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methods of estimating intervention effects from a set of MB studies. The methods

differed in the assumptions made and varied in whether they relied on within- or

between-series comparisons, modeled raw data or effect sizes, and did or did

not standardize. Small sample functioning was examined through two simula-

tion studies, which showed that when data were consistent with assumptions the

bias was consistently less than 5% of the effect size for each method, whereas

root mean squared error varied substantially across methods. When assump-

tions were violated, substantial biases were found. Implications and limitations

are discussed.
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Multiple baseline (MB) designs are a type of single-case experimental design

that includes multiple time series, typically stemming from multiple cases.

For case j (of the J cases) in a study, the dependent variable is repeatedly

measured Ij times including Aj baseline observations and I j � Aj treatment obser-

vations. The transitions between the baseline and treatment phase are temporally

staggered across the J cases (i.e., Aj 6¼ Aj0 for pair of cases j 6¼ j0; Baer et al.,

1968). MB designs are becoming more prevalent in behavioral research and

education research, and as they do, there is growing interest in estimating treat-

ment effects and meta-analyzing the results from these designs (e.g., Hedges

et al., 2013; Pustejovsky et al., 2014; Van den Noortgate & Onghena, 2003a,

2003b, 2008).

Estimation of a raw score effect size (ct) at focal time t, or a corresponding

standardized effect size (dt), often relies on the application of a mixed linear

model. Typically, the model is based on a within-case comparison conceptuali-

zation that relies on assumptions about the form of the growth trajectories in the

baseline and treatment phases and on the extrapolation of the baseline trajec-

tories. As a consequence, the treatment effect estimates are susceptible to bias

when there is misspecification of the form of the trajectory (e.g., specification of

a linear trend when growth is nonlinear) or when the errors in the time series are

not stationary, such as when some unmeasured variable leads to a shift in the

level of the time series (Ferron et al., 2014). These concerns become more

pronounced when observation series are short and thus the data available to

evaluate competing models are limited. Concerns with potential bias in the

treatment effect estimates have led to the consideration of different estimators

of ct that focus on contrasting the responses of the cases that are in treatment to

the responses of the cases that are still in baseline (Ferron et al., 2014). Hence-

forth, we refer this approach as the between-series estimators of ct because the

estimator compares observations between the treatment and baseline phases

across participants at certain time points.

The purpose of this study is to develop and compare alternative methods of

estimating the average treatment effect in the meta-analysis of MB studies. We

will consider eight approaches that differ in whether the effect estimates are

based on within- or between-series comparisons, whether individual participant

data or effect sizes are meta-analyzed, and whether effects are or are not stan-

dardized (see Figure 1). For the methods based on within-case comparisons, our

methods involve just minor adaptions to methods that have already been exam-

ined. The methods based on between-case comparisons are more novel because

neither meta-analytic effect estimates nor standardized effect estimates have

been previously developed. Because approximate small sample size adjustments

will be used in our methods, simulations will be used to compare the alternative

methods of estimating ct and dt in terms of parameter bias and root mean squared

error (RMSE).
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To illustrate the difference between the within-series and between-series

approaches, see Table 1. All values of the MB study would be used in the

within-series approach, which focuses on contrasting the treatment values (B)

to the baseline values (A) within each row. The between-series approach differs

in that it uses only the observations from the between-subject subexperiments,

those that are enclosed in boxes in Table 1, and then contrasts the observations of

those in treatment for some specific amount of time to the observations at the

same time point of those individuals who are still in baseline (i.e., the B values to

the A values within the same column of the enclosed boxes in Table 1).

More formally, the design matrix for the fixed effects, X, from the mixed

linear model equation, Y ¼ X� þ Zvþ � , is defined with two sets of

dummy variables. Suppose there are l ¼ 1, . . . , L subexperiments for the MB

design (e.g., L ¼ 2 in Table 1, each subexperiment is enclosed within a box) and

m ¼ 1, . . . , M observations after the start of treatment in the L subexperiments

(e.g., if interested in the effect at one, two, and three observations into treatment,

then M ¼ 3, as in Table 1). Then, there are LM indicator variables included to

gauge the mean baseline level in each of the L subexperiments at each of M times

of interest following treatment. Second, there are M treatment indicator variables

to index the effect at each of the M points in time after the start of treatment,

where the treatment effects are assumed the same across subexperiments.

If participants are randomly assigned to conditions with shorter versus longer

baselines, the between-subject subexperiments are randomized experiments and

thus the treatment effect can be shown to be unbiased with fewer assumptions

than needed when using the within-series approach. Specifically, the between-

series comparison approach does not rely on assumptions about the form of

growth trajectories or extrapolation, and thus unbiased treatment effect estimates

can be obtained across a broader range of contexts. However, the between-series

estimates of ct are less precise and if the participants are not randomly assigned

to baselines the biases may be more severe (Ferron et al., 2014).

To get more precise estimates of ct and to capitalize on the increase in the

prevalence of MB studies, there is growing interest in combining estimates

across studies. When all studies use the same dependent variables measured on

the same scale (Moeyaert, Ferron, et al., 2014), the meta-analytic extensions of

the estimators for ct are relatively straightforward. Meta-analytic estimators of

ct based on the within-series comparison approach have been proposed and

studied, whereas meta-analytic estimators of ct based on the between-series

comparison approach have not been previously developed. In either case, ct

could be directly estimated from a mixed linear model of the individual partici-

pant data (for the within-series comparison approach, see Moeyaert, Ugille, et al.,

2014; Owens & Ferron, 2012; Van den Noortgate & Onghena, 2008) or could be

estimated using a traditional meta-analytic approach where effect estimates are

first obtained for each individual or each study and then these estimates are

combined within and across studies (for the within-series comparison approach,
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see Ugille et al., 2012; Van den Noortgate & Onghena, 2008). The relative

advantages of meta-analyses based on aggregated data versus individual partici-

pant data have been discussed in the literature on meta-analyzing group studies

(Cooper & Patall, 2009; Riley et al., 2010), but not studied for meta-analysis of

single-case studies. Both options are generally available when synthesizing MB

studies because the individual data are provided graphically in standard reports of

MB studies.

A potential difficulty that arises when effect estimation is based on data from

multiple studies is that there may be different operationalizations of the depen-

dent variable from study to study. Meta-analysts typically deal with scale varia-

tion by using a standardized effect size measure. The relative advantages and

limitations of meta-analysis of standardized versus raw score mean differences

have been discussed in the context of group comparison meta-analyses (Bond

et al., 2003), and a variety of methods for standardizing effects have been

considered for single-case research (Ugille et al., 2012; Van den Noortgate &

Onghena, 2008). The approach we follow here is to choose the standardized

mean difference, d, as the effect size measure. For d, both the within- and

between-case variance is used in the standardization and thus it is comparable

to the standardized mean difference commonly used in meta-analysis of group

comparison studies’ results. Estimators of d that assume the effect is consistent

over time have been developed (Hedges et al., 2013), and estimators of d at time

t (dt) based on the within-series comparison approach have been defined for

estimating effects in a single MB study (Pustejovsky et al., 2014) and when

using data from a group of MB studies (Van den Noortgate & Onghena,

2008). However, small sample estimates of dt using the within-series approach

have only been examined in the context of primary studies (Pustejovsky et al.,

2014), not meta-analysis. Furthermore, between-series estimators of dt have not

been previously developed and investigated.

Meta-Analytic Methods of Estimating �t and �t

A variety of purposes may motivate the meta-analysis of multiple-baseline

studies. In some situations, the goal is to use the data from all the studies to get an

estimate of the average treatment effect, whereas in other situations, the purpose

is to examine variation in the treatment effect across cases and identify mod-

erators of the individual treatment effects. Our focus here is on the former. By

focusing on estimating the average effect, it opens up the opportunity to consider

between-series approaches (Ferron et al., 2014) and design comparable effect

sizes (i.e., those that standardize the raw score effect in a manner comparable to

group comparison studies; Hedges et al., 2013; Pustejovsky et al., 2014).
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Within-Series Approach to Estimating ct Using Individual Participant

Data (ĉ
W

IPD)

The unstandardized effect size estimate ct can be obtained by specifying and

estimating a three-level mixed linear model for the individual participant data

that reflect the meta-analyst’s assumptions regarding variation in the dependent

variable within individuals, across individuals within a study, and across studies.

Consider Y ijk is an observation at the ith measurement occasion, for the jth case

in the kth study. As described previously, let Txijk be a dummy variable such that

Txijk ¼ 1 if Y ijk is in the treatment phase, and Txijk ¼ 0 if Y ijk is in the baseline

phase, and let Timeijk be a time variable centered per individual so that

Timeijk ¼ 0 at the time of interest. A common specification of the within indi-

vidual, or level-1 model, is based on the assumption that trends are linear within

phase:

Y ijk ¼ p0jk þ p1jkTxijk þ p2jkTimeijk þ p3jkTxijkTimeijk þ eijk ; (1)

and that the error term eijk is normally distributed with zero mean and a first-order

autoregressive covariance structure. That is, Covðeijk ; ei0jkÞ ¼ rji�i0 js2
e for i 6¼ i0

and thus if r¼ 0, then eijk * Nð0; s2
eÞ. The coefficients of the within-individual

model are typically assumed to vary randomly across individuals within a study,

p0jk ¼ g00k þ u0jk ;

p1jk ¼ g10k þ u1jk ;

p2jk ¼ g20k þ u2jk ;

p3jk ¼ g30k þ u3jk ;

(2)

and the residual vector, U ¼ [u0jk , u0jk , u0jk , u0jk], is assumed distributed as

MVNð0;ΣU Þ, where ΣU is typically assumed unstructured (Pustejovsky et al.,

2014) or diagonal (Moeyaert et al., 2015) with variances s2
u0, s2

u1, s2
u2, and s2

u3.

The coefficients from the second level of the mixed linear model are then

assumed to vary randomly across studies,

g00k ¼ b000 þ v00k ;

g10k ¼ b100 þ v10k ;

g20k ¼ b200 þ v20k ;

g30k ¼ b300 þ v30k ;

(3)

and the residual vector, V ¼ [v0jk , v0jk , v0jk , v0jk], is assumed distributed as

MVNð0;ΣV Þ, where ΣV is typically assumed unstructured (Moeyaert et al.,

2015) or diagonal (Moeyaert, Ferron, et al., 2014) with variances s2
u0, s2

u1,

s2
u2, and s2

u3. Then, the effect size estimate at the time of interest is

ĉ
W

IPD ¼ b̂100 (4)
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The subscript IPD indicates individual participant data and the superscript W

stands for the within-series approach. Restricted maximum likelihood (REML)

estimation of effects using this approach has been previously examined

(Moeyaert, Ugille, et al., 2014). Because this estimator is equal to a fixed effect

of a REML estimated mixed linear model, it is the empirically best linear

unbiased estimator (EBLUE), and under relatively general conditions would

be unbiased (Robinson, 1991). Simulation studies have shown little to no bias

of this estimator for MB data, assuming the function form of the model is

correctly specified (Moeyaert, Ugille, et al., 2014). However, when the func-

tional form is misspecified, the estimate may be substantially biased, and infer-

ences may be inaccurate. The approach also relies on assumptions of

homogeneity of error variances and random effect variances across studies, and

if these homogeneity assumptions do not hold, the inferences may be jeopar-

dized. In addition, because the treatment variable is a level-1 variable (i.e., a

variable that varies within participants), we expect the asymptotic order of mag-

nitude of the error variance of ĉ
W

IPD would be inversely related to the total sample

size based on the analytic work on mixed linear models of Snijders and Bosker

(1993). Thus, for this estimator, we would expect that longer series lengths, more

participants within a study, and more studies would lead to more precise

estimates.

Between-Series Approach to Estimating ct Using Individual

Participant Data (ĉ
B

IPD)

In addition, the between-series approach can be used to obtain unstandardized

effect size estimate ct using individual participant data. The steps are as follows:

(1) select for analysis the treatment observations gathered 1 to M observations

after the start of treatment and the baseline observations at the same points in

time in each of the L subexperiments from each of the K studies, and then (2)

specify and estimate a mixed linear model consistent with assumptions regarding

variation in the dependent variable within the subexperiments of a study and

across studies. The mixed linear model presented here is an extension of the

single study model discussed by Ferron et al. (2014).

Suppose that in the K studies, there are L þ 1 baseline lengths and thus a total

of L subexperiments, where the individuals in treatment for 1 to M observations

can be compared to the individuals in baseline at those same points in time in

each of the L subexperiments. Suppose LM þ M is the number of dummy vari-

ables, where the first LM dummy variables indicate at which of the LM time

points the observation is taken, such that Plm
ijk ¼ 1 if Y ijk is a mth observation

(m ¼ 1, . . . , M) from lth subexperiment (l ¼ 1, . . . , L), and Plm
ijk ¼ 0, otherwise.

Furthermore, M is the number of dummy variables indicating at which of the M

points in time after the start of treatment the observation is taken, such that
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PLMþm
ijk ¼ 1 if Y ijk is from time m after the start of treatment, and PLMþm

ijk ¼ 0,

otherwise. Then, the first level of the mixed linear model can be described as

Y ijk ¼
XL

l¼1

XM

m¼1

glmkPlm
ijk þ
XM

m¼1

gðLMþmÞkPLMþm
ijk Txijk þ eijk ; (5)

where the errors are assumed homogeneous across subexperiments and studies but

heterogeneous across phases such that for each subexperiment eijk e MVNð0;ΣeAÞ
for baseline phase observation errors and eijk e MVNð0;ΣeBÞ for treatment phase

observation errors and where ΣeA and ΣeB can be assumed to follow the same

structure used in the within-series model. In general, the heterogeneous variance

structure across phases for the between-series model (e.g., ΣeA and ΣeB) is consid-

ered as the correctly specified model if treatment effect variance is nonzero. Pre-

vious study (Joo & Ferron, 2019) has shown that the between-series model

assuming a homogeneous variance structure across phases yielded underestimated

standard errors of the treatment effect estimate and consequently inflated power

and Type I error rates. On the other hand, the between-series model with the

heterogeneous variance structure showed unbiased standard error estimates, and

inferences for the treatment effect were accurate. By selecting observation m into

treatment such that it corresponds to the time t of interest, the treatment effect of

interest for study k is gðLMþmÞk , which is assumed constant across subexperiments.

This single study model is extended to account for multiple studies by assum-

ing the coefficients from this model vary randomly across studies:

g1k ¼ b10 þ u1k ;

g2k ¼ b20 þ u2k ;

: : :

gðLMþMÞk ¼ bðLMþMÞ0 þ uðLMþMÞk :

(6)

The residual vector, U ¼ [u1k , u2k , . . . , uðLMþMÞk], is assumed distributed as

MVNð0;ΣU Þ, where ΣU is a diagonal matrix with elements, s2
u11

, s2
u22

, . . . ,

s2
uðLMþMÞðLMþMÞ

. Then, the effect estimate equals

ĉ
B

IPD ¼ b̂ðLMþMÞ0: (7)

The superscript B indicates that the effect size estimate is from the between-

series approach.

Similar to the within-series approach, REML can be used to estimate the

mixed linear model. Because ĉ
B

IPD is a fixed effect estimate from a REML

estimated mixed linear model, this between-series estimator would be the

EBLUE and thus we anticipate it to be approximately unbiased, assuming correct

model specification. This expectation is consistent with simulation studies that

have examined the study specific effect size estimator gðLMþmÞk (Ferron et al.,
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2014; Joo & Ferron, 2019). Of note, these simulations relied on random assign-

ment of participants to baseline lengths, and without random assignment the

estimates may be biased. Furthermore, like the previous approach, this approach

relies on assumptions of homogeneity of error variances and random effect

variances across studies. In addition, the fixed effect is associated with a variable

that varies between individuals for each subexperiment (not within the individ-

uals like ĉ
W

IPD), so we expect based on the analytic work of Snijders and Bosker

(1993) that the asymptotic order of magnitude of the error variance of ĉ
B

IPD

would be inversely related to the number of participants in the subexperiments

but not the series length. Thus, increasing the number of participants per

multiple-baseline study, the number of subexperiments within the multiple-

baseline study, and the number of studies in the meta-analysis would be expected

to increase the precision of the estimate.

Within-Series Approach to Estimating dt Using Individual

Participant Data (d̂
W

IPD)

The estimate of the standardized effect dt can be obtained using the within-

series comparison approach by utilizing the following three step process: (1)

specify and estimate a two-level mixed linear model for each of the K studies

based on researcher assumptions regarding variation in the dependent variable

within individuals and across individuals within a study; (2) for each of the K

studies, standardize the data; and (3) specify and estimate a three-level mixed

linear model for the standardized data, where the first two levels are consistent

with the model used for standardizing and the third is based on researcher

assumptions about variability in effects across studies.

To define d̂
W

IPD more formally, suppose the two-level mixed linear model

defined in Equations 1 and 2 is estimated for each of the K studies. Further

assume the covariance structure at level-1 is assumed first order autoregressive

and the covariance structure at level-2 is assumed unstructured. The variance for

a mixed linear model is V ¼ ZGZT þ R. The diagonal element of ZGZT that

indexes the between-participant variance in study k when Txijk ¼ 0 and when

Timeijk ¼ 0 is s2
u0k , and the corresponding diagonal element of R, which indexes

the within-participant variance, is s2
ek . Thus, the variance needed for standardi-

zation is s2
u0k þ s2

ek .

Using the variance estimates from the two-level mixed linear model, the raw

observations are standardized:

Y
WðsÞ
ijk ¼ Y ijkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2
ek þ ŝ2

u0k

q JðxÞ; (8)
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where ŝ2
ek is the estimated within-participant variation for study k, ŝ2

u0k is the

estimated between-participant variation in baseline levels estimated for kth

study, and JðxÞ ¼ 1� 3
4x�1

is an approximate bias correction used in estimating

standardized effect sizes from this two-level mixed linear model (Hedges, 1981;

Pustejovsky et al., 2014). We use x ¼ IJ � 4 to estimate the degrees of freedom,

following Van den Noortgate and Onghena (2008) and preliminary simulations

that showed little bias when this relatively simple approach was used to estimate

degrees of freedom (for a more complex alternative, see Pustejovsky et al.,

2014). The superscript W(s) of Y in Equation 8 indicates standardized observa-

tions using the within-series model.

Following standardization, the standardized observations, Y
W ðsÞ
ijk , can be

placed into a single data set and then the three-level mixed linear model pre-

sented in Equations 1 through 3 can be specified and estimated using REML.

Then, the effect size estimate at the time of interest is

d̂
W

IPD ¼ b̂100: (9)

This estimator has not been previously defined or studied, and unlike ĉ
W

IPD, it

is not known to what degree d̂
W

IPD is biased. We anticipate the bias will be

relatively small when the model is correctly specified (e.g., correct functional

form of the relationship between time and the outcome and homogeneity of

error variances and random effect variances across studies) for a couple reasons.

First, although it is challenging to correct for bias in the variance estimate from

a single short time-series, we anticipate less problems because we are using a

mixed linear model with multiple time series. With a single short time series,

the autocorrelation parameter is part of the variance expression for the time

series, and because the estimation of autocorrelation is biased by an amount that

depends on the unknown autocorrelation parameter (Marriott & Pope, 1954), it

is challenging to correct for bias. However, in the context of a mixed linear

model, autocorrelation is estimated with less bias (Petit-Bois et al., 2016), and

more importantly, the autocorrelation parameter is not part of the variance

expression used for standardization. Second, the approximate bias correction

for small sample size that we use has been shown to work relatively well in

related estimators with similar sample sizes (Pustejovsky et al., 2014; Ugille

et al., 2014). However, when a more complex error structure is estimated for a

mixed linear model (e.g., a first-order autoregressive covariance structure at

level-1 as opposed to s2
ekI), the RMSE would be expected to be larger. In

addition, the process of standardizing the data creates an additional source of

error in the estimator, and as a result, we would anticipate the precision of d̂
W

IPD

would be less than that of ĉ
W

IPD, but further work is needed to index the size of

these differences.
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Between-Series Approach to Estimating dt Using Individual Participant

Data (d̂
B

IPD)

Alternatively, the standardized effect size estimate dt can be obtained using

the between-series comparison approach by utilizing the following three step

process: (1) specify and estimate a single-level between-series model for each

of the K studies; (2) for each of the K studies, standardize the observations from

the subexperiments; and (3) specify and estimate a two-level mixed linear model

for the standardized individual participant data, where the first level is consistent

with the model used for standardizing and the second is based on researcher

assumptions about variability across studies.

To formally define d̂
B

IPD, suppose the single-level between-series model in

Equation 5 is estimated for each of the K studies using REML. Then, the stan-

dardized observations, Y
BðsÞ
ijk , are obtained:

Y
BðsÞ
ijk ¼

Y ijkffiffiffiffiffiffiffiffiffi
ŝ2

eAk

q JðxÞ; (10)

where ŝ2
eAk is the estimated baseline phase error variance from the between-

series estimator (which is a combination of within- and between-case variation

in the baseline phase) for study k. Also, JðxÞ ¼ 1� 3
4x�1

is a bias correction

factor, where we estimated the degrees of freedom as x ¼ N Bkþ
NAk � ðLþ 1Þ, where NBk is the number of treatment phase observations in the

L subexperiments of study k, and NAk is the number of baseline observations at

that same point in time in the L subexperiments of study k. Similar to the within-

series approach for estimating dt, the standardized observations, Y
BðsÞ
ijk , are then

used to estimate the two-level between-series model as shown in Equations 5 and

6. The effect size estimate at the time of interest is

d̂
B

IPD ¼ b̂ðLMþMÞ0: (11)

This between-series estimator for the standardized data at the study-level has

not been previously defined or investigated. Because the variance estimates are

expected to have small sample bias, even when participants are randomly

assigned to baselines and the homogeneity of error variances and random effect

variances across studies hold, an approximate bias correction is used. However,

further work is needed to assess the degree to which the meta-analytic estimator

d̂
B

IPD is biased, as well as whether it is more biased than d̂
W

IPD. In addition, for the

same reasons that ĉ
B

IPD is expected to be less precisely estimated than ĉ
W

IPD, we

expect d̂
B

IPD to be less precisely estimated than d̂
W

IPD. Furthermore, it is antici-

pated that d̂
B

IPD would be estimated with less precision than ĉ
B

IPD, but again

Meta-Analysis of Multiple Baseline Studies

142



additional work is needed to index the loss of precision that comes from

standardizing.

Within-Series Approach to Estimating ct Using Aggregate Data (ĉ
W

AD)

An alternative within-series approach to estimating the unstandardized effect

size, ct, is to estimate the effect size for each of the K studies and then meta-

analyze the effect size estimates using the following two step process: (1) specify

and estimate the two-level mixed linear model in Equations 1 and 2 for each of

the K studies and obtain the study-specific treatment effect estimates from the

fixed effects (i.e., ĝ10k from Equation 2) and their corresponding standard errors,

and (2) specify and estimate a model for the treatment effects using the inverse

sampling variance as weights.

More specifically, let ĉ
W

k be the estimated within-series effect size for study

k, which is estimated through REML from the within-series model in Equations 1

and 2. Then, the effect size for K studies can be estimated with the meta-analytic

model:

ĉ
W

k ¼ bW
0 þ uW

k þ eW
k ; (12)

where uW
k , the deviation of the true effect size for study k from the mean true

effect size, is assumed distributed as Nð0;s2
WukÞ, and the residual, eW

k ; is assumed

distributed as Nð0;s2
WukÞ. If one assumed the true effect size did not vary across

studies, uW
k could be removed from Equation 12 yielding a fixed effect meta-

analytic model. The effect size estimate from the aggregate data within series

approach is

ĉ
W

AD ¼ b̂
W

0 : (13)

The subscript AD in Equation 13 indicates that the effect size estimate is derived

from aggregated data.

Note that the meta-analytic within-series estimator for aggregated data ĉ
W

AD is

estimated with a two-step estimation procedure. In the first step, the two-level

mixed linear model in Equations 1 and 2 is used to obtain study specific estimates

of ĉ
W

k , which are EBLUE. In the second step, the meta-analytic mean (or

weighted combination) of these independent estimates is obtained, and thus

ĉ
W

AD is expected to be an approximately unbiased estimator as long as the model

in the first step was correctly specified. In addition, because the treatment vari-

able is a level-1 variable in the multilevel models estimated in the first step, we

expect the asymptotic order of magnitude of the error variance of the study

specific effect estimates to be inversely related to the number of observations

collected for the study. Furthermore, the error variance for ĉ
W

AD would be

expected to depend on the number of studies being aggregated in the second
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step, as well as the error variances, and thus similar to ĉ
W

IPD; we expect that ĉ
W

AD

will become more precise with longer series lengths, more participants within a

study, more studies, and less variability in the true effects between studies.

Between-Series Approach to Estimating ct Using Aggregate Data (ĉ
B

AD)

Similarly, an alternative between-series approach to estimating the unstandar-

dized effect size, ct, involves a two-step process: (1) specify and estimate the

between-series model of Equation 5 for each of the K studies and obtain the study

specific treatment effect estimates from the fixed effects (i.e., gðLMþMÞk from

Equation 5), and (2) specify and estimate a model for the treatment effects using

the inverse standard errors as weights.

More specifically, let ĉ
B

k be the estimated between-series effect size for study

k from the between-series model in Equation 5. Then, the meta-analytic model is

ĉ
B

k ¼ bB
0 þ uB

k þ e B
k ; (14)

where uB
k , the deviation of the true effect size for study k from the mean true

effect size, is assumed distributed as Nð0;s2
BukÞ, and the residual, eB

k ; is assumed

distributed as Nð0;s2
BekÞ. If one assumed the true effect size did not vary across

studies, uB
k could be removed from Equation 14 yielding a fixed effect meta-

analytic model. The meta-analytic mean effect size for the K studies can be

estimated from the meta-analytic model by using weighted least square (WLS)

methods in which the study effect sizes are weighted by their precision. The

effect size estimate can be obtained as

ĉ
B

AD ¼ b̂
B

0 : (15)

Similar to the within-series approach, the meta-analytic between-series esti-

mator for aggregated data ĉ
B

AD is estimated with a two-step approach (i.e., the

models described in Equations 5 and 14). The study specific estimator ĉ
B

k has

been previously studied though simulations, in which all bias estimates were

close to 0 (Ferron et al., 2014). Because the between-series estimator ĉ
B

AD is a

meta-analytic mean of independent approximately unbiased estimates, ĉ
B

k , we

would expect that ĉ
B

AD is an approximately unbiased estimator. Furthermore, the

asymptotic order of magnitude of the estimation variance of a study specific

effect is expected to be inversely related to the number of subexperiments and

participants in the study. The variance of ĉ
B

AD would be expected to depend on

the number of studies being aggregated, the study specific effect size variances,

and the variance in true effect sizes between studies, and thus similar to ĉ
B

IPD; we

expect that ĉ
B

AD will become more precise with less variance in true effect sizes
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between studies, more participants within a subexperiment, more subexperi-

ments, and more studies, but not with longer series.

Within-Series Approach to Estimating dt Using Aggregate Data (d̂
W

AD)

An alternative within-series approach to estimating standardized effect size,

dt, is to estimate the standardized effect size for each of the K studies and then

meta-analyze the standardized effect size estimates using the following two step

process: (1) specify and estimate the two-level mixed linear model in Equations 1

and 2 for each of the K studies and compute the study specific standardized

treatment effect estimates, dk , and (2) specify and estimate a meta-analytic model

for the treatment effects.

For study k, the standardized treatment effect when assuming the model from

Equations 1 and 2 is

dW
k ¼

g10kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ek þ s2
u0k

q ; (16)

where g10k is the unstandardized treatment effect at time t of interest, s2
ek is the

within-participant variation for study k, and s2
u0k is the between-participant

variation in baseline levels estimated for study k. The study specific effect is

estimated with the bias correction factor:

d̂
W

k ¼
ĝ10kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2
ek þ ŝ2

u0k

q JðxÞ: (17)

The meta-analytic model for the treatment effects is

d̂
W

k ¼ bW
0 þ uW

k þ eW
k ; (18)

where uW
k , the deviation of the true effect size for study k from the mean true

effect size, is assumed distributed as Nð0;s2
WukÞ, and the residual, eW

k ; is assumed

distributed as Nð0;s2
WekÞ. A fixed effect meta-analytic model could be obtained

by removing uW
k from Equation 18. The effect size estimate at the time of interest

is

d̂
W

AD ¼ b̂
W

0 : (19)

The meta-analytic within-series model for standardized aggregated data also

involves a two-step estimation procedure (i.e., the model described in Equations

1, 2, 17, and 18). Pustejovsky et al. (2014) investigated a study specific standar-

dized treatment effect size estimator that differed from the first step in of our

estimator only in the method of estimating the degrees of freedom for the bias

correction and found the bias was relatively small across a variety of models and

simulation conditions (absolute bias less than 3% when there was at least four
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participants). Because our estimator d̂
W

AD is a meta-analytic mean of treatment

effect estimates that are expected to be slightly biased, we would expect it too to

be slightly biased.

Between-Series Approach to Estimating dt Using Aggregate Data (d̂
B

AD)

An alternative between-series approach to estimating standardized effect size,

dt, is to estimate the effect size for each of the K studies and then meta-analyze the

effect size estimates using the following two step process: (1) specify and estimate

the between-series model in Equation 5 for each of the K studies and compute the

study specific treatment effect estimates dk , and (2) specify and estimate a meta-

analytic model for the treatment effects using the precision as weights.

For study k, the standardized treatment effect is

dB
k ¼

g ðLMþMÞkffiffiffiffiffiffiffiffiffi
s2

eAk

q ; (20)

where gðLMþMÞk is the unstandardized treatment effect at time t of interest after

the start of intervention and s2
eAk is the combined within- and between-

participant variation for study k during baseline (as defined by Equation 5). The

estimated effect for study k is

d̂
B

k ¼
ĝðLMþMÞkffiffiffiffiffiffiffiffiffi

ŝ2
eAk

q JðxÞ: (21)

The meta-analytic model for the treatment effects is

d̂
B

k ¼ bB
0 þ uB

k þ eB
k ; (22)

where the residuals uB
k and eB

k are assumed normally distributed, with variances of

s2
Buk and s2

Bek , respectively. A fixed effect meta-analytic model could be

obtained by removing uB
k from Equation 22. The effect size estimate at the time

of interest is

d̂
B

AD ¼ b̂
B

0 : (23)

Neither the standardized study-specific effect size estimator using the

between-series model (d̂
B

k Þ nor the meta-analytic estimator d̂
B

AD has been previ-

ously defined or examined. Because these estimators make use of variance com-

ponents that are estimated through REML with small sample sizes, some bias is

expected, and thus an approximate correction for small sample size bias was

proposed. However, simulation work is needed to index the amount of bias

associated with the estimator d̂
B

AD. In addition, we expect d̂
B

AD to be less precisely

estimated than d̂
W

AD for the same sample size reasons the other between-series
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estimators are expected to be less precisely estimated than their within-series

counterparts. Furthermore, it is anticipated that d̂
B

AD would be estimated with less

precision than ĉ
B

AD, but again additional work is needed to index the loss of

precision that comes from standardizing.

Purpose of the Study

Because REML estimation of the meta-analytic effect in each of the eight

methods is based on large sample theory, two simulation studies were conducted

to empirically compare the proposed methods for estimating ct and dt under

various small sample size conditions. In the first simulation study, we examined

the accuracy of the eight methods for estimating the meta-analytic effect sizes

under the conditions where each of the models was correctly specified. It is

important to note, however, that the assumptions are not the same for each

method. The within-series estimators rely on the assumption that the functional

form of the relationship between time and the outcome is correctly specified,

whereas the between-series estimators rely on the assumption that participants

are randomly assigned to baseline lengths. In addition, the IPD approaches rely

on assumptions of homogeneity of error variance and random effect variances

across studies, which are relaxed in the AD models. In a second simulation study,

we examined the accuracy of eight methods under the conditions where some of

the model assumptions are not satisfied.

Simulation Study 1

The purpose of the first simulation study was to compare the eight mixed

linear modeling approaches to meta-analyzing MB studies. Of particular interest

was determining to what degree there is bias in the standardized effect estimators

(d̂
W

IPD; d̂
B

IPD; d̂
W

AD, and d̂
B

AD). Also of interest was the degree to which the

standardized estimators are less precise than their unstandardized counterparts

(e.g., error variance in d̂
W

IPD versus ĉ
W

IPD) and to what degree the between-series

estimators are less precise than the within-series estimators (e.g., error variance

of ĉ
W

IPD versus ĉ
B

IPD).

Factors that were manipulated in this simulation study included the series

length, number of participants per study, number of studies, and level of model

complexity. The series length was varied using two levels, 20 and 40, and the

number of participants per study was 4 or 8, which is commonly observed in MB

studies (e.g., Botella et al., 2000; Rantz et al., 2009). The same number of

participants was assumed across studies. When there were four participants, each

participant entered into the treatment phase at different time points, resulting in

three occasions of temporal staggering. When the series length was 20, the base-

line lengths were 5, 8, 11, and 14; whereas when the series length was 40, the
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baseline lengths were 10, 16, 22, and 28. With eight participants, two participants

entered into the treatment phase at the same time. The baseline lengths for 20 and

40 observations were the same for eight participant designs as they were for four

participant designs. The number of studies was varied using 10 or 30, which

represents a small or medium number of studies included in the meta-analyses of

single-case design, respectively (e.g., Ganz et al., 2012; Wang et al., 2011).

Model complexities considered in this study included no trend in any phase,

trend in the treatment phase, and trend in the treatment phase plus autocorrela-

tion, which is commonly observed in MB studies.

Data were generated based on the three-level model in Equations 1–3. That is,

the level-1 error term, eijk , was generated from a first-order autoregressive

process with a mean of 0, the variance of .67, and an autocorrelation (r) varying

at 0 or .20. The level-2 error terms, u0jk and u1jk , were independently generated

from a normal distribution with means of 0 and variances of .33. Also, u2jk and

u3jk were assumed to be 0, indicating the time trends in baseline and treatment are

the same for all cases. The level-3 error terms, n00k and n10k , were independent

and normally distributed with means of 0 and variances of .50 and 0, respec-

tively, and v20k and v30k were fixed at 0, implying that the time trends in baseline

and treatment are the same for all studies. When no trend in the baseline phase

was generated, the treatment effect, b100, equaled 1, and the other fixed effect

parameters (b000, b200, and b300) were fixed at 0. In the second condition, in

which a linear trend in the treatment phase was generated, we set b100 ¼ .50, and

b300 ¼ .25. On top of this linear trend, a first-order autoregressive model with

r of .20 was generated for the third model-generating condition. Series were

generated using the ARMASIM function in SAS (SAS Institute, 2014) and thus

adding autocorrelation was accompanied by a decrease in the white noise var-

iance so that the within-series variance stayed at .67 across conditions. We chose

those population values for the fixed and variance component parameters to

make the population standardized as well as unstandardized effect parameters

equal to 1.

For each of the 24 conditions (2� 2� 2� 3), 3,000 data sets were simulated.

For each data set, the treatment effect was estimated using each of the eight

estimators introduced earlier, which varied depending on whether researchers

choose to use within-series or between-series models, analyze individual parti-

cipant data or study effect sizes, and to standardize or not. For analyzing effect

sizes, we used a fixed effects meta-analytic model. All mixed linear models were

estimated using REML through the Mixed Procedure in SAS and all WLSs

regressions were estimated using the Regression Procedure in SAS. To make

the results comparable between within-series and between-series estimation, all

treatment effects were estimated at a time three observations into the treatment

phase. That is, for all the estimators that are based on the between-series models,

the treatment effect at the third point into the treatment phase was estimated
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(i.e., M ¼ 3 in Equations 5 and 6), and for all estimators based on the within-

series models time was centered per participant so that when a trend was esti-

mated, the treatment effect corresponded to the time of the third treatment

observation. In addition, all models estimated were specified to match the model

used in data generation. When the data generation model did not include time

trends, time effects were not included in the model estimated, and when the data

were generated with an autocorrelation parameter of 0, no autocorrelation para-

meter was included in the model estimated. Thus, the complexity of the models

estimated increased with the complexity of the data generated. The SAS codes

for estimating effect sizes with the within- and between-series estimators are

available in the Appendix in the online version of the journal.

Simulation outcomes of focal interest included bias in the average treatment

effect across studies and the RMSE associated with this effect. Bias and RMSE

were computed as

Bias ¼

X3;000

i¼1
ŷi � yi

3; 000
; (24)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3;000

i¼1
ðŷi � yiÞ2

3; 000
;

vuuut
(25)

where ŷi is the estimated parameter of interest, and yi is the true parameter for the

ith replicated data.

Study 1 Results

Table 2 shows the bias of the eight approaches for the effect size estimates. As

shown in Table 2, minimal bias across the eight approaches was found. Less than

3% relative bias was observed across simulation conditions. Maximum bias,

2.5% of the population value, was observed when the between-series model was

used to analyze the standardized effect sizes with the smallest sample size con-

dition (I ¼ 20, J ¼ 4, and K ¼ 10). Overall, when the meta-analysis was per-

formed for the standardized effect size, more bias was observed than the

unstandardized effect size. For example, for the condition where the within-

series model was used to analyze IPD when the sample size was relatively small

(I ¼ 20, J ¼ 4, and K¼ 10) and only the level effect was present, the bias of the

standardized data was 1.5% as opposed to 0% for the unstandardized data. This

pattern is consistent across simulation conditions. As expected, the unstandar-

dized effect estimators showed no notable bias (the relative bias is less than 1%
across all conditions). For the standardized effect estimators, there was only a

small amount of bias, and this bias decreased with increasing sample size.

Joo et al.

149



T
A

B
L

E
2
.

P
er

ce
n
ta

g
e

o
f

B
ia

s
o
f

E
ig

h
t

A
p
p
ro

a
ch

es
fo

r
E

ff
ec

t
S
iz

e
E

st
im

a
te

s

M
o
d
el

C
o
m

p
le

x
it

y
S

ca
le

D
at

a
F

it
te

d
M

o
d
el

K
¼

1
0

K
¼

3
0

J
¼

4
J
¼

8
J
¼

4
J
¼

8

I
¼

2
0

I
¼

4
0

I
¼

2
0

I
¼

4
0

I
¼

2
0

I
¼

4
0

I
¼

2
0

I
¼

4
0

L
ev

el
o
n
ly

R
aw

IP
D

W
it

h
in

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

B
et

w
ee

n
0
.2

0
.0

�
0

.2
0
.4

0
.2

�
0
.4

�
0
.3

�
0
.4

A
D

W
it

h
in

0
.0

0
.1

0
.0

0
.0

�
0
.1

0
.0

0
.0

0
.0

B
et

w
ee

n
0
.2

0
.0

�
0

.2
0
.4

0
.2

�
0
.4

�
0
.3

�
0
.4

S
td

.
IP

D
W

it
h
in

1
.5

1
.6

0
.9

0
.8

1
.1

1
.3

0
.7

0
.6

B
et

w
ee

n
2
.5

2
.4

0
.9

1
.5

2
.0

1
.8

0
.8

0
.7

A
D

W
it

h
in

0
.9

0
.3

0
.7

0
.3

0
.3

�
0
.1

0
.5

0
.1

B
et

w
ee

n
2
.5

2
.4

0
.9

1
.5

2
.0

1
.8

0
.8

0
.7

L
ev

el
an

d
sl

o
p
e

R
aw

IP
D

W
it

h
in

0
.0

�
0
.2

�
0
.1

0
.1

0
.3

0
.0

0
.1

�
0
.1

B
et

w
ee

n
�

0
.4

�
0

.6
0
.0

0
.2

�
0
.1

0
.5

�
0
.1

�
0
.1

A
D

W
it

h
in

�
0
.1

�
0
.1

�
0
.1

0
.0

0
.2

0
.0

0
.1

�
0
.2

B
et

w
ee

n
�

0
.3

�
0
.8

�
0

.1
0
.0

�
0
.4

0
.2

�
0
.2

�
0
.1

S
td

.
IP

D
W

it
h
in

1
.7

1
.3

0
.8

0
.9

1
.8

1
.4

1
.1

0
.6

B
et

w
ee

n
0
.5

0
.0

�
0
.2

�
0
.1

�
0
.1

0
.6

�
0
.6

�
0
.5

A
D

W
it

h
in

0
.9

0
.3

0
.4

0
.3

0
.8

0
.2

0
.6

0
.0

B
et

w
ee

n
�

0
.1

�
0
.7

�
0
.6

�
0
.5

�
0
.6

0
.0

�
0
.9

�
0
.8

(c
o
n
ti

n
u
ed

)

150



T
A

B
L

E
2
.

(c
o
n
ti

n
u
ed

)

M
o
d
el

C
o
m

p
le

x
it

y
S

ca
le

D
at

a
F

it
te

d
M

o
d
el

K
¼

1
0

K
¼

3
0

J
¼

4
J
¼

8
J
¼

4
J
¼

8

I
¼

2
0

I
¼

4
0

I
¼

2
0

I
¼

4
0

I
¼

2
0

I
¼

4
0

I
¼

2
0

I
¼

4
0

L
ev

el
,

sl
o
p
e,

an
d

A
R

(1
)

R
aw

IP
D

W
it

h
in

�
0

.2
0
.3

0
.1

0
.0

�
0
.1

0
.0

0
.0

�
0
.1

B
et

w
ee

n
�

0
.5

0
.2

0
.0

�
0
.1

0
.1

0
.1

0
.1

�
0
.2

A
D

W
it

h
in

�
0

.5
0
.2

0
.1

0
.2

0
.0

0
.0

0
.1

�
0
.1

B
et

w
ee

n
�

0
.1

0
.3

0
.0

0
.0

0
.0

0
.1

0
.1

�
0
.1

S
td

.
IP

D
W

it
h
in

1
.6

1
.9

1
.2

0
.9

1
.4

1
.4

1
.0

0
.7

B
et

w
ee

n
0
.3

0
.5

�
0
.7

�
0

.8
0
.0

0
.0

�
1
.0

�
1
.3

A
D

W
it

h
in

0
.7

0
.9

0
.8

0
.5

0
.5

0
.2

0
.6

0
.1

B
et

w
ee

n
�

0
.3

�
0
.1

�
1
.1

�
1
.1

�
0
.6

�
0
.5

�
1
.2

�
1
.5

N
o
te

.
B

ia
s

w
er

e
m

u
lt

ip
li

ed
b
y

1
0
0
.

K
¼

n
u
m

b
er

o
f

st
u
d
ie

s;
J
¼

n
u
m

b
er

o
f

p
ar

ti
ci

p
an

ts
;

I
¼

n
u
m

b
er

o
f

m
ea

su
re

m
en

t
o
cc

as
io

n
s;

S
td

.
¼

st
an

d
ar

d
iz

ed
;

IP
D
¼

in
d
iv

id
u
al

p
ar

ti
ci

p
an

t
d
at

a;
A

D
¼

ag
g
re

g
at

ed
d
at

a;
A

R
(1

)
¼

fi
rs

t-
o
rd

er
au

to
re

g
re

ss
iv

e;
w

it
h
in
¼

w
it

h
in

-s
er

ie
s

m
o
d
el

;
b
et

w
ee

n
¼

b
et

w
ee

n
-s

er
ie

s
m

o
d
el

.

151



T
A

B
L

E
3
.

R
o
o
t

M
ea

n
S
q
u
a
re

d
E

rr
o
r

o
f

E
ig

h
t

A
p
p
ro

a
ch

es
fo

r
E

ff
ec

t
S
iz

e
E

st
im

a
te

s

M
o
d
el

C
o
m

p
le

x
it

y
S

ca
le

D
at

a
F

it
te

d
M

o
d
el

K
¼

1
0

K
¼

3
0

J
¼

4
J
¼

8
J
¼

4
J
¼

8

I
¼

2
0

I
¼

4
0

I
¼

2
0

I
¼

4
0

I
¼

2
0

I
¼

4
0

I
¼

2
0

I
¼

4
0

L
ev

el
o
n
ly

R
aw

IP
D

W
it

h
in

.0
6
3

.0
4
5

.0
4
5

.0
3
2

.0
3
2

.0
3
2

.0
3
2

.0
0
0

B
et

w
ee

n
.2

3
0

.2
2
8

.1
6
1

.1
6
4

.1
3
4

.1
3
0

.0
9
5

.0
9
5

A
D

W
it

h
in

.0
7
1

.0
4
5

.0
4
5

.0
3
2

.0
4
5

.0
3
2

.0
3
2

.0
0
0

B
et

w
ee

n
.2

3
0

.2
2
8

.1
6
1

.1
6
4

.1
3
4

.1
3
0

.0
9
5

.0
9
5

S
td

.
IP

D
W

it
h
in

.0
8
4

.0
6
3

.0
5
5

.0
4
5

.0
4
5

.0
4
5

.0
3
2

.0
3
2

B
et

w
ee

n
.2

4
9

.2
4
9

.1
7
0

.1
7
3

.1
4
8

.1
4
1

.1
0
0

.1
0
0

A
D

W
it

h
in

.0
8
9

.0
7
1

.0
5
5

.0
4
5

.0
4
5

.0
4
5

.0
3
2

.0
3
2

B
et

w
ee

n
.2

4
9

.2
4
9

.1
7
0

.1
7
3

.1
4
8

.1
4
1

.1
0
0

.1
0
0

L
ev

el
an

d
sl

o
p
e

R
aw

IP
D

W
it

h
in

.1
4
8

.1
2
2

.1
0
5

.0
8
4

.0
8
4

.0
7
1

.0
5
5

.0
4
5

B
et

w
ee

n
.2

4
9

.2
5
7

.1
7
9

.1
7
9

.1
4
8

.1
4
5

.1
0
0

.1
0
5

A
D

W
it

h
in

.1
6
7

.1
3
8

.1
1
0

.0
9
5

.0
9
5

.0
8
4

.0
6
3

.0
5
5

B
et

w
ee

n
.3

0
8

.3
2
1

.1
9
2

.1
9
2

.1
8
4

.1
8
4

.1
1
4

.1
1
4

S
td

.
IP

D
W

it
h
in

.1
6
1

.1
3
0

.1
1
0

.0
8
9

.0
8
9

.0
7
7

.0
6
3

.0
5
5

B
et

w
ee

n
.2

9
7

.3
0
5

.1
8
7

.1
8
7

.1
7
3

.1
7
3

.1
1
0

.1
1
0

A
D

W
it

h
in

.1
7
0

.1
4
1

.1
1
0

.0
9
5

.0
9
5

.0
8
4

.0
6
3

.0
5
5

B
et

w
ee

n
.3

0
2

.3
1
1

.1
9
0

.1
9
0

.1
7
9

.1
7
6

.1
1
0

.1
1
0

(c
o
n
ti

n
u
ed

)

152



T
A

B
L

E
3
.

(c
o
n
ti

n
u
ed

)

M
o
d
el

C
o
m

p
le

x
it

y
S

ca
le

D
at

a
F

it
te

d
M

o
d
el

K
¼

1
0

K
¼

3
0

J
¼

4
J
¼

8
J
¼

4
J
¼

8

I
¼

2
0

I
¼

4
0

I
¼

2
0

I
¼

4
0

I
¼

2
0

I
¼

4
0

I
¼

2
0

I
¼

4
0

L
ev

el
,

sl
o
p
e,

an
d

A
R

(1
)

R
aw

IP
D

W
it

h
in

.1
5
5

.1
2
6

.1
1
0

.0
8
4

.0
8
4

.0
7
1

.0
6
3

.0
4
5

B
et

w
ee

n
.2

5
5

.2
5
3

.1
7
6

.1
7
9

.1
4
8

.1
4
5

.1
0
5

.1
0
5

A
D

W
it

h
in

.1
7
9

.1
4
8

.1
1
8

.0
9
5

.1
0
0

.0
7
7

.0
6
3

.0
5
5

B
et

w
ee

n
.3

2
9

.3
2
1

.1
9
5

.1
9
5

.1
9
2

.1
8
7

.1
1
4

.1
1
8

S
td

.
IP

D
W

it
h
in

.1
6
7

.1
4
1

.1
1
8

.0
8
9

.0
9
5

.0
7
1

.0
6
3

.0
5
5

B
et

w
ee

n
.3

1
1

.3
0
3

.1
8
4

.1
8
7

.1
8
2

.1
7
6

.1
1
0

.1
1
4

A
D

W
it

h
in

.1
7
9

.1
5
2

.1
2
2

.0
9
5

.1
0
0

.0
7
7

.0
6
3

.0
5
5

B
et

w
ee

n
.3

2
1

.3
1
1

.1
8
7

.1
8
7

.1
8
4

.1
7
9

.1
1
0

.1
1
4

N
o
te

.
K
¼

n
u
m

b
er

o
f

st
u
d
ie

s;
J
¼

n
u
m

b
er

o
f

p
ar

ti
ci

p
an

ts
;

I
¼

n
u
m

b
er

o
f

m
ea

su
re

m
en

t
o
cc

as
io

n
s;

S
td

.
¼

st
an

d
ar

d
iz

ed
;

IP
D
¼

in
d
iv

id
u
al

p
ar

ti
ci

p
an

t
d
at

a;
A

D
¼

ag
g
re

g
at

ed
d
at

a;
A

R
(1

)
¼

fi
rs

t-
o
rd

er
au

to
re

g
re

ss
iv

e;
w

it
h
in
¼

w
it

h
in

-s
er

ie
s

m
o
d
el

;
b
et

w
ee

n
¼

b
et

w
ee

n
-s

er
ie

s
m

o
d
el

.

153



Table 3 shows the RMSE of the eight approaches for the effect size estimates.

As could be expected from the bias results, analyzing standardized effect sizes

produced slightly larger RMSE values than raw effect sizes across simulation

conditions (e.g., marginal RMSE for raw effect size was .126 as opposed to .135

for standardized effect size).

Consistent with expectations and as shown in Table 3, the RMSE was

substantially higher for the between-series estimators than the within-series esti-

mators. Marginal RMSE for the within-series estimators was .080 as opposed to

.181 for the between-series estimators, and the differences were more pro-

nounced when the series length was 40 than when they were 20. For series

lengths of 40 the marginal RMSEs were .072 and .181 for the within- and

between-series estimators, respectively; and for series, lengths of 20 the marginal

RMSEs were .089 and .181 for the within- and between-series estimators, respec-

tively. This pattern was expected because the within-series estimators use all

generated data from a study and thus have a sample size that doubles when the

series length doubles (e.g., the sample size per study when J ¼ 4 is 80 when

I ¼ 20, and 160 when I ¼ 40), whereas the between-series estimators had the

same number of individuals in each subexperiment regardless of the series

length, and thus the sample size for those estimators did vary with series length

(e.g., the sample size per study when J ¼ 4 is 9 both when I ¼ 20 and when

I ¼ 40).

In addition, meta-analyzing IPD yielded slightly lower RMSE values than

using AD as the marginal RMSE for IPD was .126 as opposed to .135 for AD.

The same pattern was observed in the standardized effect size result (e.g., for the

within-series model, RMSE for standardized IPD was .063 as opposed to .071 for

standardized AD, when K ¼ 10, J ¼ 4, and I ¼ 40). This result implies that

intermediate standardization of effect size estimates in both within- and between-

series models increased the RMSE (i.e., standard deviation) under the conditions

studied. However, it is important to note that IPD approaches have different

assumptions than the AD approaches. The IPD approaches assumed the variance

was homogeneous across studies, which allowed more data to be used in estimat-

ing the standardizer. Because the data generation was consistent with this

assumption, it could be expected that the IPD approach would provide a more

stable estimator of the standardizer.

Lastly, as models became more complex to estimate, higher RMSE values

across the eight approaches were observed. Including a nonzero slope parameter

in the data generation and estimation models increased, the RMSE of the esti-

mates across simulation conditions and introducing autocorrelation to the data

generation and estimation models further increased the RMSE. The marginal

RMSE values for the model based on a level effect; level and slope effect; and

level, slope, and autocorrelation effect conditions were .102, .144, and .147,

respectively. The effect of increasing model complexity was similar across the

within-series estimators (marginal RMSEs of .043, .097, and .101) and the
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between-series estimators (marginal RMSEs of .161, .190, and .193). However,

the increment of RMSEs decreased as the numbers of studies and participants

increased (J ¼ 8 and K ¼ 30).

Simulation Study 2

The second simulation study was conducted to extend the comparison of the

eight mixed linear modeling approaches to meta-analyzing MB studies to con-

ditions where (a) the effects varied randomly across studies, (b) participants were

not randomly assigned to baseline lengths, and (c) there were unknown events

that impacted the times series. For each of these extensions, the simulation

methods paralleled those used in the initial simulation. We examined data con-

ditions that varied in series length (10 and 40), number of cases (4 and 8), and

number of studies (10 and 30), and for each of the new conditions, we started

with the simplest data generation model from the initial simulations (i.e., the one

with no trends or autocorrelation). To simulate variance in the treatment effect

across studies, the level-3 error terms, n00k and n10k , were independently

sampled from normal distributions with means of 0 and variances of .25 and

.25 (as opposed to .50 and 0 in the initial simulations).

To simulate conditions without random assignment of participants to baseline

lengths and to mimic the sometimes used practice of assigning those with the

most problematic levels of baseline behavior to the shortest baselines, the parti-

cipants were ordered and assigned to baseline lengths based on the value of their

level-2 intercept error (u0jk). Specifically, when there were four participants, the

participant with the lowest value of u0jk was assigned to the shortest baseline, the

participant with the next lowest value of u0jk was assigned to the next shortest

baseline, and so on. For the conditions with eight cases, the two participants with

lowest values of u0jk were assigned to the shortest baseline, the two participants

with the next lowest values of u0jk were assigned to the next shortest baseline,

and so on. We expected that this change would lead to negative bias in each of the

between-series estimators, because in each subexperiment, those assigned to

treatment are those with more problematic behavior and those left in baseline

had less problematic behavior.

To simulate conditions with unknown event effects (e.g., a participant chang-

ing medicines during the study or a parent trying a different behavioral manage-

ment technique), a time point for the beginning of the event was randomly

selected from among all the time points in the participant’s series. A value of

.20 was then added to the outcome at this time point and all subsequent time

points. If the event coincided with the first observation, the series mean would

increase by .20 and we would expect no bias in any of the treatment effect

estimators, whereas if the event was selected to coincide with the treatment,

we would expect the within-series treatment effect estimators to be biased by

.20, and the between-series effect estimators to be unbiased. Because the time of
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the event is selected randomly for each participant, we expect there would be a

bias between 0 and .20 for the raw score within-series estimators, but no bias in

the raw score between series estimators. For the standardized estimators, defining

bias is problematic because the variance of the series is impacted by an amount

that depends on which time points were randomly chosen for the different parti-

cipants. We will still present the difference between the average estimated effect

and a standardized effect of 1 and anticipate larger discrepancies for the within-

series estimators than the between-series estimators.

Study 2 Results

The bias and RMSE for the eight approaches under each of these alternative

data conditions are shown in Tables 4 and 5, respectively. When random study

effects were added, the bias remained minimal across sample size conditions for

all estimators, with the exception that the standardized between-series IPD esti-

mator showed bias ranging from 9.6% to 11.4% for conditions that had four

participants per study.

The RMSE results also showed the similar pattern as the bias results, and the

standardized between-series IPD estimator showed the highest RMSE of .515 for

the condition where 10 studies, four participants per study, and 20 measurement

occasions were considered. Consistent with the RMSE results from the first

simulation study, as the numbers of studies and participants increased, RMSE

decreased for the between-series estimators, and as the numbers of studies,

participants, and measurement occasions increased and RMSE decreased for the

within-series estimators.

When participants were assigned to baseline lengths systematically, with

those having more problematic behavior being assigned to shorter baselines, the

between-series estimators were substantially negatively biased (ranging from

�49% to �69% across estimators and data conditions); whereas the within-

series estimators showed small levels of negative bias (ranging from �1% to

�4% across estimators and data conditions). Moreover, RMSE of the within-

series estimators substantially decreased as the numbers of studies, participants,

and measurement occasions increased, whereas RMSE of the between-series

estimators consistently showed the relatively high values ranging from .551 to

.711. For the conditions where event effects were randomly added to the time

series the raw score, within-series estimators consistently showed a 10% positive

bias, which corresponds to half the value of the event effect, whereas the raw

score between-series estimators showed no appreciable bias (�1% to þ1%).

Discussion

In the present study, we proposed various meta-analytic approaches for MB

studies in single-case research. The approaches we described here were methods

of estimating ct and dt using both within- and between-series models. We also
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described meta-analytic strategies where individual participant data (unstandar-

dized or standardized) are used to estimate effects, and a traditional strategy

where an estimate of ct or dt is obtained from each MB study and then these

estimates of the effects are aggregated across studies. To evaluate the viability of

these approaches, we further conducted an initial simulation study with condi-

tions where the sample sizes (i.e., numbers of measurement occasions, cases, and

studies) and the model complexities (i.e., level effect, level and slope effects, and

level changes, slope changes, and autocorrelation) were varied, and data were

generated consistent with the assumptions of the meta-analytic approaches.

Based on the initial simulation study, we found that the eight meta-analytic

approaches we proposed produced minimal bias. Relative bias of the estimated

effects was less than 3% of the population values under various sample size and

model complexity conditions. It is worthwhile to note that a minimal relative bias

of the estimates was obtained even from the condition where sample size is

relatively small (e.g., I ¼ 10, J ¼ 4, and K ¼ 10). Given that estimating the

standardized effect size from a set of MB studies has been a major concern in

meta-analysis contexts due to inaccurate variance estimates (Moeyaert et al.,

2015; Ugille et al., 2012), this finding provides a significant contribution in

meta-analysis of MB studies. The initial simulation study provided empirical

evidence that our alternative approaches have reasonably small bias even for

standardized estimates in small sample size conditions. However, in situations

where standardization is not needed, we recommend not standardizing, in which

case no approximate small sample adjustments are needed, and the effects have

smaller RMSE and no bias as opposed to minimal bias.

In addition, the initial simulation study indicates that the within-series

approach produced smaller RMSE compared to the between-series approach,

which is consistent with previous research that examined study specific unstan-

dardized estimators (Ferron et al., 2014). In principle, parameters of the between-

series model are estimated using subexperimental observations across cases,

whereas those of the within-series model are estimated using the full set of

observations in MB studies. Consequently, the within-series model produces

estimates with less sampling error. However, as Ferron et al. (2014) denoted,

the within- and between-series approaches are based on different assumptions

and thus may be vulnerable to bias under different circumstances.

The between-series estimators rely on the assumption that individuals were

randomly assigned to baseline conditions, whereas the within-series model relies

on temporal stability assumptions and baseline projections. To further examine

this issue, a second simulation study was conducted to examine bias under

conditions where assumptions were violated. When instead of randomly assign-

ing participants to baseline conditions, the participants were systematically

assigned, such that those with the most problematic baseline levels were assigned

to the shortest baselines, the between-series estimates were substantially biased.

Thus, between-series estimators should be avoided in circumstances where there

Joo et al.
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is systematic assignment of cases to baselines. Conversely, when cases were

randomly assigned, but event effects were added to randomly selected time

points, the within-series model became misspecified and the within-series esti-

mators were biased by half the size of the randomly placed event effects. Based

on what we found, if a researcher is confident about the model specification (e.g.,

confident in the absence of maturation, event, instrumentation, and practice

effects), then the within-series approach is recommended for estimating the

average effect size across MB studies. If model specification is a primary concern

and there was random assignment of cases to baselines, we recommend applied

researchers use both within- and between-series approaches for estimating the

average effect. By comparing the treatment effect estimates from the between-

and within-series models, researchers can potentially detect model

misspecification.

We also acknowledge that the simulation studies we have presented have

several limitations. First, we focused on estimation of the average treatment

effect, and thus our recommendations are limited to that purpose. Additional

research is needed to develop methods for estimating individual treatment effects

that are standardized to be design comparable, along with methods for exploring

potential moderators of such effects. Second, the data generation models

assumed no trends or linear trends and a continuous outcome variable. In prac-

tice, non-linear trends could occur, such as when the effect of the intervention is

delayed or decays with time, and the outcome may be based on counts of beha-

viors. More complex mixed models with a binomial- or Poisson-based link

function or piece-wise mixed models can be adapted for those situations

(Hembry et al., 2015; Shadish et al., 2013), but research is needed to extend

those approaches to meta-analytic contexts. Third, the variance structure of the

data generation model was relatively simple. Homogeneous variances across

phases, and cases were considered, and this may not be the case in all MB studies.

Although the heterogeneous variance structures have been investigated previ-

ously in the contexts of MB studies (Baek & Ferron, 2013; Joo et al., 2019), more

precise investigation of the proposed meta-analytic approaches with the hetero-

geneous variance structure is needed.

Fourth, the AD approaches used a fixed effect model whereas the IPD

approaches estimated across study variance in the average treatment effect. It

would be helpful if additional research considered random effects models for

aggregating study specific effect sizes and random effects models for aggregat-

ing case specific effect sizes from within-series models. Last, in the present

study, only a single intraclass correlation coefficient (ICC) was considered in

the data generation. It would be helpful if additional research examined the

degree to which the difference in RMSE values for the between-series versus

within-series estimators was impacted by the ICC. In our study, the difference

between the RMSE of the within-series estimators and the between-series esti-

mators was greater when the series lengths were longer. This can be explained by

Meta-Analysis of Multiple Baseline Studies
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the additional observations from the longer series magnifying the information

discrepancy between the observations used by the within-series estimators and

the subset of observations used by the between-series estimators. However, how

much additional information would be in those additional observations is

expected to depend on the ICC. For larger ICCs, additional observations within

a case are relatively less informative, which may attenuate the RMSE differences

between the within- and between-series estimators.

Nonetheless, the results of this study provide valuable information about how

to obtain an average effect estimate using within- and between-series estimators,

and study-specific standardized effect sizes, which are being considered for

meta-analysis in single-case research. We hope the alternative models and meth-

ods developed in this study will be useful to applied researchers and expand

research possibilities with the meta-analysis of single-case research.
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