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Abstract

In data collected from virtual learning environments (VLEs), item response theory
(IRT) models can be used to guide the ongoing measurement of student ability.
However, such applications of IRT rely on unbiased item parameter estimates associ-
ated with test items in the VLE. Without formal piloting of the items, one can expect
a large amount of nonignorable missing data in the VLE log file data, and this is
expected to negatively affect IRT item parameter estimation accuracy, which then
negatively affects any future ability estimates utilized in the VLE. In the psychometric
literature, methods for handling missing data have been studied mostly around condi-
tions in which the data and the amount of missing data are not as large as those that
come from VLEs. In this article, we introduce a semisupervised learning method to
deal with a large proportion of missingness contained in VLE data from which one
needs to obtain unbiased item parameter estimates. First, we explored the factors
relating to the missing data. Then we implemented a semisupervised learning method
under the two-parameter logistic IRT model to estimate the latent abilities of stu-
dents. Last, we applied two adjustment methods designed to reduce bias in item
parameter estimates. The proposed framework showed its potential for obtaining
unbiased item parameter estimates that can then be fixed in the VLE in order to
obtain ongoing ability estimates for operational purposes.
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Introduction

Compared with physical learning environments such as classrooms, virtual learning

environments (VLEs) refer to systems that deliver learning materials to students in

the digital space (Weller, 2007). VLEs allow students to engage in self-paced learn-

ing and provide the opportunity to learn new skills without having to travel.

Furthermore, teachers can orchestrate learning experiences (Prieto et al., 2011) with

video lessons, practice questions, and discussion forums, using VLEs. In addition,

educational researchers can utilize VLE data to address pressing questions in educa-

tion, such as identifying factors that affect learning (Mining, 2012). VLEs have been

used extensively around the world, and have had special importance to replace in-

person instruction during school closures prompted by the 2020 COVID-19 pan-

demic (Dhawan, 2020).

A core aspect of conducting educational research with VLE data is the challenge

of measuring abilities of students who are engaging with the platform (Means &

Anderson, 2013) using psychometric methods (Andrich & Luo, 1993) such as item

response theory (IRT; Lord & Novick, 1968). IRT models are commonly used to

estimate the psychometric properties of tests administered to students through VLEs

(Park et al., 2019).

Item response data in VLEs are obtained from system logs stored in a server

(Romero et al., 2014; Sheard, 2011). These data may have large percentages of miss-

ing values for many reasons, such as recording errors and students choosing to skip

items. Generally, there are four types of missing data: structurally missing (i.e., data

are missing for a planned purpose), missing completely at random (MCAR; i.e., the

probability of missingness is the same for all cases; Rubin, 1976), missing at random

(MAR; i.e., the probability of missingness is the same only within groups defined by

the observed data; Rubin, 1976), and missing not at random or nonignorable missing

values (MNAR; Rubin, 1987).

Several studies have applied different kinds of imputation-based approaches to

deal with data classified as MCAR or MAR (e.g., Bernaards & Sijtsma, 2000; Finch,

2008; Sijtsma & Van der Ark, 2003). However, MNAR data in item responses pre-

sents a more difficult analysis challenge because the missing data may be related to

the trait of measurement, which is expected to result in biased parameter estimation if

ignored (Finch, 2008). The current study demonstrates that missing item response

data in Math Nation, a VLE used by over 500,000 students per year (Lastinger Center

for Learning, 2020), are MNAR because student decisions to skip items were partially

related to their underlying ability. It also presents and evaluates a method to obtain

unbiased item parameter estimates when data are MNAR, using artificial neural net-

works (ANNs).
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Researchers have proposed various model-based approaches to reduce the impacts

of MNAR item response data. In the IRT model-based approaches, the tendency to

skip items is often included in the models and accounted for in the estimation of item

and person parameters (Pohl et al., 2014). One type of model-based approach, the

latent approach, includes modeling the tendency to have missing data via a latent

missing propensity trait in a multidimensional IRT model (Holman & Glas, 2005).

Another type of model-based approach, the manifest approach, involves calculating

observed variables that represent missing propensity and then including those vari-

ables in measurement models (Rose et al., 2010). Studies on model-based approaches

evaluated their performance in assessment data analysis when the proportion of miss-

ing data were not very high, often well under 50% of the total data in the item

response matrix (e.g., 30%; Rose et al., 2010). However, the data collected in VLEs

frequently contain proportions of missingness exceeding 50% because students are

often self-selecting whether and when to engage with items in the VLE. This self-

selection not only results in sparse data, but it also increases the chance that the miss-

ing data in the VLE are related to a wide variety of unobserved cognitive factors

(e.g., academic achievement, engagement, self-regulation). Such large amounts of

MNAR data do not align with the conditions under which model-based approaches

to handle missingness were developed or evaluated. Therefore, there is a need for

improved methods to handle large proportions of item MNAR data from system logs

of VLEs.

In the past decade, due to the development of computing technology, applications

of machine learning to data analysis have increased rapidly (Embretson & Reise,

2013), and there is large potential for use with missing data problems (Fazakis et al.,

2020). Machine learning, which is a type of artificial intelligence, allows computer

systems to learn and complete tasks without being programmed explicitly for such

tasks (Bishop, 2006). Machine learning algorithms have the capacity to analyze com-

plex and high-dimensional data, and hence applying machine learning techniques to

handling missing item data in VLEs is a possible mechanism for improving psycho-

metric research in technology-enhanced educational environments (Means &

Anderson, 2013; Mining, 2012).

As one subfield of machine learning, ANNs (Goodfellow et al., 2016) have been

proposed as an attractive approach to convert a pattern of item responses into latent

variables (Cui et al., 2016; Cui et al., 2017; Paulsen, 2019; Xue & Bradshaw, 2021).

In the current project, semisupervised learning ANNs are introduced into the IRT

research area. The proposed semisupervised learning ANNs architecture may provide

an accurate estimation of item parameters when item data from VLEs is MNAR. In

the following sections, we first provide a brief introduction to ANN. Then, we moti-

vate the application of ANN to MNAR data by presenting an exploratory study of the

item response data collected and its patterns of missingness within a statewide data-

base from a VLE. Next, we describe the proposed semisupervised learning frame-

work to estimate an unbiased latent trait using deep learning techniques. After that,

we present the two adjustment methods for improving the accuracy of item parameter
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estimates. Then, we show the performance of the proposed framework through a

simulation study. Last, we conclude with a discussion of findings, limitations, and

potential future research.

Artificial Neural Networks and Semisupervised Learning

An ANN is a computational system inspired by biological neural systems for infor-

mation processing in animal brains. An ANN is built on inputs being translated to

outputs through a series of neuron layers. It consists of three types of layers: an input

layer, a hidden layer(s), and an output layer. Each layer consists of a number of neu-

rons (or nodes), and each node is connected to the nodes in the next layer. Each layer

(except for the input layer) uses the output of its previous layer as the input. There

are two advantages of using ANNs for psychometrics: first, the feature hierarchy

(LeCun, 2012) supports ANNs to extract the latent variables (e.g., student ability,

student attribute profiles) measured by the designed items in an assessment; second,

the Universal Approximation Theorem (Csáji et al., 2001; Hornik et al., 1994; Lu

et al., 2017) supports ANNs to approximate the item response equation, which repre-

sents the relationship between latent variables (e.g., student ability, student attribute

profiles) and observed outcomes. These two advantages also bring ANNs promising

computation techniques for tolerating some loss of quality or optimality in computed

results.

Most previous research studies focused on supervised learning ANNs to classify

students into different latent groups for cognitive diagnostic classification (CDM; Cui

et al., 2016; Cui et al., 2017; Paulsen, 2019). In these studies, to train the supervised

learning ANNs, the ideal response patterns were set as the input layer and the associ-

ated attribute profiles as the output layer. Cui et al. (2016) assumed the deterministic

inputs, noisy, and gate (DINA; Junker & Sijtsma, 2001) model with both slipping and

guessing parameters fixed to zero to simulate ideal responses for training a multilayer

perceptron. However, item parameters are more difficult to fix when simulating from

IRT model equations as they require more specific parameter values, and the results

of supervised learning ANNs were not as accurate as the DINA model in the simula-

tion study (Cui et al., 2016) for CDM. Some other research studies applied unsuper-

vised learning ANNs (e.g., self-organizing map; Cui et al., 2016) to do latent class

grouping for CDM. However, the unsupervised learning ANNs are not suitable for

IRT model applications because the latent traits in IRT models are continuous rather

than categorical variables.

Semisupervised learning (Zhu & Goldberg, 2009) concerns the study of how com-

puters and natural systems learn in the presence of both labeled and unlabeled data. It

is somewhere between supervised learning and unsupervised learning. The research

goal of semisupervised learning is to understand how combining labeled and unla-

beled data can change the machine learning behavior and allow for the design of

algorithms that take advantage of such a combination. Xue and Bradshaw (2021) first

provided a semisupervised learning ANN method for CDM. The semisupervised
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learning architecture could refine the classification accuracy based on the initial clas-

sification obtained from two more constrained DCMs (i.e., DINA and DINO models).

The experimental results showed the proposed method obtained more accurate and

robust classification results than theoretical DCMs when the item response equations

and Q-matrices were misspecified, and the assessment did not have a high diagnostic

quality (i.e., the difference of correct response rates between the mastery group and

nonmastery group is greater than 0.30). These findings inspire the notion, explored in

the current study, that semisupervised learning could improve estimation accuracy in

measurement applications when the data contains noise (e.g., noise resulting from

nonignorable missingness). In the next section, we will motivate this application by

exploring MNAR data mechanisms in a VLE.

Exploratory Study

Sample

The data consist of student responses to the ‘‘Algebra I’’ items within Math Nation,

which is a VLE used statewide in Florida, as well as a few other states (Lastinger

Center for Learning, 2020). This VLE has a series of instructional videos and practice

items organized into 10 domains. We focused on analyzing responses to items from

the entire item bank of each Algebra I domain, which are used in the VLE to ran-

domly draw questions for 10-item quizzes. Student use of these quizzes to practice

has been positively related to student achievement on Florida’s high-stakes Algebra 1

End-of-Course assessment (Leite et al., 2019; Leite et al., 2021). For each domain,

the number of items in the item bank ranged from 41 to 89, and we assumed that each

domain consisted of a unique trait. The total number of students in the sample was

63,625, which was obtained in the 2017/2018 academic year from 71 districts in

Florida (this number includes brick-and-mortar districts as well as virtual schools).

In Math Nation, students can self-select to take test items, and the VLE provides

randomly selected items from the domain item bank to the student. Since students

were allowed to self-select to respond to items, and to skip items presented by the

VLE, the full item response matrix that crosses all 63,625 students with all items in a

domain contains a large number of missing values. Figure 1 shows a visualization of

the missing data, with each domain of Algebra I in Math Nation being represented by

a subfigure. The x-axis of each subfigure indicates the item ID. The red, green, and

blue filling refer to incorrect response, correct response, and no response (missing

values), respectively. Note that for some newer items in the VLE, the missing propor-

tions are close to 1.00, so these items were removed in the following analyses. Even

removing the students who skipped one domain, the proportions of students missing

responses for most items in the domain are between 0.55 and 0.75.

Generally, the response patterns of students can be classified into three categories:

(1) skipped the domain (i.e., no responses to any test items within the domain), (2)

completed the domain (i.e., responded to all test items within the domain), or (3)

mixed response (i.e., responded to some items within the domain). We were not able
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to distinguish skipped from not-reached items in our data, and hence these two

forms of missing responses are grouped together under the mixed response category.

Table 1 shows that although the raw frequency of students who completed the domain

was relatively large, they constituted a small proportion of the total sample (less than

5%).

Figure 1. Visualization of missing item data in Algebra Nation Data of Florida, by domain
(excluding students who did not move into the domain).
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Research Questions

In the exploratory study, we asked three questions: (1) Is there a relationship between

skipping a domain and student ability? (2) Is there a relationship between not com-

pleting a domain and student ability? (3) Is there a relationship between skipping an

item and student ability or item difficulty?

Analysis and Results

We used tree-structured logistic regressions (see Figure 2) to answer the questions.

We did not have a latent algebra ability estimate to use in this exploratory analysis,

so we used the state’s standardized mathematics test scores (i.e., Florida Standards

Assessment; Florida Department of Education, 2021) from the prior school year as a

proxy for ability. This is the one piece of data from outside the VLE that we used in

our full study to obtain our results. We also did not yet have estimates of item diffi-

culty from an IRT model, so we used the incorrect response rates (i.e., the proportion

of students who answered the item incorrectly out of all students who engaged with

the item) as a proxy, mirroring a classical test theory approach. For example, if the

incorrect response rate was 89%, the item difficulty was set as 0.89. The tree-

structured logistic regression was applied to each domain respectively.

To address the first research question, all students were classified into two groups

within each domain: students who skipped the domain and students who did not skip

the domain. Within the group of students who did not skip the domain, students were

grouped as either those who completed the domain or those who responded to some

but not all items in the domain. Then we fit a logistic regression model to the data of

each district individually as

Figure 2. Flow chart of the tree-structured logistic regression.
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P(Ei(skipping a domain) = 1) =
exp (b0, i + b1,iability)

1 + exp (b0, i + b1,iability)
ð1Þ

where i represents the ith domain. Figure 3 shows the estimates of b1,i for each dis-

trict. The height of each bar indicates the number of students engaged within a

domain, and the color of each bar indicates the sign of b1,i (i.e., gray is negative,

dark gray is positive, and light gray is zero). From the plot, we found that for most

districts and most students, b1,i were statistically significantly negative. Generally

speaking, students with higher ability levels had a lower probability of skipping a

domain, and students with lower ability levels had a higher probability of skipping a

domain. Regarding the logistic regression model results, we could conclude that

there is a relationship between skipping a domain and student ability.

To answer the second question, we divided the data set into two groups for each

domain: students who completed the domain and students who did not. A logistic

regression model was conducted for each district individually as

P(Ei(not completing a domain) = 1) =
exp (b0, i + b1,iability)

1 + exp (b0, i + b1,iability)
ð2Þ

Compared with the results of the first question, we found that estimates b1,i were

not consistent across the districts (as shown in Figure 4). Taking the domain Working

with Expressions as an example, the estimates of b1,i of district 06 and district 08

were significantly positive (dark gray filling), which means that within these two dis-

tricts, the relationship between ability and not completing the domain Working with

Expressions was positive. However, the estimates of b1,i of districts 01, 04, and 20

were statistically significantly negative (gray filling) for this domain. Thus, it was not

reasonable to reach a consistent conclusion about the relationship between ability and

not completing domains.

To answer the third question, in contrast to the previous two questions, the logistic

regression was not applied to each district respectively for two reasons: (1) at the item

level, for the students who completed a part of the domain, the district should have

no impact on which particular items were shown to the student because they were

randomly selected; (2) due to the high missing proportion of each item, the number

of students of each district was too small to achieve a reliable estimation result in the

logistic regression. With regard to the response type to the kth item in the ith domain,

we put students into two groups (i.e., those who skipped the kth item and those who

did not) to fit the logistic regression model defined as

P(E(skipping an item) = 1) =
exp (b0,ik + b1,ikability + b2,ikdifficultyk)

1 + exp (b0,ik + b1,ikability + b2,ikdifficultyk)
ð3Þ

where k indicates kth item. The estimates of b1,ik and b2,ik are shown in Table 2. For

ability, the estimates of b1,ik were statistically significantly negative in all domains,

indicating that a student with a higher ability level had a higher probability of
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responding to an item shown to them. For item difficulty, the estimates of b2,ik were

statistically significantly positive, indicating that skipping items was more likely as

item difficulty increased. Although the VLE’s random item selection within domains

caused missingness in the students’ response pattern, such missing data were viewed

as MCAR and did not affect the significance of estimates of b1,ik and b2,ik.

Figure 3. Results from the logistic regression analysis relating ability to skipping domains
(only shows the district with over 100 students engaged).
Note. The height of each bar indicates the number of students in each district. The filling colors indicate the

statistical testing results of the parameter b1 estimation in Equation 1. Dark gray filling means b1 was

significantly positive; gray filling means b1 was significantly negative; light gray filling means b1 was no significant.
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Conclusion

In summary, the data exploration provided the following findings: (1) students with

higher ability had a lower probability of skipping a domain; (2) students with higher

ability had a lower probability of skipping items that were presented to them; (3)

Figure 4. Results from the logistic regression analysis relating ability to not completing
domain.
Note. The height of each bar indicates the number of students in each district. The filling colors indicate the

statistical testing results of the parameter b1 estimation in Equation 2. Dark gray filling means b1 was

significantly positive; gray filling means b1 was significantly negative; light gray filling means b1 was no significant.
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students were more likely to respond to easy items; and (4) choosing to not complete

a domain was not consistently related to ability across the districts. We believe the

final finding is related to the fact that teachers guide students through the Algebra

curriculum throughout the year, and hence deciding when and which domains to use

may be more teacher driven than student driven. Ultimately, we conclude that our

data set not only had a large proportion of missing data for each item but also that

much of that missing data was MNAR. Therefore, this result motivated the develop-

ment of a semisupervised learning-based method for obtaining unbiased item para-

meter estimates applicable to VLE data with a large proportion of MNAR data. In the

next section, we present the proposed method in detail.

A Semisupervised Learning-Based Bias Adjustment Method

The proposed semisupervised learning-based bias adjustment procedure contained

two parts: (1) unbiased ability estimation using semisupervised deep learning archi-

tecture; (2) item parameter adjustment methods to obtain unbiased item parameter

estimates. These two parts are discussed separately below.

Unbiased Ability Estimation Using Semisupervised Deep Learning
Architecture

To apply semisupervised learning to the VLE item data from Math Nation, we first

fit the two-parameter logistic (2PL) IRT model to complete data sets in each Algebra

1 domain by using only the data from students who completed all items in the

domain, referred to as anchor students. However, we assume the parameter estimates

Table 2. The Results of the Mixed Response Testing.

Domain b̂1 b̂1

Working with Expressions 20.0945 (***) 0.1221 (***)
Solving Equations and Inequalities with One Variable 20.1800 (***) 0.1294 (***)
Solving Equations and Inequalities with Two Variables 20.1310 (***) 0.0845 (***)
Introduction to Functions 20.1255 (***) 0.1059 (***)
Quadratics—Part 1 20.0592 (***) 0.1327 (***)
Quadratics—Part 2 20.0774 (***) 0.1165 (***)
Exponential Functions 20.0673 (***) 0.1203 (***)
Elements of Modeling 20.0302 (***) 0.0956 (***)
Quantitative Data in One Variable 20.0832 (***) 0.1264 (***)
Categorical and Numerical Data in Two Variables 20.0923 (***) 0.1698 (***)

Note. b̂1 indicates the estimation of b1 and b̂2 indicates the estimation of b2 in Equation 3. This table

shows that b̂1 was significantly negative in all 10 domains, while b̂2 was significantly positive in all 10

domains.
***p value \ .0001 in logistic regression test.
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are biased when obtained from only the anchor students due to the deletion of

MNAR data. Thus, to achieve unbiased parameter estimation through the semisuper-

vised learning algorithm, we needed to achieve these two goals:

1. Extract unbiased latent trait Y for the anchor students; by using Y, we could

maximize L(Y), the likelihood of the 2PL-IRT model

2. Specify the relationship between the biased trait estimates û and unbiased

latent trait Y through a function û = f(Y)

Although a Bayesian method could be an optional method to achieve these goals,

determining f(Y) requires a data analysis to determine the statistical equation, and

the procedure is time consuming. Considering the two advantages of using ANNs

(i.e., feature hierarchy and Universal Approximation Theorem) described previously,

we introduced ANNs to attain these goals. Figure 5 shows the flow chart of the pro-

posed deep learning architecture based on deep feedforward network (DFN;

Goodfellow et al., 2016), a particular ANN model that we chose because of its sim-

plicity in architecture and training. The goals of the DFN were to convert the

observed responses of anchor students to their unbiased latent traits Y, and approxi-

mate the functions f() and the likelihood L simultaneously.

From Figure 5, there are two hidden layers between the input layer and the latent

trait layer. The number of hidden layers was based on previous research using deep

Figure 5. Results from the logistic regression analysis relating ability to completing domains
(only shows the district with over 100 students engaged).
Note. A deep learning architecture with three hidden layers was used to convert the observed response

patterns to the unbiased latent trait. To train the deep learning architecture, the distance between two

outputs of the DFN and two targets was minimized.

Xue et al. 551



learning methods for CDM (Cui et al., 2017; Xue, 2019). Rectified linear units

(ReLU; Lu et al., 2017) was chosen as the activation function to bring nonlinearity

to the system. The unbiased latent trait Y extracted using the DFN is represented as

~Y= C(X ; v1) ð4Þ

where v1 is the parameters of DFN between the input layer and ability layer, and C

indicates the approximate computing function from the input layer to the ability layer.

Given ~Y, the two outputs of the DFN structure are represented as

~u = ~u( ~Y; v2) = ~u8 C(X ; v1)

~u = ~L( ~Y; v3) = ~L8C(X ; v1)
ð5Þ

where v2 and v3 are the parameters of the DFN connecting the ability layer and out-

put layer. ~u is the approximate computing of the relationship between the biased esti-

mation of ~u and unbiased latent trait Y. ~L approximates the likelihood function (i.e.,

item response equation) of 2PL-IRT.

To train the unknown parameters fv1, v2, v3g within the DFN, we set two targets

for the DFN architecture. The first target was û, the biased students’ ability estimates

from fitting the 2PL-IRT model to the anchor student responses; the second target

was the observed response patterns X = fxg of the anchor students. Corresponding to

the two targets, the DFN learned a function for mapping inputs to two outputs: the

approximated biased ability ~u = ~u( ~Y) and the reconstructed response pattern
~X = ~L( ~Y). The parameters of DFN, fv1, v2, v3g, were estimated by minimizing the

weighted cost function defined as

fv1, v2, v3g; arg minfw1MSE(û, ~u) + w2H(X , ~X )g ð6Þ

In the weighted cost function, we used two kinds of error functions corresponding

to two outputs. Because the first target, û, and the first output, ~u, of DFN were contin-

uous variables, the mean square error was used to calculate their differences. Because

each variable in X was binary, cross-entropy (H) was used to calculate the differences

between X and ~X . In Equation 6, there are two hyperparameters, w1 and w2, and

w1 + w2 = 1. To provide a more general estimation of the parameters to avoid overfit-

ting and increase the prediction power in a new data set, w1 and w2 were determined

through the elbow method (Cattell, 1966; Thorndike, 1953) in the validation test. In

clustering analysis, the elbow method is a heuristic used in determining the number

of clusters, such as number of components in the principal component analysis, and

the number of centers in K-means clustering. The method consists of plotting the

explained variation as a function of the number of clusters, and picking the elbow of

the curve as the number of clusters to use. More details about using the elbow method

in validation are described in the simulation study section.
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Two Item Parameter Adjustment Methods

The DFN converted observed response pattern X to unbiased ability estimation ~Y.

However, the item parameter estimates from the 2PL-IRT model fitting to anchor stu-

dents are still assumed to be biased and are hence in need of adjustment. We proposed

and evaluated two adjustment methods to reduce bias and improve the accuracy of

item parameter estimation when applying the 2PL-IRT model to the anchor student

group instead of the whole population.

The first adjustment method, item equating adjustment (IEA), was inspired by the

horizontal equating method (Baker, 1984), which refers to the equating of tests admi-

nistered to groups with similar abilities taking similar tests. û and ~Y can be viewed

as the ability estimates of the same anchor student group under two tests with differ-

ent item difficulties. In IEA, the ability distribution of anchor students was used as

the reference population distribution. The biased item difficulty estimates were con-

verted to unbiased item difficulty estimates with

~bj = b̂j � ( ~Y� �u) ð7Þ

where �u and ~Y are the average of biased ability estimates and unbiased ability esti-

mates respectively, b̂j is the biased item difficulty estimates for jth item, and ~bj is the

adjusted item difficulty estimates. IEA only reduced the biases contained in the item

difficulty estimates because those estimates are on the scale of �u, which is required

for Equation 7.

The second adjustment method, bootstrapping adjustment (BA), was proposed to

reduce the biases contained in both item difficulty and item discrimination para-

meters. The BA method includes four steps:

1. Creating a new item response set based on sampling with replacement from

the anchor students considering their unbiased ability estimates ~Y to create an

ability distribution of the students in the new data set that is normally distribu-

ted, centered at zero, and that has a sample size equal to the number of anchor

students

2. Apply 2PL-IRT to the new sample set to estimate the item parameters

3. Repeat Step 1 and Step 2 K times such that a set of K estimates of difficulty

and discrimination of the jth item can be obtained f~aj, k , ~bj, kg, where

k = f1, :::, Kg
4. Calculate the estimate of item discrimination as â = 1

K

PK
1 ~aj, k , and the esti-

mate of item difficulty as b̂ = 1
K

PK
1

~bj, k

In our study, K was set to 100. The BA method is more robust to the biases con-

tained in the parameter estimations because in contrast to the IEA method, BA does

not assume that the distribution of ability is normal. Thus, the BA method could

reduce the biases contained in both item discrimination and difficulty estimates. In

addition, the BA has the potential for use with more complicated IRT models, such
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as the 3PL-IRT model. However, the disadvantage of using BA is that it is more

time-consuming than IEA.

Simulation Study

In this section, we report an evaluation of the proposed semisupervised learning

method and adjustment methods through a simulation study with the 2PL-IRT model

as the population model. The research question we addressed was: To what extent

can the semisupervised learning-based method lead to a reduction in bias of item

parameter estimates from the 2PL-IRT model?

Method

To imitate the operational data set used in the exploratory study, we simulated data

that contained the same number of students (63,625), the same number of items in

each domain, the same number of domains (10), and also the same number of dis-

tricts. We used the state’s standardized mathematics test scores and biased item para-

meters from the exploratory study as population parameters for student true ability

and item parameters during data generation, with the latter obtained by fitting 2PL-

IRT models to the data (treating domains as separate data sets) that contained miss-

ingness. The simulation steps for each domain were as follows:

1. We simulated the response for each item using the student pretest mathe-

matics ability and the item parameters under the 2PL-IRT model. The item

parameters were estimated by fitting the 2PL-IRT model to the observed data

containing missingness.

2. Given the true ability, we calculated the probability of the student skipping

the domain using the fitted logistic regression model in Equation 1 as the

data-generating model. Using this probability, students were classified into a

‘‘skipping domain’’ group if P(skipping a domain) � 0:5, and ‘‘not skipping

domain’’ group if P(skipping a domain)\0:5. For students in the ‘‘skipping

domain’’ group, their responses were set as missing values (NA).

3. For the students classified into the ‘‘not skipping domain’’ group in Step 2, we

used the fitted logistic regression model in Equation 2 as the data-generating

model to calculate the probability of completing domains for each student. If

the probability P(not completing a domain)\0:5, then the student was classi-

fied into the ‘‘completing domain’’ group (i.e., anchor students group) and we

kept their responses; students with P(not completing a domain) � 0:5 were

grouped into the ‘‘not completing domain’’ group.

4. For students belonging to the ‘‘not completing domain’’ group in Step 3, we

used the fitted logistic regression model in Equation 3 as a data-generating

model to define if a student skipped an item using student pretest ability and

the observed item’s incorrect response rate. For students who skipped the item
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(P(skipping an item) � 0:5), the response to this item was replaced by miss-

ing values.

Table 3 compares our operational data and our simulated data with respect to the

average ability and the number of students for the three groups: students who skipped

a domain (skipping domain group), students who completed the domain (anchor stu-

dents group), and students who completed a portion of the items in a domain (mixed

response group). For the anchor student group, the average ability and the number of

students were very similar between the operational and simulated data. Taking the

domain ‘‘Quadratics—Part 2’’ as an example, the average ability and number of stu-

dents in the operational data were 0.23 and 3008, respectively, while the two values

in the simulated data were 0.23 and 2964, respectively. In addition, for the skipping

domain group, the average abilities in both data sets were negative, and for the mixed

response group the average abilities in both data sets were positive.

Analysis and Results

We used the ‘‘mirt’’ package (Chalmers et al., 2012) in R (R Core Team, 2013) to

conduct data simulation and IRT model fitting, and the ‘‘Tensorflow’’ library (Abadi

et al., 2016) in python (Van Rossum & Drake, 2009) to implement the semisuper-

vised deep learning.1

After simulating the data, we first fit the 2PL-IRT model to anchor students’

responses for each domain to estimate the item parameters and student abilities. For

example, Figure 6 shows the comparison between estimates and the true value of

items contained in the domain ‘‘Quadratics—Part 2.’’ We could observe that for most

items, the 95% confidence interval of the item discrimination estimates covered the

true values, but the 95% confidence interval of the item difficulty estimates did not

cover the true difficulty parameters. We observed similar patterns in other domains.

Then, the proposed semisupervised deep learning architecture (see Figure 5) was

applied using the simulated anchor students’ responses as input and using the anchor

students’ ability estimates and their response patterns as two targets. The unbiased

abilities of anchor students were estimated by minimizing the weighted cost function

in Equation 7. The validating test was conducted in the training procedure to avoid

overfitting and to determine the two hyperparameters, w1 and w2, in Equation 6. The

training set consisted of 80% anchor students, and the validation set consisted of the

remaining 20% of the anchor students for early stopping, which is a simple and effec-

tive approach to avoid overtraining the ANNs. The early stopping method is used to

train on the training data set but to stop training at the point when performance on a

validation data set starts to degrade. The w1 ranged from 0.05 to 0.95 with Step 0.05.

Figure 7 shows two examples of determining the hyperparameters using the elbow

method in the validation test for two domains. When choosing the elbow point on the

blue curve (validation loss), we could choose a value, w1. Then, regarding w1, there

is a corresponding point on the red curve (average of ability). In Figure 7, we can
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Figure 6. Comparison between estimates and the true value of items contained in the
domain ‘‘Quadratics—Part 2.’’
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Figure 7. Three examples of choosing the appropriate hyperparameters using the elbow method.
Note. The solid curve and the dashed curve refer to the average ability estimates and the validation loss,

respectively, over the weight of Target 1. The horizontal dashed line indicates the correct average ability.
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observe that the value on the red curve corresponding to the elbow point on the blue

curve was very close to the true average ability (the dotted line).

Because of the large number of parameters contained in the deep learning struc-

ture, the random initialization of parameters may affect the optimization when the

training sample size is not large enough. Thus, one concern of using ANNs/deep

learning techniques for psychometrics is that using a feature extracted by deep learn-

ing through a single training is risky as it is sensitive to the starting points of the

parameters (Briggs & Circi, 2017). To solve this concern, we conducted 100 DFN

trainings individually, produced ability estimates for each training, and then averaged

the results as the final estimates of ability for anchor students. It took approximately

10 minutes to complete 100 DFN trainings in one domain. The total time for com-

pleting each domain was approximately 2 hours.

Table 4 compares the distribution of anchor students’ ability between the biased

2PL-IRT model estimates and the proposed semisupervised deep learning architec-

ture estimates. Table 4 shows that for each domain, the true average ability was posi-

tive and the standard deviation was less than 1. However, when fitting the 2PL model

to the original data with correct, incorrect, and missing item responses (i.e., 1, 0, and

NA), the average ability was consistently estimated as 0 across the domains. In con-

trast, the averages of the student ability estimates from the proposed semisupervised

deep learning architecture were close to the true values. The proposed semisupervised

deep learning architecture achieved more accurate average ability estimates without

pre-data analysis to test if the sample collected could represent the population.

Table 4. Comparison of the Distribution of Ability Estimates Between the 2PL-IRT Model
Fitting to Original Data and the Proposed Semisupervised Deep Learning Architecture.

Domain Y(s) û(s) ~Y(s)

Working with Expressions 0.090 (0.93) 20.001 (0.99) 0.095 (0.90)
Solving Equations and Inequalities

with One Variable
0.169 (0.85) 0.000 (0.98) 0.157 (0.82)

Solving Equations and Inequalities
with Two Variables

0.203 (0.83) 0.000 (1.01) 0.198 (0.85)

Introduction to Functions 0.152 (0.88) 20.001 (.99) 0.160 (0.81)
Quadratics—Part 1 0.178 (0.87) 20.001 (1.00) 0.180 (0.88)
Quadratics—Part 2 0.228 (0.75) 20.001 (0.99) 0.232 (0.73)
Exponential Functions 0.168 (0.85) 20.001 (1.01) 0.171 (0.83)
Elements of Modeling 0.218 (0.79) 20.000 (1.00) 0.207 (0.80)
Quantitative Data in One Variable 0.241 (0.77) 20.000 (0.99) 0.241 (0.79)
Categorical and Numerical Data in Two Variables 0.312 (0.72) 20.000 (0.98) 0.320 (0.69)

Note. In each cell, the first number refers to the average ability, and the number in the bracket refers to

the standard deviation (s) of the students’ ability. Y refers to the true ability; û refers to the ability

estimates using direct 2PL-IRT model fitting; ~Y refers to the ability estimates using the proposed

semisupervised deep learning architecture.
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Parameter Estimate Bias Adjustment. After estimating the anchor students’ abilities

through the semisupervised deep learning architecture, the two proposed adjustment

methods, IEA and BA, were conducted to reduce the biases contained in the item dif-

ficulty parameters. We chose three criteria to compare the two adjustment methods

with the biased 2PL-IRT model fitting results using the anchor students’ response:

bias, root mean square error (RMSE), and variance of absolute bias of item difficulty

parameter estimates (Variance). Bias indicates the difference between item difficulty

estimates and true item difficulty parameters. RMSE indicates the distance between

item difficulty estimates and true item difficulty parameters. Variance indicates the

consistency of the bias adjustment across items. The bias, RMSE, and Variance were

calculated as

bias = b̂j � bj

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ

j = 1

(b̂j � bj)
2

vuut

S2 =
1

J � 1

XJ

j = 1

(ej � e)

ð8Þ

where bj is the true difficulty parameter for jth item and b̂j is the estimate of that para-

meter. N indicates the number of items in a domain. The absolute bias for jth item is

defined as êj = jb̂j � bjj, and the average of the absolute biases in a domain is defined

as �e = 1
N

PN
j = 1 êj.

Figures 8, 9, and 10 compare the unadjusted item difficulty parameter estimates to

the adjusted estimates based on both the IEA and BA methods. Figure 8 shows that

the error results stemming from the IEA and BA method estimates cover 0 for all 10

domains, but the unadjusted item difficulty parameter estimates are biased for some

domains (e.g., ‘‘Categorical and Numerical Data in Two Variables’’). Figure 9 shows

that the IEA and BA methods achieved smaller RMSE results for each domain. For

variance of absolute bias in Figure 10, since the IEA adjusted the difficulty estimates

based on a parallel shift of the ability distribution, the variances of absolute bias from

both IEA and the unadjusted estimates are equal. In other words, IEA can decrease

the RMSE of parameter estimates and adjust the total bias, but the consistence of the

bias adjustment is not improved. However, the BA method obtained more consistent

bias adjustment (i.e., lower variance) because the bootstrapping in BA created

standard-unit normally distributed samples, which matched the assumption of the

original IRT estimation.

Discussion and Conclusion

With the proliferation of VLE usage in educational systems (King & South, 2017),

there is a desire to obtain accurate estimates of student ability from VLE log file data,
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which would most often needs to be done through item response data. This is compli-

cated by the fact that the unstructured item response data often contains a large pro-

portion of missingness. However, if one can obtain unbiased IRT item parameter

estimates associated with the item response data, fixed item parameters can be used

in a variety of ways to obtain accurate ability estimates for students who have taken

different sets of items in the VLE.

Figure 8. Bias comparison of item difficulty estimates across the unadjusted results
(Original), the item equating adjustment (IEA) results, and the bootstrapping adjustment (BA)
results.
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To tackle the challenge of obtaining unbiased item parameter estimates from

sparse VLE item response data, we first explored a statewide-used VLE data set to

test hypotheses surrounding the relationships between the missing data and student

ability and item difficulty. The exploratory study showed that the missingness was

nonignorable (i.e., MNAR), which indicated that ignoring it would affect parameter

estimation accuracy. Restated, the estimated parameters are unbiased for the students

Figure 9. RMSE comparison of the item difficulty estimates across the unadjusted results
(Original), the item equating adjustment (IEA) results, and the bootstrapping adjustment (BA)
results.
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who completed all items (i.e., anchor students in this research) but might be biased

for the students who did not complete all items in the VLE (i.e., students skipped

some domains, students skipped some items within domains, or students did both).

To solve this problem, we proposed a semisupervised learning framework that is

novel to IRT applications. In the proposed framework, we used deep learning to con-

vert observed response patterns to continuous latent traits and approximate some

continuous functions, which are otherwise hard to simultaneously specify

Figure 10. Variance of absolute bias comparison of the item difficulty estimates across the
unadjusted results (Original), the item equating adjustment (IEA) results, and the
bootstrapping adjustment (BA) results.
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mathematically. In addition, using the ability estimates through the semisupervised

learning framework, we also proposed two kinds of adjustment methods to improve

the item parameter estimation accuracy. The simulation results showed that the pro-

posed framework adjusted the biases contained in both students’ ability estimates

and item parameter estimates under the 2PL-IRT model. We believe that many

researchers using VLE data can benefit from following our proposed method in order

to obtain critical, accurate information about item parameters that can be used to sup-

port ongoing ability estimation in the VLE platform.

There were still some limitations in the proposed framework. The first limitation

is that some anchor students (students who did not skip items in a domain) are

required for the proposed method. In the absence of a sufficient number of anchor

students, the deep learning architecture could potentially be modified to a multiclass

classification model that considers the missing values as the third response type

among the correct and incorrect responses. One potential advantage of this combina-

tion is that all students’ responses (including missingness) could be used as training

data. The second limitation is that a large data set is required for training in the deep

learning architecture, but for new items in a VLE platform, the sample size of

responses may not be large enough. Transfer learning (Pan & Yang, 2009) and item

characteristic prediction using natural language processing (Manning & Schütze,

1999) are potentially applicable solutions to this problem. Transfer learning and nat-

ural language processing could provide better starting values and initialization of the

parameters for training models on new items with few responses from students.
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Note

1. Example R and Python code demonstrating the proposed methods are available at the

Open Science Framework website (https://osf.io/2t5vg/?view_only=2bd0997067a1414a9

dc89264d8efc0fc)

564 Educational and Psychological Measurement 82(3)



References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,

Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,

Steiner, B., Tucker, P., Vasudevan, V., Warden, P., . . .Zheng, X. (2016, November 2-4).

Tensorflow: A system for large-scale machine learning [Paper presentation]. 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI, 16), Savannah, GA.

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

Andrich, D., & Luo, G. (1993). A hyperbolic cosine latent trait model for unfolding

dichotomous single-stimulus responses. Applied Psychological Measurement, 17(3),

253-276. https://doi.org/10.1177/014662169301700307

Baker, F. B. (1984). Ability metric transformations involved in vertical equating under item

response theory. Applied Psychological Measurement, 8(3), 261-271. https://doi.org/

10.1177/014662168400800302

Bernaards, C. A., & Sijtsma, K. (2000). Influence of imputation and EM methods on factor

analysis when item nonresponse in questionnaire data is nonignorable. Multivariate

Behavioral Research, 35(3), 321-364. https://doi.org/10.1207/S15327906MBR3503_03

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Briggs, D. C., & Circi, R. (2017). Challenges to the use of artificial neural networks for

diagnostic classifications with student test data. International Journal of Testing, 17(4),

302-321. https://doi.org/10.1080/15305058.2017.1297816

Cattell, R. (1966). The scree test for the number of factors. Multivariate Behavioral Research,

1(2), 629-637. https://doi.org/10.1207/s15327906mbr0102_10

Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R

environment. Journal of Statistical Software, 48(6), 1-29. https://doi.org/10.18637/

jss.v048.i06
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