ð9Þ

Equations 8 and 9 may be combined into a single model:

Xpij = mpx + lpW � Uxij + lpB � Uxj + Epxij + Epxj ð10Þ

In contrast to Model 3, the L2 indicator means are no longer manifest observed aggre-

gations from L1, but rather are considered latent indicator variables with random

intercepts. Thus, each observed indicator in the doubly latent approach is decomposed

as is shown in Equations 8 and 9. Identification of this model may be achieved in

multiple ways, depending on the central research question. For instance, to estimate

the latent factor variance at both levels, the first factor loading at both levels may be

fixed to one. Conversely, estimation of all factor loadings at both levels may be

achieved by constraining the factor variance at both levels.

All four models can be understood in relation to their corrections for unreliability.

Model 1 implicitly assumes there is no measurement error and no sampling error and
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is thus considered to be a no correction model. Models 2 and 3 both represent partial

correction models, where Model 2 corrects for sampling error in the aggregation of

an L1 construct to form an L2 construct, and Model 3 corrects for measurement error

by using multiple observed indicators to estimate L1 and L2 constructs. The doubly

latent model can be considered a full correction model, in that it simultaneously cor-

rects for both measurement error and sampling error.

ICC and Reliability

A common measure to conceptualize variation in multilevel models is the intraclass

correlation coefficient (ICC). Depending on the MSEM model, there may be both a

latent factor ICC (ICCL) and an observed variable ICC (ICCO). In multilevel models

without latent constructs, the ICCO represents the proportion of an observed vari-

able’s variance that can be attributed to the between-group differences (Raudenbush

& Bryk, 2002). More specifically, ICCO represents the proportion of total observed

score variance due to differences between groups, and can be defined as

ICCO =
t2

t2 + s2
ð11Þ

where t2 is the variance between groups and s2 is the variance within groups. This

has been referred to as ICC(1) in organizational psychology and other disciplines

(Bliese, 2000). The ICCO is directly related to the reliability of the observed aggre-

gated L2 construct hBj (Bliese, 2000):

Reliability hBj

� �
=

n � ICCO

1 + n� 1ð Þ � ICCO

ð12Þ

where n represents the average number of L1 units sampled from group j. The relia-

bility of the aggregated L2 construct is sometimes referred to as ICC(2) in organiza-

tional psychological literature (Bliese, 2000). Thus, it can be seen that as the ICCO

increases, holding constant group size, the reliability of the aggregated L2 construct

increases. Similarly, holding constant the ICCO, as group size increases, so too does

reliability.

In MSEM models with latent factors, the ICCO also takes into account factor

loadings, factor variance, and residual variance at both levels. Let lB represent the

between-level factor loading, cB represent the between-level factor variance, and uB

represent the between-level residual variance. Similarly, let lW represent the within-

level factor loading, cW represent the within-level factor variance, and uW represent

the within-level residual variance. The ICCO may be computed as follows (Depaoli

& Clifton, 2015; Hsu et al., 2016):

ICCO =
lB

2 � cB + uB

� �
lB

2 � cB + uB

� �
+ lW

2 � cW + uW

� � ð13Þ
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Clearly, the ICCO may have important implications regarding the measurement of

aggregated L2 constructs, where larger ICCO would likely yield more stable mea-

surement of L2 latent constructs. For MSEM models with latent factors, the ICCO is

directly affected by the factor loadings, in which stronger factor loadings yield larger

within-group correlations, all else equal.

When an identical model structure is assumed at both the within and between lev-

els, researchers may further calculate the ICCL:

ICCL =
cB

cB + cW

ð14Þ

where cB represents the variance of the of the between-level latent factor and cW rep-

resents the variance of the within-level factor (Hsu et al., 2016; Kim et al., 2012).

A second measurement issue concerns sampling errors that arise when averaging

individual responses to form L2 constructs. Equations 8 and 9 provide the multilevel

extension of classical test theory, in which an observed indicator at L1 is decomposed

into two uncorrelated L1 and L2 latent variables, as well as separate error scores at

each level. Consequently, reliability at L2 is defined by two kinds of error: (1) mea-

surement error of Epxj that is due to unreliability of the observed indicator Xpij and (2)

sampling error due to sampling a finite sample from a finite or infinite population

(Lüdtke et al., 2008; Lüdtke et al., 2011). Typically, both L1 and L2 constructs are

assessed by obtaining data from a sample of individuals that reside within a L2 popu-

lation. As a result, different samples of individuals within L2 groups may produce

different estimates of the group-level trait (Jia & Konold, 2019; Nagengast & Marsh,

2011). Moreover, as noted by Lüdtke et al. (2011, p. 446), ‘‘If only a small number of

L1 individuals are sampled from each L2 group, the observed group average may be

a highly unreliable measure of the unobserved true group average Uxj.’’ This can

be thought of as unreliability in a sample estimate, and may ultimately lead to bias in

estimates between L2 constructs and other L2 outcomes (Shin & Raudenbush, 2010).

Construct Meaning and Implications

Group-level constructs are typically estimated through the collection of information

on individuals within each group. In organizational psychology, for example, each

individual’s rating of job satisfaction may be combined to form an overall group aver-

age of job satisfaction within a company. Early work by Cronbach (1976) highlighted

potential problems and noteworthy methodological issues that may arise when obtain-

ing group-level estimates through the aggregation of individual observed responses.

One issue relates to the referent of L1 ratings, and the nature of the construct under

study. Prior work by Lüdtke et al. (2008) and Stapleton et al. (2016), among others,

distinguishes between formative and reflective L2 constructs, sometimes referred to

in the literature as configural and shared constructs, respectively. The main distinc-

tion between the two constructs lies in the reference group, where the individual is

the referent in the aggregation process for formative constructs, while the group itself
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is the referent in the aggregation process for reflective constructs. Moreover, prior

research has established various recommendations regarding appropriate modeling of

these differing constructs (Jak, 2019; Kim et al., 2016; Stapleton et al., 2016). These

considerations are described in detail below.

Reflective Constructs. Consider a process in which student ratings of a common orga-

nizational trait like school safety are aggregated to form an overall school-level

safety construct. This represents a reflective L2 aggregation process because each

student is providing an estimate of a common trait. Observed indicators of reflective

constructs are considered isomorphic across units within a given cluster, where

responses to items are seen as interchangeable (or exchangeable), an important con-

cept in multilevel modeling and organizational theory (Bliese, 2000; Bliese et al.,

2007; Stapleton et al., 2016). Individuals within an L2 group may be considered

interchangeable if their observed indicator responses all have the same relationship

to the unobserved group mean Uxj (Croon & van Veldhoven, 2007; Lüdtke et al.,

2008). Many authors have argued that interchangeability of L1 units within an L2

group holds for the measurement of reflective L2 constructs, in which there is an

expectation that the individual level and aggregated variables both reflect the same

construct (Croon & van Veldhoven, 2007; Lüdtke et al., 2008; Lüdtke et al., 2011;

Marsh et al., 2009). Reflective L2 constructs are assumed to give rise to ratings of

L1 observed indicators, analogous with response processes commonly assumed by

typical latent variable modeling approaches, in which responses to multiple indica-

tors are used to infer a latent construct. More simply, the responses to L1 indicators

are assumed to be influenced by the L2 construct (i.e., causal arrows in the structural

model go from the L2 construct to the L1 indicators). Thus, individuals are assumed

to have the same relationship to the unobserved group mean. For such scenarios, the

ICCO, an indicator of variation within an L2 group, is used to estimate L2 sampling

error due to a finite sampling of individuals.

Furthermore, for reflective L2 constructs, the within-component is often not of

interest, as there should in theory be no variability at L1 for a reflective construct.

For reflective constructs, Stapleton et al. (2016) have proposed fitting a saturated

model at the within-level for reflective constructs. However, Jak (2019) argues that

the same result could be achieved by fitting a two-level factor model with factor

loadings constrained to be equal across both levels, in which the variance of the L1

factor is assumed to be zero. Jak (2019) further demonstrates the two-level factor

model with cross-level invariance to be less parameterized than the saturated model.

Reflective aggregations of L1 constructs may conflate multiple sources of var-

iance, including variability associated with the measurement of the L2 construct, as

well as residual variance unique to each individual (Marsh et al., 2012). Consider the

example in which student ratings of school safety are aggregated to form an L2 over-

all school safety construct. It is likely that student ratings of school safety are influ-

enced by both the student’s personal experiences of safety as well as their shared

experiences and the perceptions generally held among his or her peers. Failing to
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disaggregate residual variance components in aggregated L2 constructs has been

shown to introduce bias in estimates of L2 effects (Lüdtke et al., 2008; Morin et al.,

2014).

Formative Constructs. Next, consider a process in which each student’s grade point

average (GPA) is aggregated to form an overall school-level mean grade point aver-

age. This represents a formative L2 aggregation process because the measurement

pertains to the student and there is no reason to believe all students should have the

same GPA. In contrast to reflective L2 constructs, individuals within an L2 group

are not considered to be interchangeable for formative L2 constructs. Rather, they

are likely to have different (unique) L1 true scores because they are the referent of

their own measurements, as the referent is the individual. More simply, the responses

to L1 indicators are assumed to be influenced by the L1 construct (i.e., causal arrows

in the structural model go from the L1 construct to the L1 indicators). As a result,

there is no expectation that L1 variables and aggregated L2 variables represent the

same construct. In contrast to the measurement of reflective constructs, when dealing

with formative constructs, the latent factors at both L1 and L2 are often of substan-

tive interest.

To appropriately model formative L2 constructs, researchers have suggested con-

straining factor loadings to be equal across levels, as the construct ‘‘reflects the clus-

ter aggregate of the individual construct at Level 1’’ (Stapleton et al., 2016, p. 496).

Here, cross-level invariance is necessary to establish construct validity of formative

L2 constructs (Kim et al., 2016). Importantly, by imposing this cross-level invariance

constraint on factor loadings, the covariance structure at L2 is identified, so long as

the factor variance at L1 is constrained. As a result, other parameters may differ

across levels, while the factor variance at L2 remains estimable (Jak, 2019).

The Role of the Sampling Ratio

Assumptions regarding the interchangeability of L1 individuals may have important

implications regarding the reliability of L2 construct estimates. Examining Equation

12, it can be seen that reliability in the L2 construct estimates does not account for

variation at L1. Instead, it is assumed that L2 unreliability due to sampling error is

based on interchangeable individuals. As average group size (n) increases, all things

equal, sampling distributions and standard errors decrease, while reliability increases

(Jia & Konold, 2019). However, the relative size of the sample of L1 individuals

from a population of potential L1 individuals within an L2 group can play a role

when estimating aggregated L2 constructs. Prior simulation work by Lüdtke et al.

(2008) examined the role of the sampling ratio in MSEM models with aggregated

formative L2 constructs. The sampling ratio simply represents the proportion of

sampled individuals from within a group:

SRj =
nj

Nj

ð15Þ
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where the sampling ratio for group j (SRj) is equal to the number of sampled L1 indi-

viduals from within group j (nj), divided by the total number of L1 individuals in

group j (Nj). For example, sampling 5 students from a class with a total of 25 stu-

dents would represent a sampling ratio of 20%. Lüdtke et al. (2008) explored both

relative percentage bias and root mean square error (RMSE) in contextual effect esti-

mates for doubly manifest and manifest-measurement/latent-aggregation model

(Models 1 and 2 in Figure 1). Results demonstrated that when both the total number

of L1 individuals in a group and the sampling ratio are small, both approaches per-

formed poorly. However, when the sampling ratio is low and the sample size is high,

the manifest-measurement/latent-aggregation approach outperformed the doubly

manifest approach with regards to bias and RMSE. Moreover, with a low sampling

ratio (e.g., 5%) and a large number of total L1 individuals per group (e.g., n = 500),

the finite population sampling model approaches that of an infinite sampling model.

Some (e.g., Marsh et al., 2012) have argued that as the sampling ratio approaches

1.0, it is reasonable to assume no sampling error in the measurement of a L2 con-

struct. Others (e.g., Shin & Raudenbush, 2010) have argued that if each cluster is

assumed to be sampled from a larger population of clusters, it is appropriate to

account for sampling error by treating the unobserved group means as a latent vari-

able measured with some amount of precision (Asparouhov & Muthén, 2007a).

However, the ability to control for sampling error, and thus improve reliability in L2

construct estimates, depends in part on the sampling ratio. As a result, different

MSEM models may be better equipped than others to control for the sampling error,

leading to more unbiased estimates.

Overall, questions remain about the role of the sampling ratio in MSEM. Much of

the previous work on the sampling ratio has considered its impacts on (a) contextual

effect estimates in the context of (b) measurement Models 1 and 2 in Figure 1 (i.e.,

doubly manifest and manifest-measurement/latent-aggregation models). However,

the effects of the sampling ratio on estimates of L2 factor loadings remains unknown,

specifically within a doubly latent MSEM modeling approach (Model 4 in Figure 1).

The current study was designed to investigate whether the sampling ratio is related

to bias and variability in aggregated formative L2 construct measurement and esti-

mation in the context of doubly latent MSEM models.

Methods

Overview of the Analyses

We used Monte Carlo simulation to investigate bias and variability in estimates of

factor loadings for aggregated formative L2 constructs across differing sampling

ratios. It is assumed that the number of L1 units within each L2 group is a finite num-

ber (e.g., 100), and that each cluster is of equal size. A two-step procedure was used

to generate populations with finite L1 sample sizes and a fixed number of L2 units.

In the first step, clusters were generated to establish a population model with a finite

sample size within each L2 group (e.g., J = 250 clusters with Nj = 100 individuals
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within each L2 cluster). In Step 2, a sample of L1 units were drawn from each cluster

according to a specified sampling ratio (e.g., 20%). This resulting sample represented

the analytic sample to which a model was fit and estimates were produced. This two-

step procedure was replicated 1,000 times for each condition described below.

Data Generation and Analysis

Mplus version 8.4 (L. K. Muthén & Muthén, 2017) was used to generate the data

corresponding to the model presented in Equations 8 and 9, in which a single L1

latent construct is measured by four observed indicators at the within-level. At the

between-level, a single L2 latent construct is measured by four latent aggregated

group means corresponding to each indicator at L1. A graphic representation of this

model is provided by Model 4 in Figure 1. Consistent with Jak (2019) and Stapleton

et al. (2016), factor loadings were constrained to be equal across levels. For each

replication, the associated population dataset was saved. Next, for each population

dataset, a random sample of L1 units were drawn from each cluster according to a

specified sampling ratio using R version 4.0.0 (R Core Team, 2020) and saved as an

analytic dataset. Finally, each analytic sample dataset was then analyzed using an

external Monte Carlo simulation study in Mplus. For identification purposes, the var-

iance of the L1 factor was constrained (to 1) for the model fit to the analytic sample

data. This resulted in a total of 17 parameters estimated: four factor loadings (cross-

level invariance), four residual variances at L1, four intercepts at L2, one factor var-

iance at L2, and four residual variances at L2. The MplusAutomation package

(Hallquist & Wiley, 2018) in R was used extensively to facilitate conducting the

simulations in Mplus. Annotated R code used for data generation and analysis is

freely available at https://github.com/jmk7cj/Sampling-Ratio-for-MSEM. An exam-

ple Mplus input file used to generate population data is also provided, along with an

example Mplus input file used to analyze the analytic sample datasets.

Simulation Conditions

The following conditions were manipulated: the number of L2 groups (J = 50, 100,

500), the total number of L1 units per L2 cluster (nT = 20, 100, 1,000), the ICCO of

the observed L1 indicators (ICCO= 0.05, 0.25), the standardized factor loadings (l =

0.5 and 0.8), and the sampling ratio (SR = 5%, 20%, 50%, 80%). Thus, for example,

when the total number of L1 units per L2 cluster was 20 and the sampling ratio was

50%, the number of L1 units sampled from each cluster was 10. This resulted in a

total of 3 3 3 3 2 3 2 3 4 = 144 unique simulation cells. A total of 1,000 datasets

were generated and analyzed for each condition.

Values for the conditions considered were informed both by prior MSEM simula-

tion research and previous applied education research. Previous research by Hox and

Maas (2001) and Maas and Hox (2005) found cluster sizes less than 50 may lead to

biased estimates in multilevel structural equation models. Hox and Maas (2001)
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argued that more than 100 L2 groups may be needed for unbiased estimates of a

between-level model with low ICCO, as specified below. Similarly, prior MSEM

simulation work (Depaoli & Clifton, 2015; Lüdtke et al., 2008) utilized L2 group

sizes of 50, 100, and 500. Often in applied educational work, researchers may deal

with sample sizes much smaller than 100. As such, we decided to explore a low con-

dition of 50 L2 groups, in addition to 100 and 500 L2 groups.

The total number of L1 observations per L2 cluster were also informed by simula-

tion work from Lüdtke et al. (2008), who considered 25, 100, and 500 L1 observa-

tions per L2 cluster. We wanted to extend the larger end of this condition to 1,000 to

more closely replicate group sizes that may be encountered in secondary school edu-

cational research (e.g., high schools with 1,000 or more students). Regarding ICCO

values, prior educational research and meta-analyses have reported ICCO values typi-

cally ranging from 0.05 to 0.25 (Bloom et al., 2007; Hedges & Hedberg, 2007;

Murray & Short, 1995). Similarly, Lüdtke et al. (2008) considered values from .05 to

.30 for observed variable ICCO. Therefore, we chose two different ICCO: 0.05 and

0.25 within these ranges.

Values for the standardized factor loadings were informed by prior MSEM simu-

lation literature by Hox and Maas (2001), Kim et al. (2012), Lüdtke et al. (2008),

and Lüdtke et al. (2011), where values ranged from 0.3 to 0.9. In practice, standar-

dized factor loadings may be even less for MSEM models examining educational

data (Jia & Konold, 2019; Morin et al., 2014). Some (e.g., Kline, 2011; Sun et al.,

2011) consider standardized loadings � 0.40 as necessary for establishing the valid-

ity and reliability of a single indicator. As a result, we chose two values, where stan-

dardized factor loadings of 0.5 and 0.8 represent low and high values. These values

can be interpreted as reliability of a single indicator, where a value of 0.8 indicates

that 0.823 100 = 64% of the observed variance can be explained by the latent factor

(Lüdtke et al., 2011). Moreover, it was assumed that the factor loadings were invar-

iant across L1 and L2 (see the appendix [available online] for calculations of standar-

dized factor loadings for generating data).

Last, we chose four values of the sampling ratio: 5%, 20%, 50%, and 80%. In the

only other simulation study examining sampling ratios in MSEM models, Lüdtke et al.

(2008) considered sampling ratios of .2, .5, .8, and 1.0. We were interested in extending

this to scenarios in which the sampling ratio is even less than 20%. For example, con-

sider a high school with 1,000 students (as described above), a scenario often faced by

educational researchers. A sampling ratio of 5% would result in a sample of 50 stu-

dents. Many applied educational examples deal with less than 50 units per L2 group

sampled (Marsh et al., 2012). As a result, we believe a lower sampling ratio is impor-

tant in understanding effects when dealing with L2 groups of larger sizes.

Evaluation Criteria

All models were estimated in Mplus using maximum likelihood parameter estimation

with robust standard errors (MLR; L. K. Muthén & Muthén, 2017). We are most
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interested in model estimates of the four standardized factor loadings. We focus on

factor loadings for three important reasons. First, as demonstrated in Equation 13,

standardized factor loadings are directly related to the ICCO or within-group correla-

tion, a measure often of great interest to researchers. Second, factor loadings are also

used to calculate the reliability of an indicator, ultimately impacting level-specific

reliability (Geldhof et al., 2014). Thus, any errors in estimated factor loadings may

have implications for subsequent measures. Third, factor loadings themselves are

often interpreted as measures of construct validity that convey the degree to which a

latent variable influences responses to items that are presumed to be indicators of the

latent construct. To assess the performance of the model, we focused on three criteria

for model evaluation: (1) the relative percentage bias of the parameter estimate, (2)

the accuracy of the standard error, and (3) the RMSE. The relative percentage bias

indicates the accuracy of the factor loading estimate and is calculated as (Hoogland

& Boomsma, 1998; Lüdtke et al., 2008):

B b̂
� �

= 100 �
b�b � b
� �

b
ð16Þ

where B b̂
� �

is the relative percentage bias of the L2 factor loading estimate b�b, as

compared to the known population factor loading b. Following B. O. Muthén (2005)

and L. K. Muthén and Muthén (2002), we consider relative bias values less than or

equal to 65% as within an acceptable threshold. To assess the accuracy of the stan-

dard error of the standardized factor loading estimates, we examined parameter cov-

erage (i.e., the proportion of replications in which the 95% confidence interval

contained the true population parameter). Finally, the overall accuracy of the esti-

mated factor loadings was assessed using the RMSE, where RMSE values are equal

to the square root of the variance of the estimates across replications plus the square

of the bias.

To better understand which simulation conditions contributed to bias, parameter

coverage, and RMSE, we conducted four-way factorial analysis of variance

(ANOVA) tests, in which bias, parameter coverage, and RMSE were dependent vari-

ables, and each of the manipulated simulation conditions (L2 sample size, total L1

units per L2 cluster, ICCO, standardized factor loading, and sampling ratio) were fac-

tors, as well as all interactions among the factors. To describe the significance of the

conditions, omega-squared (v2) effect sizes were calculated for all main effects, as

well as two-, three-, and four-way interactions. Thus, the effect sizes can be inter-

preted as the proportion of variance in the outcome that can be explained by a set of

factors, controlling for the effects of other independent variables or factors. We focus

on omega-squared values greater than or equal to 0.01 as representing potentially

meaningful results, in which small (v2 = .0099), medium (v2 = .0588), and large (v2

= .1379) effect size values correspond to Cohen’s (1988) rules of thumb for d = .2,

.5, and .8, respectively (Albers & Lakens, 2018).
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Results

Our three criteria for model evaluation (i.e., bias, parameter coverage, and RMSE)

were calculated for each factor loading, then averaged across all four loadings.

Estimates for the average relative percentage bias, average 95% parameter coverage,

and average RMSE for the four factor loadings are provided in Tables 1 and 2.

Several general findings emerged across all conditions. In general, the results

appeared to improve (i.e., less bias, greater parameter coverage, and smaller RMSE)

as either the number of clusters increased, the number of L1 units within each L2

cluster increased, or the sampling ratio increased. This suggests better measurement

of the L2 latent factor as either the L1 or L2 sample size increase, or the sampling

ratio increase. All models with the condition of N = 20 total L1 units within each L2

cluster and SR = .05 had convergence rates less than 50%. In these scenarios, only a

single unit within each L2 cluster was sampled (i.e., 0.05 * 20), representing a sin-

gleton cluster. However, every other condition achieved 100% convergence across

the 1,000 replications. A series of factorial ANOVA tests was used to further under-

stand how the simulation facet conditions (i.e., L2 sample size, total L1 units per L2

cluster, ICCO, standardized factor loading, and sampling ratio) were related to model

estimates (see Table 3). Note that those conditions with convergence rates less than

50% were excluded from the ANOVA tests.

Bias

The relationship between certain facets and the relative percentage bias in parameter

estimates are shown in Table 3. Main effect tests revealed that variations between L2

sample size, L1 sample size, and the sampling ratio resulted in meaningful (v2�
0.01) amounts of variance in the bias of factor loading estimates, with the sampling

ratio representing the largest effect (v2 = 0.094). Additionally, the four-way interac-

tion of L2 Sample Size 3 L1 Sample Size 3ICCO3 Sampling Ratio was strongly

related to variability in bias of factor loading estimates (v2 = 0.047). Although these

main effect findings reveal general patterns of results for some of the design facets,

many of the interactions among facets were also meaningful. In all instances, mean-

ingful four-way interactions engulfed lower-level interactions and main effects, indi-

cating that many of the design facets operated in concert to produce unpalatable

results.

To aid in interpretation of these findings, Figure 2 depicts the relationship between

the relative percentage bias in estimates of the standardized factor loadings and the

sampling ratio, with varying combinations of facets. Examining this figure, it can be

seen that the largest values of bias occur for scenarios with a sampling ratio of 0.05.

In fact, this sampling ratio of 5% is not plotted in the top panel, in which the total

number of L1 units within each L2 cluster is 20, as these models failed to converge.

However, it can be seen that bias decreases as the number of clusters increases, the

number of L1 units within each L2 cluster increases, and the sampling ratio increases.
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While there appears to be considerable variability in bias across the simulation

conditions, it is equally important to consider the size of that variability. Overall, val-

ues of relative percentage bias were well within the acceptable range of 65%, with

no values outside of 61% (M = 0.03, SD = 0.14). This finding indicates virtually no

bias in estimated factor loadings across the conditions, demonstrating a desirable

property of maximum likelihood estimation of doubly latent MSEM models.

Table 1. Average Relative Bias, Parameter Coverage, and RMSE (Root Mean Square Error)
for Standardized Loading = 0.5.

ICCO = :05

N = 20 Total L1 units
within each L2 cluster

N = 100 Total L1 units
within each L2 cluster

N = 1,000 Total L1 units
within each L2 cluster

Bias Coverage RMSE Bias Coverage RMSE Bias Coverage RMSE

J = 50
SR = .05 — — — 20.545 0.947 0.179 20.060 0.944 0.055
SR = .20 20.675 0.950 0.199 0.228 0.936 0.088 0.003 0.940 0.028
SR = .50 0.083 0.945 0.124 0.115 0.940 0.055 0.005 0.945 0.017
SR = .80 20.130 0.936 0.100 0.013 0.940 0.044 0.005 0.939 0.014

J = 100
SR = .05 — — — 20.128 0.950 0.124 0.018 0.943 0.038
SR = .20 20.280 0.950 0.142 0.035 0.948 0.061 0.010 0.945 0.019
SR = .50 0.173 0.939 0.088 20.035 0.949 0.038 0.005 0.946 0.011
SR = .80 0.030 0.940 0.070 20.013 0.944 0.030 0.003 0.947 0.010

J = 500
SR = .05 — — — 0.028 0.950 0.055 0.000 0.947 0.017
SR = .20 20.155 0.951 0.063 20.045 0.952 0.027 0.008 0.949 0.010
SR = .50 0.000 0.953 0.038 0.025 0.950 0.017 0.000 0.947 0.000
SR = .80 20.025 0.954 0.030 0.003 0.951 0.014 0.003 0.951 0.000

ICCO = :25
J = 50

SR = .05 — — — 20.173 0.946 0.182 20.098 0.943 0.054
SR = .20 0.330 0.942 0.204 0.058 0.937 0.087 0.005 0.946 0.027
SR = .50 20.188 0.942 0.124 0.028 0.938 0.055 0.038 0.944 0.017
SR = .80 0.040 0.928 0.102 0.110 0.944 0.043 0.000 0.945 0.014

J = 100
SR = .05 — — — 0.073 0.949 0.127 20.008 0.949 0.037
SR = .20 20.070 0.941 0.145 0.023 0.944 0.061 0.040 0.948 0.019
SR = .50 0.218 0.939 0.088 20.025 0.954 0.038 0.005 0.947 0.011
SR = .80 0.068 0.936 0.071 20.058 0.942 0.030 20.010 0.945 0.010

J = 500
SR = .05 — — — 20.170 0.949 0.056 0.008 0.954 0.017
SR = .20 20.065 0.954 0.063 0.008 0.951 0.027 20.010 0.955 0.010
SR = .50 20.035 0.954 0.038 20.008 0.950 0.017 20.010 0.947 0.000
SR = .80 20.038 0.951 0.030 0.008 0.948 0.014 0.000 0.947 0.000

Note. The conditions with SR = .05 and N = 20 total L1 units within each L2 cluster had convergence

rates less than 50%.
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Parameter Coverage

Next, we considered the proportion of replications in which the 95% confidence inter-

val contained the true population parameter, or parameter coverage. Similar to the

results for bias, the main effect of the sampling ratio was related to coverage (v2 =

0.028), while the number of clusters sampled was also strongly related, explaining

Table 2. Average Relative Bias, Parameter Coverage, and RMSE (Root Mean Square Error)
for Standardized Loading = 0.8.

ICCO = :05

N = 20 Total L1 units
within each L2 cluster

N = 100 Total L1 units
within each L2 cluster

N = 1,000 Total L1 units
within each L2 cluster

Bias Coverage RMSE Bias Coverage RMSE Bias Coverage RMSE

J = 50
SR = .05 — — — 20.623 0.942 0.072 20.033 0.944 0.022
SR = .20 20.760 0.946 0.081 0.015 0.945 0.034 20.013 0.939 0.010
SR = .50 20.188 0.931 0.052 20.025 0.939 0.022 0.003 0.942 0.000
SR = .80 0.015 0.939 0.041 0.005 0.941 0.017 0.003 0.945 0.000

J = 100
SR = .05 — — — 20.035 0.950 0.051 0.018 0.948 0.014
SR = .20 20.153 0.950 0.057 20.023 0.948 0.025 0.013 0.945 0.010
SR = .50 0.133 0.944 0.036 0.008 0.944 0.015 0.005 0.947 0.000
SR = .80 20.028 0.943 0.028 20.018 0.948 0.011 0.005 0.944 0.000

J = 500
SR = .05 — — — 20.063 0.947 0.023 20.018 0.955 0.000
SR = .20 20.025 0.945 0.027 0.020 0.954 0.010 0.003 0.952 0.000
SR = .50 20.073 0.943 0.017 20.015 0.953 0.000 0.003 0.950 0.000
SR = .80 20.033 0.943 0.014 0.000 0.952 0.000 0.000 0.944 0.000

ICCO = :25
J = 50

SR = .05 — — — 20.395 0.937 0.074 20.048 0.938 0.022
SR = .20 20.298 0.937 0.085 20.165 0.938 0.036 20.003 0.939 0.010
SR = .50 20.015 0.934 0.052 20.028 0.937 0.022 20.025 0.939 0.000
SR = .80 0.033 0.934 0.041 0.020 0.942 0.017 0.005 0.943 0.000

J = 100
SR = .05 — — — 20.125 0.945 0.052 0.033 0.940 0.016
SR = .20 20.108 0.942 0.060 0.010 0.949 0.025 0.010 0.952 0.010
SR = .50 20.005 0.945 0.036 20.028 0.947 0.014 0.005 0.939 0.000
SR = .80 20.020 0.939 0.028 20.033 0.947 0.011 20.005 0.944 0.000

J = 500
SR = .05 — — — 20.005 0.952 0.022 20.015 0.950 0.003
SR = .20 0.050 0.946 0.027 20.018 0.951 0.010 20.008 0.954 0.000
SR = .50 20.075 0.949 0.017 20.005 0.946 0.005 20.005 0.945 0.000
SR = .80 20.038 0.945 0.014 0.000 0.955 0.000 20.003 0.954 0.000

Note. The conditions with SR = .05 and N = 20 total L1 units within each L2 cluster had convergence

rates less than 50%.
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approximately 48% of the variability in parameter coverage (v2 = 0.480). The largest

effect of three-way interactions occurred for L2 Sample Size 3 ICCO 3 Sampling

Ratio (v2 = 0.041), while the largest four-way interaction effect was for the interaction

of L2 Sample Size 3 L1 Sample Size 3 Std. Loading 3 Sampling Ratio (v2 = 0.027).

Figure 3 is provided to help interpret these findings, by depicting the relationship

between the parameter coverage of estimates of the standardized factor loadings and

Table 3. Omega-Squared Values for Analysis of Variance Effects of Simulation Conditions.

Bias Coverage RMSE

Main effects
L2 Sample size 0.042 0.480 0.155
L1 Sample size 0.026 0.046 0.278
ICCO 0.008 0.005 0.000
Std. loading 0.008 0.007 0.158
Sampling ratio 0.094 0.028 0.161

2-Way interactions
L2 Sample size 3 L1 Sample size 0.011 0.018 0.044
L2 Sample size 3ICCO 0.012 0.008 0.000
L2 Sample size 3 Std. loading 0.021 0.010 0.000
L2 Sample size 3 Sampling ratio 0.010 0.006 0.027
L1 Sample size 3ICCO 0.000 0.009 0.040
L1 Sample size 3 Std. loading 20.001 0.002 0.000
L1 Sample size 3 Sampling ratio 0.094 0.002 0.027
ICCO3 Std. loading 0.107 0.020 0.051
ICCO3 Sampling ratio 0.018 20.002 0.000
Std. loading 3 Sampling ratio 20.006 0.019 0.025

3-Way interactions
L2 Sample size 3 L1 Sample size 3 ICCO 0.015 0.009 0.000
L2 Sample size 3 L1 Sample size 3 Std. loading 20.001 0.037 0.008
L2 Sample size 3 L1 Sample size 3 Sampling ratio 20.003 0.001 0.000
L2 Sample size 3ICCO3 Std. loading 20.004 0.010 0.000
L2 Sample size 3ICCO3 Sampling ratio 0.063 0.041 0.009
L2 Sample size 3 Std. loading 3 Sampling ratio 0.004 0.003 0.000
L1 Sample size 3ICCO3 Std. loading 0.053 0.030 0.000
L1 Sample size 3ICCO3 Sampling ratio 0.007 0.004 0.004
L1 Sample size 3 Std. loading 3 Sampling ratio 20.013 0.005 0.010
ICCO3 Std. loading 3 Sampling ratio 20.002 0.007 0.000

4-Way interactions
L2 Sample size 3 L1 Sample size 3ICCO3 Std. loading 20.010 20.002 0.000
L2 Sample size 3 L1 Sample size 3ICCO3 Sampling ratio 0.047 0.001 0.000
L2 Sample size 3 L1 Sample size 3 Std. loading 3
Sampling ratio

20.003 0.027 0.004

L2 Sample size 3ICCO3 Std. loading 3 Sampling ratio 20.001 0.015 0.000
L1 Sample size 3ICCO3 Std. loading 3 Sampling ratio 20.004 0.005 0.000

Note. RMSE = root mean square error. Omega-squared effect sizes of small (v2 . .0099), medium

(v2 . .0588), and large (v2 . .1379). Values in bold represent omega-squared values greater than or

equal to 0.01, interpreted here as representing potentially meaningful results.
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the sampling ratio, with varying combinations of facets. Exploring this figure, it can

be seen that parameter coverage improves toward the correct 0.95 level as the num-

ber of L2 clusters increases. Similarly, as the sampling ratio increases, parameter

coverage tends to increase as well. Following the findings from Figure 3, scenarios

in which the total number of L1 units within each L2 cluster is 20 and the sampling

ratio is 0.05 are not provided in the top panel, as these models failed to converge.

Again, it is necessary to simultaneously consider the relative size of the variability

of parameter coverage across simulation conditions. Overall, parameter coverage val-

ues were extremely close to the correct 0.95 value, with values ranging from 0.93 to

0.96 (M = 0.945, SD = 0.01). Thus, the standard errors for point estimates of factor

loadings in doubly latent models demonstrate appropriate 95% confidence intervals

almost perfectly match the appropriate 95% confidence intervals. While the sampling

ratio is related to variability in parameter coverage across simulation conditions, the

overall magnitude of these differences is essentially ignorable.

RMSE

An overall measure of accuracy was captured by calculating the RMSE. All main

effects excluding the ICCO were meaningfully related to the RMSE of estimated stan-

dardized factor loadings, with the sampling ratio accounting for approximately 16%

of the variability alone. Various two-way and three-way interactions had strong effect

size estimates, including the two-way interaction of L1 Sample Size 3 Sampling

Ratio (v2 = 0.027). Again, to aid in the interpretation of these findings, Figure 4 pro-

vides a graphical representation of the relationship between the RMSE of estimated

standardized factor loadings and the sampling ratio, with varying combinations of

facets. Figure 4 demonstrates that accuracy in the average estimates of factor loadings

increases (i.e., RMSE decreases toward zero) as the number of clusters increases, the

number of L1 units within each L2 cluster increases, and the sampling ratio increases.

Again, scenarios in which the total number of L1 units within each L2 cluster is 20

and the sampling ratio is 0.05 are not provided in the top panel, as these models failed

to converge.

Finally, although there is substantial variability in the RMSE of factor loading esti-

mates, the overall size of that variability must also be considered. Examining Figure

4, it can be seen that RMSE values are relatively small, with all but one condition

resulting in RMSE values below 0.20 (M = 0.04, SD = 0.04). Further analyses indi-

cated RMSE nearly perfectly matched the parameter standard error (r = 0.997), where

RMSE values were a function of the L1 sample size (Snijders & Bosker, 1993).

These findings are consistent with doubly latent estimation reported by Lüdtke et al.

(2011). As a result, although the variability in RMSE differs for various simulation

facets, the maximum likelihood estimates produced by the doubly latent yielded reli-

ably accurate results.
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For Applied Researchers: Illustrative Example

In this section, we considered a case example using empirical survey data from the

Early Childhood Longitudinal Study of Kindergarten (ECLS-K) study to illustrate

the application and interpretation of doubly latent models. The ECLS-K study fol-

lowed children from the kindergarten class of 1998-1099 through the spring of 8th

grade in 2007, focusing on individual and school-level factors associated with early

school experiences and performance (Tourangeau et al., 2009). For our example, we

examined student achievement scores using public-release data in which students

were nested within schools. While the original study involved a three-stage stratified

sampling design, we assumed a simple random sample of schools and students within

each school for simplicity. Additionally, listwise deletion was used to treat missing

data. We restricted our sample to students with achievement scores measured in the

spring of 5th grade (2004). This resulted in a sample of 10,447 students nested within

2,103 schools. The number of students sampled per school ranged from 1 to 34, with

an average of 5 students per school. Moreover, based on school total enrollment, this

resulted in a sampling ratio ranging from 0.13% to 18.7%, with an average sampling
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Figure 4. Relationship between the RMSE of estimates of the factor loadings and the
sampling ratio, with varying combinations of facets.
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ratio of 3.7%. Thus, for example, if a school had a total enrollment of 500 students

and 25 students were sampled, the sampling ratio was 5%.

We explored the possibility of a single latent factor at L1 (students) underlying three

continuous variables representing student achievement scores in reading, math, and sci-

ence, while also aggregating to a single latent factor at L2 (schools). This represents a

formative L2 aggregation process as the measurement pertains to the student, and there

is no reason to believe all students should have the same values for the three achieve-

ment variables. For formative constructs, students are not considered to be interchange-

able, but rather are likely to have different, unique L1 true scores. In contrast to the

measurement of reflective constructs (i.e., where the target of measurement is at a higher

level), the latent factors at both L1 and L2 are often of substantive interest with forma-

tive constructs. Thus, a L1 indicator may represent a measure of student achievement,

while a L2 indicator may represent the average student achievement within a school.

The three L1 achievement variables ranged from 0 to 96, in which reading (M =

50.28, SD = 10.13), math (M = 50.68, SD = 9.95), and science (M = 50.37, SD =

10.10) were all approximately normally distributed. Following the methods outlined

in the simulation study, a doubly latent model with cross-level invariance was esti-

mated in Mplus using maximum likelihood parameter estimation with robust stan-

dard errors. By fixing the L1 factor variance to one, a total of 13 parameters were

estimated: three factor loadings (cross-level invariance), three residual variances at

L1, three intercepts at L2, one factor variance at L2, and three residual variances at

L2. We also estimated the model using the lavaan package (Rosseel, 2012) in R,

although we do not report the results here as the output of the two programs was vir-

tually identical. The dataset and annotated syntax for Mplus and lavaan are freely

available at https://github.com/jmk7cj/Sampling-Ratio-for-MSEM.

Overall, the model fit the data well, with model fit statistics of comparative fit

index = .997, Tucker-Lewis index = .991, root mean square error of approximation =

.045, and standardized root mean square residual = .015. Estimated intraclass correla-

tions at L1 for reading, math, and science achievement scores were 0.28, 0.26, and

0.35, respectively; values that are typical for educational achievement data in elemen-

tary school-aged students (Hedges & Hedberg, 2007). The ICCO value for reading

achievement, for example, can be interpreted as follows: ‘‘Approximately 28% of the

variance in reading achievement scores can be attributed to differences between

schools.’’ Moreover, reliabilities of the aggregated L2 components, commonly

referred to as the ICC(2) (Bliese, 2000; see Equation 12), were relatively strong for

reading (ICC(2) = 0.66), math (ICC(2) = 0.63), and science (ICC(2) = 0.72), indicat-

ing satisfactory values (Morin et al., 2014). However, a larger average cluster size

(and thus a larger sampling ratio) would improve ICC(2) reliability estimates.

Table 4 presents the unstandardized parameter estimates. All three factor loadings

were significantly related to students’ individual achievement at L1, as well as with

average student achievement at L2, supporting the appropriateness of the measure-

ment model. The estimated variance of the latent achievement factor at L2 was 0.56,

while the variance of the latent achievement factor at L1 was constrained to one to
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allow for estimates of all factor loadings. However, imposing cross-level invariance

ensures the latent factors are on a common scale, allowing for a direct comparison of

latent factor variances across levels (Mehta & Neale, 2005). The proportion of var-

iance explained by the latent achievement factor at L1 ranged from R2 = 0.64 to 0.68,

while values at L2 ranged from R2 = 0.84 to 0.98.

Discussion

Multilevel models are often used by social science researchers to estimate effects of

constructs at different levels on outcomes of interest. Various models have been

Table 4. Illustrative Example Results: Unstandardized Parameter Estimates of Student
Achievement.

Estimate SE

Level 1 (within)
Factor loadings

Reading 6.83 0.083
Math 6.63 0.083
Science 6.68 0.076

Variance
Reading residual 22.01 0.618
Math residual 24.38 0.564
Science residual 21.91 0.564
Achievement factor 1.00 NA

R-square
Reading 0.68 0.008
Math 0.64 0.009
Science 0.67 0.008

Level 2 (between)
Factor loadings

Reading 6.83 0.083
Math 6.63 0.083
Science 6.68 0.076

Intercepts
Reading 50.30 0.161
Math 50.46 0.157
Science 50.05 0.174

Variance
Reading residual 0.42 0.308
Math residual 2.68 0.395
Science residual 4.48 0.425
Achievement factor 0.56 0.037

R-square
Reading 0.98 0.011
Math 0.90 0.014
Science 0.84 0.015

Note. The variance of the latent achievement factor at L1 was constrained to one.
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proposed to control for measurement error and sampling error when measuring latent

constructs at L2 through the aggregation of observed indicators at L1. Prior methodo-

logical and simulation research has developed the doubly latent approach that cor-

rects for measurement error and sampling error, resulting in unbiased estimates of

L2 constructs under certain conditions (Lüdtke et al., 2011; Marsh et al., 2009; B. O.

Muthén, 1990). This present study adds to the literature by considering the role of

the sampling ratio in doubly latent measurement models.

Our findings suggested that research designs utilizing the doubly latent model

with low sampling ratios may face convergence problems. Similar problems with

were demonstrated by Lüdtke et al. (2011) who found that doubly latent models

often failed to converge for conditions with low ICCO, and small sample sizes at L1

and L2. Specifically, the convergence rates were severely low for conditions with a

L1 sample size of 20 and a sampling ratio of 5%. As previously noted, this condition

represents a singleton cluster, in which a single unit is sampled from within each

cluster, and estimates of factor loadings are based on information from a sole respon-

dent. While prior research by Bell et al. (2008, 2009) and Clarke and Wheaton

(2007) found that both bias and interval estimates were larger for designs in which

singleton clusters were present (e.g., up to 70% of clusters were singletons), the

problem encountered in the current study is distinctly different. For the conditions

with L1 sample size of 20 and sampling ratio of 5%, all clusters sampled were sin-

gleton clusters, resulting in underidentified models. Thus, the proportion of singleton

clusters must be under 100% for model identification purposes. For such scenarios

with at least some singleton clusters present, incorporating prior information into the

estimation procedure (i.e., Bayesian framework; Gelman et al., 2004) and certain

regularization methods (e.g., Yuan & Chan, 2008) to ensure a positive definite covar-

iance matrix, may improve the stability of estimates from models with small sample

sizes. With the appropriate specification of informative priors (e.g., half-Cauchy),

Bayesian estimation may be well-suited for MSEM with small sample sizes (see

Gelman, 2006; McNeish, 2016). As such, this would be a worthwhile avenue for

future methodological studies.

Results from the ANOVA indicated that as a main effect, lower sampling ratios

also had negative effects on bias, coverage, and RMSE of estimated factor loadings.

These findings appear to suggest that even after controlling for other design facets

such as L1 and L2 sample size or ICCO, the sampling ratio is related to the quality of

MSEM model estimates. However, a closer examination of the overall magnitude of

the variability revealed a different takeaway. While lower sampling ratios did pro-

duce larger bias, all values of bias were within 61% (M = 0.03, SD = 0.14), well

within the 65% acceptable range. Similarly, parameter coverage values almost per-

fectly matched the correct 0.95 value, ranging from 0.93 to 0.96 (M = 0.945, SD =

0.01). Finally, although smaller sampling ratios were directly related to larger RMSE,

the size of the RMSE was relatively small, with all but one condition resulting in

RMSE values below 0.20 (M = 0.04, SD = 0.04). Taken together, these findings

demonstrate desirable properties of maximum likelihood estimation of doubly latent
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MSEM models. Overall, there was virtually no bias in estimated factor loadings

across the conditions. The standard errors for point estimates of factor loadings

appropriately matched 95% confidence interval coverage, and RMSE values were

extremely close to zero, indicating reliable, accurate estimates. As a result, the doubly

latent model does appear to appropriately account for both sampling error and mea-

surement error.

Among the various factors investigated in this study, we highlight the importance

of the number of clusters sampled and the sampling ratio; these two factors are ones

that researchers are likely to have the most control over, whereas it may be more dif-

ficult to control other facets such as the ICCO or factor loadings. Moreover, research

has demonstrated that increasing the number of clusters sampled and the number of

units per cluster sampled improves statistical power in multilevel models, although a

larger gain in power is achieved with larger numbers of clusters (Snijders & Bosker,

1993; Spybrook et al., 2011). Because of this, we encourage researchers to consider

increasing both the number of clusters sampled and the sampling ratio to decrease

bias and variation in estimated factor loadings. However, it should be noted that

incorporating larger samples at L2 into a research design often comes at a greater

financial cost than sampling a larger number of L1 units from within L2 clusters. For

an additional discussion, see Raudenbush and Liu (2000) among others, who con-

sider optimal costs and efficient allocation of resources in multilevel designs.

In applied research studies, such as students nested within schools, the number of

L1 units per cluster can vary considerably in size. For example, Larson et al. (2020)

examined the effectiveness of classroom management practices on student engage-

ment in secondary schools, in which N = 54 high schools ranged in total enrollment

size from 323 students to 2,021 students. Consider an example research design in

which a fixed sample of 50 students per school was collected. This could result in a

sampling ratio ranging from approximately 2.5% to 15.5%, depending on the overall

enrollment of the school. While findings from our simulation indicated that smaller

sampling ratios (i.e., 5%) produced larger bias, worse parameter coverage, and larger

RMSE, the overall size of these errors was essentially negligible. Thus, study designs

with smaller sampling ratios of the type investigated here can be used to utilize dou-

bly latent MSEM models for trustworthy results.

It is also important to note some software capabilities and limitations. For exam-

ple, the doubly latent multilevel modeling approach, in which an individual’s

observed score is simultaneously decomposed into two uncorrelated L1 and L2 latent

variables plus separate error scores at each level, is the default setting in Mplus

(Asparouhov & Muthén, 2007a; L. K. Muthén & Muthén, 2017). As first outlined by

Lüdtke et al. (2011) and described in detail above, the doubly latent model is the only

MSEM that corrects for both measurement error and sampling error. This is also the

default estimation procedure for the lavaan package in R (Rosseel, 2012), which pro-

duced nearly identical parameter estimates and standard errors at both levels to those

we obtained from Mplus. Likewise, the generalized linear latent and mixed model

(gllamm) command in Stata 16 (Rabe-Hesketh et al., 2004; StataCorp, 2019) is also

436 Educational and Psychological Measurement 82(3)



capable of estimating such models, while the gsem command is also capable in the-

ory. However, more traditional multilevel software such as HLM 8 (Raudenbush

et al., 2019) employ an observed variable disaggregation process to separate between-

and within-group effects (Preacher et al., 2010), leading to an inability to estimate

parameters and standard errors at each level simultaneously. In summary, the estima-

tion techniques and capabilities of various software must always be considered by

researchers and future studies.

Limitations and Future Directions

There are a number of limitations to our simulation study that should be considered,

such as our use of multivariate normally distributed data. One assumption of maxi-

mum likelihood as a normal theory estimator is multivariate normality (Bollen,

1989). However, in educational and social sciences it is common for researchers to

collect dichotomous and ordinal scale data. Different versions of weighted least

squares estimators have been proposed to appropriately analyze multilevel models

for categorical variables (Asparouhov & Muthén, 2007b; B. O. Muthén, 1984).

However, all models in the current study used maximum likelihood parameter esti-

mation with standard errors that are robust to nonnormality based on corrections by

Yuan and Bentler (2000). While all of the indicators and latent factors at both levels

were drawn from standard normal distributions in this study, MLR estimation in

Mplus, as well as weighted least squares estimators, may protect against violations of

multivariate normality. However, findings from this study should not be generalized

to designs with dichotomous or count indicator variables. Instead, future researchers

should consider the role of estimators specifically designed to handle categorical

variables in MSEM and doubly latent models.

Second, the data generated for all conditions in our simulations were produced

from a doubly latent true population model. Thus, the population model and the ana-

lytic model had the same factor structure at both levels and the same number of

observed items at L1, albeit with differing sample sizes. However, it is possible and

often useful to analyze data using different specifications than those used to generate

the population model. Purposefully analyzing data with a model using the incorrect

factor structure, using modeling approaches other than the doubly latent model, or

selecting a sample of items from which to estimate factors may all be areas to inves-

tigate for future simulation research.

Third, the models we examined were assumed to represent formative L2 con-

structs, in which individuals within a L2 group were considered to be structurally dif-

ferent (and not interchangeable). At the same time, evaluating the sampling ratio for

reflective L2 constructs may be impractical, as L1 units in this context are assumed

to be interchangeable and thus have the same relationship to the unobserved group

mean (Croon & van Veldhoven, 2007; Marsh et al., 2009). As a result, implications

of the sampling ratio are most apt for formative L2 constructs.
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Finally, we utilized a simple random sample of L1 units from each L2 cluster in

our simulation study. As a result, for each replication, each unit within cluster j had a

positive, equal probability of being selected for the analytic sample. However, it is

possible to consider the effects of an unequal probability sampling design, in which

the probability of being sampled is related to some known variable (e.g., only stu-

dents with high test scores are sampled). Here, models would need to take into con-

sideration the nonrandom differences among units and how these differences may be

related to estimates of constructs of both L1 and L2. Again, future studies could con-

struct an unequal probability sampling procedure relating to the sampling ratio to

some other variable to investigate bias in parameter estimates. Furthermore, the use

of quasi-experimental techniques (e.g., propensity scores) may play a role in balan-

cing the covariate distribution, leading to improved estimates.

Conclusions and Implications

Multilevel structural equation modeling continues to make significant progress, with

in-depth investigations of methodological techniques. The current study adds to the

literature by exploring the role of the sampling ratio in MSEM models with a focus

on the doubly latent model. The findings from our simulations indicated that while

lower sampling ratios were related to increased bias, increased standard errors, and

increased RMSE, the overall size of these errors was negligible, making the doubly

latent model an appealing choice for researchers. The doubly latent model was origi-

nally proposed as an alternative to more simple ML models, with the ability to

account for both sampling error and measurement error. Findings from our study

demonstrated that estimation of L2 factor loadings in doubly latent models of forma-

tive L2 constructs produced accurate, reliable results across simulation conditions,

even with varying sampling ratios, a property that researchers have long expected to

be true. These findings have broad implications for educational, psychological, and

social science research more generally, in which individuals are clustered within

groups, and both L1 and L2 latent constructs are of interest. Future researchers are

encouraged to utilize the doubly latent MSEM model for designs with smaller sam-

pling ratios, as the model allows for the decomposition of a single indicator variable

into within- and between-level specific components while correcting both sampling

error and measurement error.
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