
	 1

HOW USE-MODIFY-CREATE BRINGS MIDDLE GRADES STUDENTS TO
COMPUTATIONAL THINKING
Jennifer Houchins1, Danielle Boulden1, James Lester1, Bradford Mott1, Kristy Elizabeth Boyer2, & Eric Wiebe1
1North Carolina State University; 2University of Florida

This design case chronicles the efforts of an interdisciplinary
team of researchers as they collaborated with middle grades
science teachers and students to build and refine an epi-
demic disease curriculum module. The initial five-day design
was delivered in five science classrooms at three nearby
schools where researcher classroom observations and
teacher feedback drove iterative refinements of the module’s
materials. The final design of this module consisted of four
instructional days of modeling and simulation activities
that integrate computational thinking practices, computer
science concepts, and life sciences content. The paper aims
to illustrate the design motivations to address contextual
constraints such as tight curricular schedules and varied
levels of exposure to programming for both teachers and
students. The instructional materials presented in this design
case were the result of a three-year long research-practice
partnership with science teachers at nearby middle schools.

Jennifer Houchins is Director of Technology Programs at the
Friday Institute for Educational Innovation.

Danielle Boulden is a Research Scientist at the Center for
Educational Informatics.

James Lester is Director of the Center for Educational Informatics
and a Distinguished University Professor.

Bradford Mott is a Senior Research Scientist at the Center for
Educational Informatics.

Kristy Elizabeth Boyer is Director of the LearnDialogue Group
and an Associate Professor of Computer & Information Science &
Engineering.

Eric Wiebe is a Senior Research Fellow at the Friday Institute for
Educational Innovation and Professor of STEM Education.

INTRODUCTION
In 2006, Jeannette Wing called for computational thinking
(CT) to be seen as a universally applicable attitude and skill
set. Since that time, CT has been recognized as an essential
component of addressing future STEM workforce needs,
particularly for jobs involving computing, because it provides
students with critical problem-solving and higher order
thinking skills across disciplines (Settle et al., 2013). This
has prompted schools to push for the incorporation of CT
into classroom instruction via school-wide initiatives. One
such initiative was the impetus for designing our epidemic
disease curriculum module to integrate CT into the standard
science curriculum.

Designing a curriculum module that integrates CT into the
standard middle grades science instruction required our de-
sign team to consider the needs of two audiences: students
and teachers. For this reason, each time the materials of our
curriculum were piloted in the classroom, a member of the
design team was present to observe the instruction and the
interactions of both audiences with the materials. In this way,
our design team sought to develop a deep understanding
of how our materials were used in the classroom and any
failures associated with our design. To accomplish this, we
relied on team debriefs at the end of the pilot and conduct-
ed member checks with teachers to drive the key design
decisions that resulted in the final version of our curriculum
module (Smith, 2010).

This paper details the design process for developing an
epidemic disease curriculum module of four classroom

Copyright © 2021 by the International Journal of Designs for Learning,
a publication of the Association of Educational Communications and
Technology. (AECT). Permission to make digital or hard copies of portions of
this work for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page in print
or the first screen in digital media. Copyrights for components of this work
owned by others than IJDL or AECT must be honored. Abstracting with
credit is permitted.

https://doi.org/10.14434/ijdl.v12i3.30733

2021 | Volume 12, Issue 3 | Pages 1-201

https://doi.org/10.14434/ijdl.v12i3.30733

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 2

instructional days that enables middle grades students
to iteratively build a computational model simulating the
spread of an epidemic disease. In this design case we outline
our efforts to build and refine instructional materials for our
epidemic disease curriculum module that integrate com-
putational thinking practices, computer science concepts,
and life sciences content through scientific modeling within
a programming environment. In the following sections
we illustrate the rationale behind our design decisions as
they were influenced by the backgrounds of a design team
consisting of faculty and researchers with research interests
in computer science education. We also describe contextual
constraints to assist the reader in understanding the scope of
issues that prompted these design decisions. Finally, we try
to provide a thick and rich description of our design process
that includes two iterative cycles of refinement informed by
collaborative reflexive practice through implementing our
materials in the classroom. In this way, we seek to provide
the reader with a rigorous design case that addresses the key
quality markers set forth by Gray (2020).

CONTEXT OF THE DESIGN
The designed instructional activities and materials de-
scribed in this narrative evolved from a National Science
Foundation (NSF) funded project to create a curricular unit
to support the development of middle school students’
computational thinking (CT) and computer science (CS)
practices. Ultimately, the project sought to foster students’
development of computational thinking practices through
engagement with computationally rich science and prob-
lem-solving activities. The work described here was part of
a larger project developing both a game-based learning
environment and a set of out-of-game activities. This design
case focuses on this later phase of work. The goals of this
second phase were to develop out-of-game activities that
enabled students to model, simulate, and analyze data on
scientific phenomena using block-based programming
interfaces within their science classrooms.

Our design team was composed of eight people: 1) one
faculty from science education, 2) one faculty and three re-
searchers from computer science with a focus on education,
and 3) three researchers with backgrounds in the learning
sciences. The design team came together to collaborate on
an interdisciplinary project with a focus on computational
thinking and computer science education, the major area
of research interest for each member of the design team.
It’s important to note that although each member of the
team had instructional and curriculum design experience
within their respective fields, only one of the team members
had extensive expertise designing integrated curricula that
furthered the learning of scientific phenomena through
computer science practices.

The team was guided by the Next Generation Science
Standards’ (NGSS) proclamation of CT and modeling as two
essential science and engineering practices that should be
used to forward disciplinary core understanding in teaching
and learning (Lead States, 2013). Additionally, as the majority
of our design team have a focus on CT and computer
science education, we were inspired by researchers such as
Weintrop et al. (2016) and Wilensky et al. (2014), who have
done prior work in science education by integrating science
disciplinary content with CT practices through modeling
and simulation. We felt strongly that the combination of CT
and modeling together could be a powerful strategy for the
teaching and learning of scientific concepts and thus sought
to design curricular materials that would be appropriate for
middle grades students and teachers in mainstream science
classrooms because of the results shown by these authors.
For this reason, we decided our design would be centered
around developing students’ CT and computer science con-
ceptual knowledge by learning modeling and simulation.

However, there were a number of contextual constraints
that we needed to contend with as we began to think about
designing and developing our materials. The first constraint
that presented a challenge for our design was how to
integrate CT into the science curriculum while balancing
the CT, CS, and science content effectively. Although the
promotion of CT in mainstream K-12 classrooms is on the
rise, definitions of learning goals and practices for operation-
alizing its use in the classroom still vary across disciplines
(Lowe & Brophy, 2017). This not only presented a design
challenge for our team as we had few existing exemplars
to work with, but we also considered it to be a potential
instructional challenge for teachers who may very well have
not had the necessary background to integrate CT practices
that involved programming.

The second major contextual constraint we faced in de-
signing our epidemic disease module was a wide variability
of prior student experience with computing. Meeting the
needs of students with varying levels of exposure to com-
puting practices continues to be challenging in formal K-12
classrooms with diverse student backgrounds and skillsets.
We therefore felt that we needed to be particularly sensitive
in designing instructional supports that would ensure that
our curricular objectives were accessible by all students.

This contextual constraint was not only evident for students
but for teachers as well. Another design challenge that we
faced was the need for materials that integrate CT practices
into science content but offload the need for students or
their teachers to have a background in programming. We
found that many of the teachers we worked with also had
low exposure to and self-efficacy around CT and CS con-
cepts and practices.

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 3

THE DESIGN PROCESS
The following sections describe the initial design of our
epidemic disease curriculum module, issues with the design
observed during classroom delivery of the module’s mate-
rials, and the design choices driven by those observations
that resulted in our final curriculum design. Our design team
engaged in an iterative process, guided by both external
feedback and internal review, for refining our materials.

Description of the Materials

We delivered our curriculum to students through an online
portal (shown in Figure 1) created using Google Sites™. This
website was created to help teachers facilitate their students’
navigation throughout each instructional day of the unit.
Each day was indicated by a tabbed menu on the left side
of the portal and included a hotlink to the Snap!-based
programming environment, as well as an introductory
statement that outlined to students what they would be
expected to accomplish during the class period. The teacher
guides and student worksheets were created in Google docs
so that they could be easily arranged in a folder to share with
teachers as they implemented the curriculum. If requested
by the teacher, the students were given printed versions of
the worksheets for each day of the unit.

Components of the Initial Design

Our research and development team initially designed a
five-day unit that enabled students to model the spread
of epidemics using an agent-based paradigm. Motivation
for the chosen science content for the design of this unit
was driven in part by the inclusion of epidemic disease in

our state learning standards and this topic’s amenability
to computational modeling. Moreover, empirical research
studies (e.g., Wilensky & Rand, 2015) supported our intuition
this content had great potential to be represented computa-
tionally, lending further support for our design decision. The
five-day unit we developed for the classroom consisted of
both “unplugged” (e.g., without a computer) and “plugged”
(e.g., with a computer and engagement in programming)
instructional time.

Each activity within the unit was designed to add a layer of
complexity—both conceptually and computationally—as
students learn to build block-based code that models
the spread of disease. Our design team sought to strike a
balance between developing CT skills and science concep-
tual knowledge with the progression of the instructional
activities that introduced the scientific content through
modeling and block-based programming. Each activity in
this progression was structured to fit within one 45-min
block of instructional time, or one day of instruction in the
typical middle school science classroom. The details of each
instructional block are provided below.

Day 1

The curriculum module begins with teachers introducing
(or reviewing) the concepts associated with the spread of
disease. The teacher guides provided with our instructional
materials include relevant vocabulary that students are
expected to know at the end of the unit (an example
is shown in Appendix A). Once the introduction to the
vocabulary and concepts is complete, teachers lead students
in an embodied cognition activity (see Figure 2) designed to
help students translate and abstract conceptual ideas about

FIGURE 1. Google site designed to deliver the instructional materials of our disease spread module. The site provided teachers with a
single repository and easy access to the online materials for each day’s activities

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 4

epidemics. The design team’s decision to include an embod-
ied cognition activity was influenced by empirical research
studies that suggest such an approach enhances student
learning of abstract concepts by allowing them to make
mental connections by physically modeling the spread of a
disease as they adopt characteristics and behavior models
of people and viruses while moving about the classroom
(e.g., de Jong et al., 2013; Shapiro, 2019; Wilensky & Reisman,

2006).

Figure 2 shows the embodied cognition activity instructional
steps provided in the teacher guide. The aim is that students
move around the classroom mimicking the movements of
individuals in the disease spread simulation. The teacher
guide recommends teachers use the tiles of their classroom
floor as a grid-like guide for students’ movements. The in-
structional materials include laminated emojis that represent

whether a student is “healthy” or “infected.” As students move
about the classroom, they carry the emojis to represent their
current state. At the end of each step, the students who
have the “healthy” emoji assess whether they have come
into contact with another carrying the “infected” emoji (i.e.,
an “infected” student in a neighboring tile). If so, the teacher
instructs them to change state by flipping their emoji over
to “infected.” Thus, the design of this day’s activity is such that
students’ movement about the classroom and engagement
with one another “embodies” the modeled behaviors they
will observe in the epidemic disease module’s subsequent
instructional activities. Whereas it is important to note that
some classrooms may not have the advantage of a tile floor
that resembles the modeling environment, this activity’s
design aims to mimic the computational model.

Immediately after the embodied cognition activity, students
complete the worksheet shown in Appendix B, formalizing
the notion of defining agent characteristics and behavior
through rule building observed during the activity. This
worksheet also incorporates elements of pseudocode, which
offers students scaffolding as they are exposed to how full
sentences can be transformed into programming code (a
design choice based on the work of Grover, Pea, & Cooper,
2015).

Day 2

On day 2 of the module, students begin building a computa-
tional model by programming a person agent and assigning
its characteristics and behaviors within the block-based
learning environment. To begin the day’s instructional time,

FIGURE 2. Teacher guide directions for leading embodied
cognition activity. As teachers lead students through the
activity on day 1, their movements about the classroom
“embody” the interactions of individuals in the disease spread
model used in subsequent activities.

FIGURE 3. Cellular environment set up for students to start building an epidemic model on day 2 of initial design.

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 5

teachers introduce students to the learning environment,
Cellular (Monash Cellular, n.d.), by pointing out that the code
blocks are color-coded based on the type of functionality
and how to execute their models.

Cellular is a block-based programming environment
developed at Monash University. Cellular builds on Berkeley’s
Snap! environment by adding a grid-based structure to the
stage and special code blocks to control agents’ movements
on the grid. This environment is specifically designed
for building agent-based models like the disease spread
simulation, making it a great fit as a learning environment for
our epidemic disease curriculum module.

Figure 3 shows the Cellular environment pre-loaded with
our designed starting point for the computational model
students will build for this day’s activity. The starting point
includes 50 emojis on the stage that represent the person
sprite, a block-based programming term used to refer to a
computational agent, and three code-block starters. This
is what students see when they first log in to Cellular. The
remainder of this day’s activity consists of students using the
programming environment to build a model that includes
a person agent with two attributes, healthy or infected, and
follows the same rules of behavior they outlined in the previ-
ous day’s worksheet. The overall goal of this day’s instruction-
al time is that at the end of the day’s activity, students should
have a working block-based model where person agents
move around in the simulation and healthy individuals who
encounter infected individuals become infected themselves.

Day 3

The third day adds complexity to computational artifacts
students develop over the course of our instructional unit
by focusing on concepts like iterations, variables, and initial
conditions. Students extend the model they began building
on day 2 with functionality that simulates how populations
are infected over time. Instructional time includes reviewing
the embodied cognition activity from day 1 where the
number of infected individuals is tracked at each step of the
activity. Students then learn how this information is trans-
lated into variables and how to produce plots to visualize
infection rates over time within the block-based learning
environment.

Day 4

On this day of “unplugged” activity, instruction is centered
around a worksheet we designed where teachers ask
students to use a flowchart (i.e., a Finite State Machine; see
Appendix C) to help model the interactions and variable
changes occurring between four health states (healthy,
infected/contagious, infected/not contagious, and dead).
Throughout this activity, students complete the worksheet
we designed where they determine which states a person
in the disease model can transition between and in which
direction that transition occurs. Once they have described
the disease state transitions, teachers instruct students to
research and incorporate other information about a par-
ticular disease into their flowchart worksheet. For example,
the teacher guide is designed to include some flexibility in

FIGURE 4. Pre-built model for student scientific exploration of disease spread on day 5.

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 6

that teachers may have students focus on seasonal flu and
research model parameters such as the average period of
time an individual is infected and the amount of that time
that they can transmit the disease to others.

Day 5

The final day of the unit is designed to provide students
with an example of how computational models are useful
for exploring scientific concepts like the spread of disease.
Learning scientists and computer science researchers on our
team designed a pre-built simulation in the Cellular mod-
eling environment (Figure 4) that employs all the concepts
they have learned over the course of the module. This
simulation is pre-loaded in the environment when students
log in for the day’s activities and allows students to explore
the effects of humidity, temperature, and population density
on disease transmission by carrying out experiments with
different values of these variables and making observations
about how these environmental factors influence disease
spread through the population. The design team also
developed a worksheet (Appendix D) to accompany the
simulation exploration activity that asks students to predict
the impact of these environmental factors and then directs
them on how to carry out the experiments to explore their
predictions.

Supplemental Materials

In addition to both plugged and unplugged activities, the
activity materials included optional tutorials for basic block-
based programming concepts (sample shown in Figure 5)
and the Cellular programming environment to address the
experience gap between those students who had been
exposed to some form of programming in agent-based
modeling environments (e.g., Scratch) before and those
who had not. We designed these supplemental materials
as additional scaffolding for students with little to no prior
exposure to block-based programming.

DESIGN SHORTCOMINGS OBSERVED
FROM THE INITIAL CLASSROOM
IMPLEMENTATIONS
Our initial five-day epidemic disease curriculum module
was implemented in the science classrooms of five different
teachers at three nearby schools during the spring semester
of 2018. These implementations offered our team invaluable
opportunities to solicit feedback from teachers and students,
as well as observe students and teachers experiencing the
curriculum in authentic classrooms. After our team collected
and analyzed the feedback and observational notes, we
met to reflect on and discuss how our curriculum could be
improved to meet our initial project goals. After peer debrief-
ing and triangulation of these data, we concluded that the
shortcomings of our epidemic disease curriculum module
fell into three categories of design failures (Gray, 2020): 1)
the design was not implemented as intended, 2) the design
failed to address the complexity of the learning context, and
3) the design fell short of producing the learning outcomes
desired.

Elaborating on the first design shortcoming, we noted that
not all the materials were implemented in the classroom.
Given an already tight curricular schedule, science teachers
were reluctant to include any of the programming tutorials
along with the 5-day curricular modules. As a result, many
of the students who lacked prior experience with program-
ming struggled to build the scientific model for day two
without intense instructional support from others.

In addition to the design not being implemented as in-
tended, we also failed to account for the complexity of the
learning context in that we needed to meet the needs of
both the students and the teachers. Our participating teach-
ers had little to no background in programming (we now
believe to be the general case for middle grades science
teachers), and therefore lacked both the confidence and
ability to not only provide the necessary support to strug-
gling students, but also to allow more experienced students
the freedom to explore and test out their own programming
solutions. Instead, teachers were observed regressing to a
direct instructional approach that they perceived didn’t need
the same depth of computational modeling PCK (pedagog-
ical content knowledge) (Lytle et al., 2019), as they would
require students to follow along in lock-step as they watched
their teacher develop a computational modeling solution
step-by-step. This approach also perpetuated the shortened
coverage of curricular materials.

The final shortcoming we observed for our materials was
that they did not produce the desired learning outcomes.
For example, teachers reported that day 4 of the curriculum
added little pedagogical value to the overarching goals
and objectives of the unit. In particular, students seemed

FIGURE 5. In this figure, readers can see how basic elements
of the block-based programming are presented and explained
in the supplemental materials of the curriculum module to
provide scaffolding for students with less familiarity with
programming.

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 7

to be unable to directly translate the concepts depicted on
the worksheet to the computer science concepts. Finally,
the pedagogical approach that we presented to students
with our current materials had limited effectiveness across a
diverse body of students. Essentially, days two and three of
the curriculum where students were tasked with building
programming algorithms from scratch proved to be too
much of a cognitive burden for the majority of the students.
In contrast, many of the students did not find the final day
of the materials where they use a pre-built model to run a
simulation and analyze data challenging enough.

Reflecting upon these design shortcomings, our team
concluded that both the students and teachers needed a
revised curricular strategy that provided sufficient scaffold-
ing for CT concepts. We decided that we also needed to
more faithfully implement our initial curricular strategy and
design the materials so that they progressively became more
challenging each day, fading instructional scaffolds through-
out the unit as students became more familiar with both the
science and computer science content. Thus, these factors
were the impetus for a substantive redesign of our curricular
activities to include additional scaffolded support within a
Use-Modify-Create (UMC) progression.

THE FINAL DESIGN: USE-MODIFY-CREATE
In order to address the shortcomings of our prior design,
the team decided to adopt the Use-Modify-Create (UMC)
curricular progression strategy. The UMC progression,
originally developed by Lee and colleagues (2011), is a three-
stage learning progression strategy designed to intentionally
engage learners in CT through rich computational environ-
ments. The rationale for revising our curriculum to follow

this progression is that, according to Lee et al. (2011), it both
supports and deepens learners’ acquisition of CT based on
scaffolding increasingly deep interactions with programming
code and CT concepts. Each stage of the UMC progression
builds on the previous stage, allowing learners to gain
comfort with CT concepts while engaging in investigations.
The general progression has students “Use” existing code
to understand how it functions within an existing program.
Next, students would be guided through a series of activities
where they “Modify” the code—meant to build efficacy while
deepening their understanding through exploration. Finally,
students “Create” new code that embodies the key CS/CT
concepts they’ve been exploring and learning. This progres-
sion is expected to not only support students’ development
of CT skills, but to facilitate increasing ownership of the
computational artifacts with which they are engaging.

In the context of our curriculum, the UMC progression
was employed as a design decision to provide additional
scaffolding for students with less programming experience.
Such a design simultaneously scaffolded teachers, such that
they were able to build their knowledge and comfort level in
supporting the unit at a manageable pace. It also served to
shorten the instructional time to four days rather than five,
thus alleviating some of the instructional time constraints
that teachers expressed experiencing. Despite the shortened
instructional time, the revised materials did not cut any
substantive content and the previously separate tutorial
materials were integrated into the core content. Finally, the
first day of instruction did not change, remaining an “un-
plugged” day where students receive an introduction to the
scientific concept they will be exploring computationally for
the remainder of the module and engage in the embodied
cognition activity.

FIGURE 6. Pre-built disease model on day 2 of revised instructional unit.

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 8

Day 2 Revised Instruction

The second day of instruction was revised to provide
students with a completed computational model to
carry out scientific exploration in the “Use” stage of the
progression. Learners begin their exploration in the “Use”
stage through interaction with a pre-existing model (Figure
6) used to carry out scientific simulations of the disease
spread phenomena within the block-based programming
environment. This revised instructional activity scaffolds CT
learning by demonstrating to students how block-based
programming is used to model a scientific phenomenon,
growing their confidence in using a computational model to
carry out simulated experiments. Students open the Cellular
environment to find the pre-built code rather than an empty
environment where they must start from scratch (e.g., Figure
3). Moreover, teachers offer an explanation of the blocks
contained in the model to help students build an under-
standing of how scientific concepts are represented in code.
Finally, a worksheet was added to the day’s activity designed
to facilitate data gathering and provide an opportunity for
structured reflection about the observable science concepts
depicted in the model (shown in Appendix E).

Day 3 Revised Instruction

In the next stage, the “Modify” phase, students begin mod-
ifying the computational model with increasing scientific
complexity. Following the strategy of Lee et al (2011),
students engage in modifications and iterative refinements
to the pre-built model from day 2. This day’s activities are
designed to increase students’ ownership of the model. In
this case, they may modify the parameters of key variables
or modify the underlying logic driving the components of
the model. The learning environment is pre-loaded with
the existing model with an additional scaffolded skeleton,
highlighted in Figure 7 with a red arrow, where students
will add functionality. The scaffolded skeleton aids students
in understanding where modifications can be made to the
model (e.g., code blocks added). Once modifications are
completed, students carry out more scientific explorations
with the new model. As on day 2 of the revised module,
worksheet-based activities were added to the instructional
time on day 3. The new worksheet-based activities on this
day were designed to gauge students’ understanding of
the code by asking them to articulate the science shown in
blocks of code or choose a set of code blocks that correctly
represent a particular scientific concept (see Appendix F).

Day 4 Revised Instruction

In the “Create” stage of the UMC learning progression, stu-
dents apply their scientific knowledge and their CT knowl-
edge of how these scientific concepts are instantiated in the
computational model by creating new code. Depending on
the ability and interests of the student, this may be a more
extensive modification of the existing model or a brand-new

FIGURE 7. Code with skeleton to be modified by students on
day 3 of the revised instruction.

FIGURE 8. Example option of functionality students' can
choose to add to their model. In this example, the behavior
to be added to the disease model is for hospitals to have a
limited number of available treatments.

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 9

program that expresses their scientific and CT knowledge in
novel ways. Thus, on the final day of our revised module, we
presented students with a worksheet (Appendix G) contain-
ing possible scientific concepts or behaviors that could be
added to the model they used on day 2 and modified on day
3. Students were instructed to choose among these con-
cepts and add their own original code to the model to create
a more complex functional program. An example choice is
shown in Figure 8. The choice shown is of medium (denoted
with orange text) and suggests that students update their
epidemic disease model so that hospitals have a limited
supply of treatments for infected individuals. It should be
noted that these design decisions meant that our curriculum
differed somewhat from the learning progression model set
forth by Lee et al (2011). The decisions provided scaffolding
for those students who needed more support while still of-
fering student choice to maintain learner agency. To facilitate
students’ code development on this day, worksheets were
designed prompting students to both articulate their choice
of which science concept they wish to add to the model and
to either draw the needed algorithm of blocks or write in
pseudocode how they intended to implement this concept
in their model (Appendix H).

REFLECTIONS FROM USER EXPERIENCE OF
THE USE-MODIFY-CREATE APPROACH
To assess the results of our revised curriculum we worked
with teachers at two schools to implement the newly
revised activities and materials in twelve different science
classrooms. This resulted in 241 diverse students and three
of their teachers experiencing the new design. It should be
noted one of the teachers implemented the previous version
of the curriculum during the prior school year and thus was
able to give us comparative feedback from her perspective.
As with the implementations of our previous version of the
curriculum, our design team took measures to capture data
(e.g., classroom observations, student and teacher feedback)
that we believed would help us to reflect upon the results of
our design changes and inform future design iterations.

All of the teachers commented that the “Use” day was an
improved entry point for coding as all students regardless
of their prior programming experience were able to suc-
cessfully engage and meet the day’s objectives. In particular,
one teacher remarked that she felt it was effective at
enabling students to orient themselves with block-based
code, “Because it was prebuilt, and they were just changing
the variables they were able to see this is how code is put
together.”

Observations of students engaging with the materials over
the course of the four-day curriculum, demonstrated that
more students were able to independently build the desired
final computational models during the modify and create
days, whereas in the previous versions of the materials

students often struggled to finish building a complete mod-
el. Feedback from the students also suggests that students
felt higher agency and more ownership over the artifacts
they produced.

Anecdotal evidence collected from teachers also suggests
that the UMC scaffolding sequence has benefits for those
that are new to implementing computational modeling in
their science classrooms. Just as the curriculum provides
incremental scaffolding to students, the progression of
difficulty also allows teachers to get used to the program-
ming concepts in a gradual manner, hopefully building their
confidence to teach it from lesson to lesson. One teacher’s
comment is particularly reflective of this sentiment, “Day 1,
on the computer, you really understand the beginning part.
And then day 2 it builds a little more and you’re building
the code; you’re playing with it. And day 3...at that point, it’s
just really easy to go through.” We also witnessed less direct
instruction from the teachers, as they were more apt to let
students learn through experimentation. It allowed students
to develop unique and varied modeling solutions in compar-
ison to the prior year’s implementations.

Reflecting on this design cycle, the design team felt that
the Use-Modify-Create (UMC) approach better supported
both teachers’ and students’ needs while still adhering to the
design’s contextual constraints. As a result of these modifi-
cations, we observed that the UMC-informed curricular ma-
terials were implemented by teachers more faithfully to the
intended design. Therefore, we believe the approach better
addressed the complexity of the learning context, thus
alleviating two of the previously mentioned design failures.
Additionally, the learning sciences and computer science
researchers who observed classrooms during delivery of the
epidemic disease module noticed that students were able
to start adding code blocks more quickly on the “Modify”
day because they had a starting point where it was clear
that they should fill in the blanks, unlike the initial design’s
approach where they started with a blank slate. This left
the design team feeling as though students were not only
more engaged in the activities, but that the desired learning
outcomes were better met by this new version of the epi-
demic disease curriculum module, addressing the remaining
observed design shortcoming from the prior cycle.

IMPLICATIONS
Although these implementations suggest the design of
this curriculum is evolving to better meet the learning
and teaching challenges associated with integrating CT
and science practices, they also illuminated new areas for
potential improvement. For example, teacher interviews
and classroom observations suggest that some students
struggled with moving from the “Modify” stage to the
“Create” stage with its more open-ended structure. This
transition to “Create” proved to still be a large conceptual

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 10

and motivational leap for both teachers and students. At
least one teacher noted that although having a cheat sheet
with sample code solutions was helpful, they were the least
comfortable with the “Create” day. Some teachers suggested
that increasing the complexity of code modifications on the
“Modify” day and adding more scaffolding on the “Create”
day might serve to bridge this gap and therefore meet the
desired learning outcomes, while others suggested incorpo-
rating more open-ended activities earlier in the curriculum.
Therefore, future considerations for our materials will focus
on identifying curricular supports to successfully bridge the
gap between the “Modify” and “Create” stages of the progres-
sion as well as increasing both student and teacher comfort
with the open-ended nature of the “Create” stage. Following
the recommendations of our piloting teachers, modifications
to our materials will be made to increase the complexity of
code changes required during the “Modify” stage to aid in a
more balanced transition to the “Create” stage.

We also still found that our modified curricular materials
did not do enough to address the diverse range of student
ability levels in the classroom. Although our new pedagog-
ical design enabled a greater involvement of students who
lacked prior programming and CT experience, we found
that on the “Use” and “Modify” days more advanced students
completed the activities in a much shorter amount of time
than their peers. Thus, future iterations of the materials will
also include options for extension activities to keep those
students from getting bored.

Although the solution to many of these continuing chal-
lenges could be addressed, in part, by more instructional
days, we recognize that this is a design constraint we should
embrace and attempt to meet the challenge of creating
even more engaging, adaptive, and efficient materials.
Additionally, we will continue to explore ways to increase
professional development support for teachers as well as a
greater opportunity to involve teachers in the design process
so that activities better reflect differentiated teacher and
student needs in classrooms.

ACKNOWLEDGMENTS
This work was supported by a National Science Foundation (NSF)
Grant Award#: DRL-1640141. Special thanks go to our collaborators
Nicholas Lytle and Veronica Cateté.

REFERENCES
de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual
laboratories in science and engineering education. Science,
340(6130), 305-308. https://doi.org/10.1126/science.1230579

Gray, C. M. (2020). Markers of Quality in Design Precedent.
International Journal of Designs for Learning, 11(3), 1-12. https://doi.
org/10.14434/ijdl.v11i3.31193

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J.,
Malyn-Smith, J. & Werner, L. (2011). Computational thinking
for youth in practice. ACM Inroads, 2(1), 32-37. https://doi.
org/10.1145/1929887.1929902

Lytle, N., Cateté, V., Boulden, D., Dong, Y., Houchins, J., Milliken,
A., Isvik, A., Bounajim, D., Wiebe, E., & Barnes, T. (July, 2019). Use,
Modify, Create: Comparing Computational Thinking Lesson
Progressions for STEM Classes. [Paper presentation]. 24th Annual
Conference on Innovation and Technology in Computer Science
Education (ITiCSE 2019). Aberdeen, Scotland UK. ACM. https://doi.
org/10.1145/3304221.3319786

Monash Cellular. (n.d.). Monash BlockBooks - Interactive e-Books for
Generative Art, Simulation and Robotics. Retrieved November 9,
2020, from http://www.flipt.org/#cellular

NGSS Lead States. (2013). ​Next generation science standards.
Washington, DC: National Academies Press.

Settle, A., Goldberg, D. S., & Barr, V. (2013, July 1-3). Beyond
computer science: computational thinking across disciplines. [Paper
presentation]. 18th ACM Conference on Innovation and Technology
in Computer Science Education, Canterbury England, UK.

Shapiro, L. (2019). Embodied cognition. London: Routledge.

Smith, K.M. (2010). Producing the Rigorous Design Case.
International Journal of Designs for Learning,1(1),9-20. https://doi.
org/10.14434/ijdl.v1i1.917

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille,
L., & Wilensky, U. (2016). Defining computational thinking for
mathematics and science classrooms. ​Journal of Education
and Technology, 25(1), 127-147. https://doi.org/10.1007/
s10956-015-9581-5

Wilensky, U., Brady, C. E., & Horn, M. S. (2014). Fostering
computational literacy in science classrooms. Communications of
the ACM, 57(8), 24-28 https://doi.org/10.1145/2633031

Wilensky, U., & Rand, W. (2015). An introduction to agent-based
modeling: modeling natural, social, and engineered complex systems
with NetLogo: MIT Press.

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep,
or a firefly: Learning biology through constructing and testing
computational theories—an embodied modeling approach.
Cognition and instruction, 24(2), 171-209. https://doi.org/10.1207/
s1532690xci2402_1

Wing, J. M. (2006). Computational thinking. Communications of the
ACM, 49(3), 33-35.

https://doi.org/10.1126/science.1230579
https://doi.org/10.14434/ijdl.v11i3.31193
https://doi.org/10.14434/ijdl.v11i3.31193
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/3304221.3319786
https://doi.org/10.1145/3304221.3319786
https://doi.org/10.14434/ijdl.v1i1.917
https://doi.org/10.14434/ijdl.v1i1.917
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/2633031
https://doi.org/10.1207/s1532690xci2402_1
https://doi.org/10.1207/s1532690xci2402_1

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 11

APPENDIX A
Small Sample of Teacher Guides Provided in Instructional Materials

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 12

APPENDIX B
Sample of Unplugged Embodied Cognition Activity Worksheet

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 13

APPENDIX C
Finite State Machine Activity Worksheet

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 14

APPENDIX D
Day 5 Scientific Predictions Activity Worksheet

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 15

APPENDIX E
Sample of “Use” Revised Instructional Activity Worksheet

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 16

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 17

APPENDIX F
Sample of “Modify” Revised Instructional Activity Worksheet

Name: ​_________________________________ ​ Class: ​______________________

Match the Scientific Phenomenon with Code Blocks ​. Read the scientific behavior listed and choose the set of code blocks that
would simulate that behavior in the Cellular Programming Environment. (​Hint ​: You can input the set of code blocks and observe
the simulation run to confirm they simulate the desired behavior.)

If I’m an infected person and I am near to a hospital, then I can get treatment and recover 3 days faster. Circle the code
blocks that would simulate this phenomenon below.

Describe the Code. ​Read the code blocks below and describe what the code is doing in the space provided beside it. (​Hint ​: You
can input the set of code blocks and observe the behavior as the simulation runs.)

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 18

APPENDIX G
Sample of Creation Choices for Adding Scientific Concepts

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 19

IJDL | 2021 | Volume 12, Issue 3 | Pages 1-20	 20

APPENDIX H
Sample of “Create” Day Planning Activity Worksheet

