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Abstract. Computer science students often evaluate the behavior of the code they write by run-
ning it on specific inputs and studying the outputs, and then apply their comprehension to a more 
general understanding of the code. While this is a good starting point in the student’s career, suc-
cessful graduates must be able to reason analytically about the code they create or encounter. They 
must be able to reason about the behavior of the code on arbitrary inputs, without running the code. 
Abstraction is central for such reasoning. 

In our quest to help students learn to reason abstractly and develop logically correct code, we 
have developed tools that rely on a verification engine. Code involves assignment, conditional, 
and loop statements, along with objects and operations. Reasoning activities involve symbolic rea-
soning with simple assertions and design-by-contract assertions such as pre-and post-conditions 
as well as loop invariants with data abstractions. Students progress from tracing and reading code 
to the design and implementation of code, all relying on abstraction for verification. This paper 
reports some key results and findings from associated studies spanning several years. 
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1. Introduction 

1.1. Foundations of Computer Science 

Computer Science is a rapidly evolving field. It requires students to remain up to date 
on the newest techniques, languages, and practices. Yet one aspect that doesn’t change 
is the theoretical foundations of computing, such as abstract reasoning about code cor-
rectness. In order for students to enter the work force as successful developers, they 
need to have a strong foundation in creating stable, well-designed code (Hinchey et al., 
2008). It has been established that students who are able to effectively trace code are 
better at writing code (Lister et al., 2004, 2009). Current standards for tracing code in-
volve running code on multiple test case input values. While this is a valuable process, 
it can lead to limited student understanding of code. It is just not possible to run every 
possible test scenario. For example, in a junior level software engineering course, 50% 
of students found the code segment in Listing 1 was a correct implementation for find-
ing the maximum value between two integers (Cook et al., 2018). 

Without students providing detailed work such as seen in Table 1, we can only spec-
ulate as to the cause for their oversight of the case in which i and j are equal. Their 
reasoning, for example, may have been ad hoc. 

What appears to be a simple oversight in a code sample is an argument for students to 
learn to generalize their reasoning through the use of abstraction. Symbolic reasoning is 

Table 1 
Example Trace for Max with Concrete Values 

Code max(1, 2) max(2, 1) max(2, 2) 

int max = i + j ; max = 1 + 2;  
max = 3;

max = 2 + 1;  
max = 3;

max = 2 + 2;  
max = 4;

if (i > j ) { max = max − j; } false true  
max = 3 − 1;  
max = 2;

false

if (j > i ) { max = max − i; } true  
max = 3 − 1;  
max = 2;

false false

return max; max = 2 max = 2 max = 4;

int Max (int i, int j){ 
     int max = i + j; 
     if (i > j){ max = max - j; } 
     if (j > i){ max = max - i; } 
     return max; 
} 

Listing 1. Code Exercis.
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reasoning about code on arbitrary symbolic input values, as opposed to specific concrete 
inputs. In this example, if students traced the code with abstract symbolic values – mak-
ing no assumptions about their concrete values – they will have to consider every path of 
the code. Such symbolic tracing, done manually or facilitated by an automated tool, can 
help them understand where the code fails to compute the maximum. A simplified ver-
sion of such symbolic reasoning is shown in Table 2. In Listing 1, notice that the values 
of i and j never change. Using i and j as initial symbolic place holders, we see that the 
max value returned would be either i, j, or i+j. 

1.2. Abstraction and Symbolic Reasoning 

In general, our goal is for students to learn to reason abstractly. For example, to rea-
son that a given example function computes the positive square root of its input value 
on all allowed inputs and not only that it computes 3.0 on input 9.0 or 5.0 on input 
25.0. 

A symbolic approach to reasoning aims for students to learn to generalize and under-
stand the overall purpose of code. A low level of understanding can be demonstrated 
by explaining what is happening in the code line by line. For example, suppose that 
Listing 1 in Section 1.1 were named Mystery instead of Max, and that the code were 
corrected by changing the first if statement to greater than or equal to. An example of 
a line-by-line explanation would be as follows: 

mystery is assigned the value of i plus j  ●
if i is greater than or equal to j, j is subtracted from mystery  ●
if j is greater than i, i is subtracted from mystery  ●
mystery is returned  ●

Essentially, the above explanation is a translation of the code into common vernacu-
lar. Abstraction requires the student to view the logic of the operation in a broader scope 
and therefore produce a more holistic understanding of the functionality. Even for an op-
eration with the name Mystery, a student who develops such an understanding would 
conclude that it returns the maximum of input values. 

We hope to help students achieve this higher level of understanding through sym-
bolic reasoning. Students will still utilize tracing through code, but instead of only rea-
soning with concrete values, they will also use symbolic input values. For the example 

Table 2
Example Trace using Symbolic Reasoning

Code max(i, j) 

int max = i + j ; max = i + j; 
if ( i > j) { max = max − j; } max = i + j - j max = i 
if ( j > i) { max = max − i; } max = i + j - i max = j 
return max; max = i or max = j or max = i + j 
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above, the input values of i and j will be remembered as #i and #j. So if the student 
were to write i = i + j; the value of i would be equal to #i + #j (the input value 
of i plus the input value of j). An illustration of the idea is in Table 3, which shows that 
the code effects a swap operation. 

In the end we see that i now equals the input value of j and j equals the input value 
of i. We were able to determine the purpose of this code without running multiple test 
cases using concrete values and having to identify the pattern. 

1.2.1. Data Abstraction 
Whereas for primitive objects such as Integers and Reals, the corresponding mathemati-
cal abstractions are implicit and obvious, that is not the case for data structuring objects, 
such as stacks, queues, and lists. 

Abstraction is key when tracing method calls so students are not overwhelmed by 
in ternal data structures (Bucci et al., 2001). The emphasis should not be placed on how 
the data structure is represented within the operation, but rather on the abstract behavior 
of the operations. For example, when using a stack object, it is not important to know if 
a stack is represented by an array or linked structure, but what stack’s operations such as 
push() and pop() do based on an understanding of a formal stack data abstraction. 
While it is possible to observe and learn this behavior through the use of concrete exam-
ples, symbolic reasoning can help provide a stronger foundation and allow the transfer 
of knowledge across data structures. 

1.3. Research Objectives 

The over arching goal of this research is to help students learn abstract reasoning at vari-
ous levels with the aid of tools that help students practice and help instructors identify 
and understand their difficulties. Beginning with symbolic reasoning with simple asser-
tions as a foundation, students proceed to understand data abstractions. Studies were 
conducted between 2016 and 2021 across 8 semesters which we label as F1, S1, F2, S2, 
F3, S3, F4, and S4. 

Table 3
Example Trace for Swap 

Code i j 

i = i + j ; #i + #j #j 

j = i − j ; #i + #j 
#i + #j − #j 
#i + /#j − /#j 
#i 

i = i − j ; 
#i + #j − #i 
/#i + #j − /#i 
#j 

#i 

Final Result i = #j j = #i 
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A key aim of using automated tools is to understand the specific fine-grain learning 
difficulties students face when reasoning about code so that appropriate interventions 
may be developed (Cook et al., 2018; Fowler et al., 2019; Priester et al., 2016). By 
“fine-grain,” we mean understanding student difficulties at a resolution that exceeds 
identifying high-level constructs that might present challenges (e.g., functions, loops, 
parameter passing) to reveal the underlying cause(s) of a learning roadblock (e.g., 
a missing algebraic foundation or a flaw in the student’s mental model of variable stor-
age). When these difficulties are not readily apparent to instructors, it is hard to devise 
suitable interventions, especially for students with the most need. Achieving this level 
of resolution is prohibitively time-consuming in the absence of automation. 

Our Educational Research Questions (ERQs), summarized below, will be discussed 
in context in later sections. Together they focus on learning difficulties along four broad 
themes of abstraction. 

Learning symbolic reasoning basics with assignment statements; in Section 4. 1. 
This study utilized semesters F1, S1, and F2. 

ERQ 1.1: With or without intermediate steps, can a majority of students 
learn the basics of tracing code using symbolic input values instead of 
specific in put values (1) strictly with the help of an online reasoning tool 
and (2) with instruction in addition to the tool? 

Learning symbolic reasoning with conditional statements; in Section 5. 2. This study 
utilized semester S4. 

ERQ 2.1: What impact does the online tool have on student performance 
re garding the tracing of conditional statements using arbitrary symbolic 
values? 
ERQ 2.2:What impact does the online tool have on student self-efficacy 
re garding the tracing of conditional statements using arbitrary symbolic 
values? 

Learning to use design-by-contract assertions in reasoning with data abstractions; 3. 
in Section 6. This study utilized semester S2. 

ERQ 3.1: What common learning difficulties in reading and writing for-
mal Design-by-Contract (DbC) assertions can be pinpointed with an auto-
mated tool and collected data? 
ERQ 3.2: Which difficulties persist on a final exam, when students do not 
have access to the tool? 

Learning to develop loop invariants for code involving data abstractions; in Sec-4. 
tion 7. This study utilized semesters F3, S3, and F4. 

ERQ 4.1: What common difficulties do students face, specifically as it 
con cerns developing loop invariants? 
ERQ 4.2: With respect to developing loop invariants, a) what do student 
re sponses reveal about their level of understanding of the concepts and 
b) how suitable are their responses for identifying actionable items for 
intervention? 

The research questions related to the first two themes additionally consider the 
benefits of an automated tool itself, whereas the questions on the last two themes use 
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the tool only as a means to collect data for analysis. Results presented from all themes, 
except for ERQ 2.1 and 2.2, are synthesized from prior publications. Additional details 
may be found in the upcoming 2021 PhD dissertation of the primary author (Fowler, 
2021). 

2. Related Work 

2.1. Abstraction and Reasoning 

A debate exists in learning theory regarding the depth of understanding achieved by stu-
dents when introduced to a new topic through use of concrete examples, versus through 
abstraction (Carbonneau et al., 2013; De Bock et al., 2011; Kaminski et al., 2008; Mc-
Callum, 2008), though the domain there is not computing. The findings in (Kaminski 
et al., 2008) suggest that “...giving college students multiple concrete examples may 
not be the most efficient means of promoting transfer of knowledge” and that “because 
the difficulty of transferring knowledge acquired from concrete instantiations may stem 
from extraneous information diverting attention from the relevant mathematical struc-
ture, con crete instantiations are also likely to hinder transfer for young learners who are 
less able than adults to control their attentional focus.” Her study showed that through 
the use of an abstract generalized structure, students were able to transfer that knowl-
edge to novel situations whereas when they used concrete instantiations there was little 
or no transfer. McCallum rebutted this work claiming that the two treatment groups 
were not working with the same mathematical structure which led to a bias in the trans-
fer task (McCallum, 2008). 

A study focusing on the teaching of an electronic circuit-wiring task found that 
when experts taught novices, they used more abstract statements compared to beginner 
instruc tors who used more concrete examples to teach novices. They found that the 
beginner-instructed novices performed better than the expert-instructed novices when 
completing the target task. However, the reverse happened when trying to apply this 
knowledge to a different task within the same domain (Hinds et al., 2001). Here, the 
novices instructed by experts performed better than their counterparts. This reinforces 
the idea that concrete examples may be useful for learning repeated tasks, but may not 
necessarily help with the transfer of knowledge. 

Within computing, the standard for all students is to learn how to code through the 
use of concrete values. The automation of grading has lead to the current laboratory 
practice in which students are writing code to pass given test cases. The emphasis is less 
on un derstanding overall code behavior. This can lead to bloated, clunky, or inefficient 
code. Worse, it can be incredibly frustrating to a student to write code that appears to 
meet example test cases, yet be told that it fails the overall purpose. It is also possible 
for au tomated testing to approve a flawed solution (Forišek, 2006). The students who 
are able to reason well in laboratory exercises and competitions focus of the logic of the 
problem using induction (Ginat, 2014), which is key to abstraction. 
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2.2. Data Abstraction and Loop Invariants 

Following an introduction to data abstraction with formal design-by-contract asser tions 
(Fowler et al., 2020), students are primed to develop and reason with loop invariants for 
code that involves objects. Despite the importance of loop invariants for understanding 
and debugging of algorithms, few computer science or software engineering graduates 
are able to use them effectively (Henderson, 2003). When students learn to write loop 
invari ants for iterative code, they can achieve a level of understanding not possible 
otherwise (Gries, 1981). 

2.3. Reasoning Tool Design 

Online tutoring of programming concepts has received much attention in the CS litera-
ture (e.g., (Aleven et al., 2009; Bhattacharya et al., 2011; Guo; Kumar et al., 2007; Li 
et al., 2011; O’Brien et al., 2014; Price et al., 2017; Wiggins et al., 2015)). There are 
several IDEs that provide compile-time error feedback and numerous useful capabili-
ties (e.g., finding the declaration or all uses of a method). The novel online reasoning 
tool that we have developed, unlike other tutors and IDEs, is backed by a software 
verification engine (Cook et al., 2012a; Sitaraman et al., 2011). This allows it to fa-
cilitate reasoning over abstract input values. It has a strong theoretical basis and has 
been used for nearly a decade at multiple institutions. Thousands of undergraduate 
students have employed sym bolic reasoning approaches using this reasoning tool in 
CS courses (Cook et al., 2012b; Drachova et al., 2015; Hallstrom et al., 2014; Heym 
et al., 2017) and in software engineer ing projects (Cook et al., 2013; Priester et al., 
2016). It suffices to say that the engine is far more powerful than demanded by the 
reasoning activities discussed here. The engine can enhance learning through a variety 
of logical “what if” questions. Since answers are verified automatically, answer keys 
are not stored or used. 

3. Tool Design and Research Framework 

3.1. Tool Design and Reasoning Activities 

The reasoning tool utilizes a verification engine (Sitaraman et al., 2011) so that a proof 
can be automatically generated and students do not have to complete the proof to 
check cor rectness. This allows instructors to appropriately challenge students without 
overwhelm ing them. The use of an online tool also means that students can make mul-
tiple attempts by having the tool check the correctness of their assertions. 

The tool has been designed with scaffolding to reduce cognitive load, defined as the 
ease with which information can be processed in working memory (Paas et al., 2010; 
Sweller et al., 2011), as seen from the screen shot in Fig. 1. The activity description is 
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at the top left with reference material below it showing only what is relevant to reason 
about the code on the right. The first few lessons ask students to trace code on specific 
input values, such as in Fig. 1. The use of the tool is the first introduction to all the con-
structs. In the Pascal-like code shown (with which most of our students learning Java 
apparently have no trouble and need no introduction), we use := to denote assignment 
to distinguish it from the mathematical equality used in assertions. The student’s task 
is to trace the given code and replace /∗ expression ∗/ after the Confirm with a logi-
cal assertion (utilizing “=” means equals, as in logic). The student can make changes 
only in the assertion. Unlike an assert statement, nothing is executed; however, the 
assertion is given to the verification engine to verify that the assertion holds. 

An example of symbolic reasoning is shown in Fig. 2. The activity asks students 
to state the values of I and J in terms of their input values, remembered to be #I and 
#J, respectively, at the line marked Remember. The tool has been designed to provide 
visual feedback that is immediate (Azevedo and Bernard, 1995) to reduce cognitive 
load (Chen et al., 2011; Moreno, 2004). An example of this feedback can be seen in 
Fig. 2. Since I is changed on line 12, it is not true that J = #I − #J, and hence, line 
16 is wrong (and has been highlighted with a red background). A number of correct, 
logically equivalent answers exist. While all answers are verified, the system expects 
reasonable answers, re jecting trivial answers such as Confirm I = I. When a stu-
dent’s answer is wrong (i.e., does not verify, or is trivial), the lesson may be repeated, 
or a follow-on lesson is given. Though not a focus of the current paper, a key benefit 
of this tool is that it can pinpoint obstacles specific to subsets of learners (Cook et al., 
2018). 

Fig. 1. Online Reasoning Tool Interface.
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3.2. Research Framework 

In our attempt to help students to understand and use abstraction in reasoning about 
code, we have integrated symbolic reasoning concepts into a sophomore level soft-
ware develop ment course and a junior level software engineering course, both required 
courses for CS majors at our institution. Introducing students to using logic to evaluate 
code correctness early in their education helps build a foundation for abstract reason-
ing. The subsequent course then allows students to write and develop their own code 
to meet specifications provided by the instructor. By dividing this process across two 
courses, students are less likely to be overwhelmed. This approach also promotes rein-
forcement of these concepts. 

3.2.1. Symbolic Reasoning with Simple Assertions 
The software development course description includes specification and reasoning 
among its topics and is required for all CS majors at our institution. Details of this 
course are discussed in (Hallstrom et al., 2014). The course has a unit dedicated to 
symbolic rea soning. Students receive a lecture on the topic and are then introduced to 
the online tool BeginToReason. The tool aids in pinpointing student difficulties when 
learning symbolic reasoning. Users are presented with a code sample and are asked to 
complete assertions regarding the logic of the code. 

3.3. Reasoning with Data Abstraction Assertions 

The subsequent software engineering course description includes program specification 
and reasoning as core topics and is required of all CS majors. The course integrates the 
use of formal contracts. Pre-and post-condition assertions are now included in the tool. 
Additionally, students learn to how to develop loop invariants through using a web IDE 
that allows for the design and implementation of code. Though the web IDE’s interface 
is different from the tool used in the software development course, this tool functions 
similarly in that it relies on the same verification engine to generate and check proofs 
for correctness. 

Fig. 2. Symbolic Reasoning with Visual Correct and Incorrect Feedback.
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4. Learning Symbolic Reasoning Basics 

4.1. Introduction 

The first learning objective is to understand whether we can effectively teach the gen-
eral population of computer science students the basics of reasoning about code on all 
input values using a symbolic approach with the (non-exclusive) aid of a reasoning tool. 
Symbolic reasoning basics concerns the ability to reason about a sequence of assignment 
statements, and that is the focus of this section. Additional details of symbolic reasoning 
studies in pinpointing specific difficulties for individual students and subgroups may be 
found in (Cook et al., 2018). A related study in (Fowler et al., 2019) explores the role of 
motivation in learning symbolic reasoning. 

4.1.1. Educational Research Question 
Given the growing importance of online education in reaching a diverse audience, and 
the role of online tools in ensuring that at least a portion of CS education can happen 
outside a classroom, this research involves understanding the role of a reasoning tool 
we have built. In helping students learn the basics of reasoning, we consider the role of 
a step-by-step approach (i.e., intermediate steps) in reasoning correctly about code com-
position and whether students will follow such an approach if learned. 
ERQ 1.1-Reasoning Basics: With or without intermediate steps, can a majority of stu-
dents learn the basics of tracing code using symbolic input values instead of specific 
input values (1) strictly with the help of an online reasoning tool and (2) with instruction 
in addition to the tool? 

The hypothesis here is that a significant majority of students will indeed be able to 
learn to reason with symbolic values; after all, students learn algebra in high schools. 
But such learning will require classroom instruction in conjunction with a tool. We also 
consider if students perform as well on symbolic reasoning questions as on other topics 
in a CS course. 

4.2. Experimental Methods 

The reasoning system and the activities were administered in lab sessions. Data for the 
experiments discussed in this section were obtained over the course of three semesters; 
F1, S1, and F2. When multiple lecture sections were involved, the students were inter-
mingled in the lab sections. 

We have varied when intermediate steps are provided in the tool activities. Interme-
diate steps are one way to ask a learner to show their understanding after each pro-
gram statement in a code segment (through Confirm assertions), instead of providing 
a single summary Confirm assertion at the end of the code. This compels the student to 
explicitly think about the values of variables after each statement. We included a sym-



Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 543

bolic reason ing question on the exam to determine student learning. We also varied 
exam questions: asking for steps, not asking for steps, and provided scaffolding. 

4.3. Results 

4.3.1. ERQ 1-Reasoning Basics: Ability to Learn Symbolic Reasoning Basics 
For the F1 experiment, 114 students participated in the study across five sections of the 
lab. Students did not receive any formal instruction regarding symbolic reasoning before 
tool use. This tool served as their first introduction to symbolic reasoning about code. 
Though TA help was available, few students asked for help. Students were not time con-
strained and took between 20 minutes to an hour to complete all the activities. 

About six weeks after working with the tool in the lab, students were asked to 
complete a symbolic reasoning question on a regular final exam. The question was 
worth a total of five points, which was 20% of the exam. There were four versions of 
the reasoning question and the versions were randomly assigned at testing time. Two 
versions of the reasoning question involved reasoning about a piece of swapping code 
(similar, but not identical to the one given in the introduction). The other two versions 
had to do with the sum of two variables. These two question versions were then further 
separated by one version of the question asking students to show their work, while the 
other did not. 

Across all versions of the questions in F1, students received an average of at least 4 
points, which translates into completing approximately 80% of the question correctly. 
It would appear the online tool can successfully introduce all students to the basics of 
symbolic reasoning. At the same time, it is equally possible that the question was too 
easy. This is a useful, but not definitive result. The performance of students on such 
questions have been sufficiently impressive that instructors in later semesters have re-
sorted to giving more demanding questions (in terms of both the number of variables 
and the number of statements). 
Learning Reasoning w/wo Classroom Instruction. The S1 and F2 experiments had 
91 and 92 students respectively across five lab sections. We used a Mann-Whitney U-test 
to assess if the student populations are comparable because it is more suitable to com-
pare performance of different groups of students across semesters and because it does 
not require that the two independent samples are normally distributed. 

In F2, tool-based instruction was supplemented with a one-hour classroom lecture 
before the exam. The difference in scores for the exam reasoning question between the 
semesters was found to be statistically significant with a p value less than 0.05. In the 
spring, only 59.1% of students completed at least 80% of the question correctly, while 
in the fall, 74.2% did. A similar pattern is observed between the overall exam scores, 
where fall students performed significantly better, with a p value of 0.0005. While this 
would point directly to the benefit of classroom instruction, student motivation may be 
a con founding factor and is discussed in (Fowler et al., 2019). Regardless, the important 
point is that symbolic reasoning can be learned by a majority of students. The next sec-
tion ex plains how students can go from these basics to generalize the purpose of code 
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containing a conditional statement. Later sections illustrate how students are able to con-
nect the for mally stated purpose of code (contracts) given in symbolic form with code 
that realizes that purpose. 

5. Learning to Reason about Conditional Statements 

5.1. Introduction 

Whereas the initial findings have shown the usefulness of an online tool to help students, 
they focused on students reasoning about code involving only assignment statements. 
Rea soning about conditional statements symbolically is naturally more challenging. An 
ex ploration of that topic is the focus of the research discussed in this section. 

5.1.1. Educational Research Questions 
ERQ 2.1-Performance on Conditionals: What impact does the online tool have on stu-
dent performance regarding the tracing of conditional statements using arbitrary sym-
bolic values? 
ERQ 2.2-Self-Efficacy on Conditionals: What impact does the online tool have on stu-
dent self-efficacy regarding the tracing of conditional statements using arbitrary sym-
bolic values? 

This research has focused on two questions, both of which consider the benefits of 
the reasoning tool. Since the classroom instruction was on symbolic reasoning basics 
with assignments, any learning here can be attributed more directly to the practice and 
learning resulting from tool usage. 

5.2. Experimental Methods 

The reasoning system and the activities were administered in closed lab sessions. Data 
for the experiments discussed in this section were obtained the in the S4 study at three 
universities. 

A total of 106 students completed a pre-quiz, followed by a lab activity, and then 
a  post-quiz. This chapter focuses on the results obtained from the pre-and post-quiz with 
regard to student performance and reported self-efficacy. While there were multiple lecture 
sections, the students were intermingled in the lab sections (but not across universities). 

The assessment quiz provided to students organized the questions in order of increas-
ing difficulty. We presented three types of multiple choice questions to students that 
were essentially the same, except that the answers were in different formats, Table 4. 
The first type of answer choices were about a high-level, holistic understanding of the 
purpose of the code. The second type of answer choices made use of simple math func-
tions to sum marize code behavior. The third type of answer choices were logical, using 
only common relational operators. 
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5.3. Results 

5.3.1. ERQ 1-Performance on Conditionals 
We found that overall, there was a statistically significant improvement in student 
per formance using symbolic reasoning about conditional statements. Scores from all 
three conditional questions on the assessments were averaged together for the overall 
analysis. 

Fig. 3 plots each students’ results so the average between the pre-and post-quiz is 
on the x-axis and the difference between the pre-and post-quiz on the y-axis. The re-

Table 4 
Conditional Questions on Assessments

Holistic Functional Relational

//Remember the value of
   I at this point as # 
   I, etc. 
If (J <= K) { 
   K = J; 
}

//Remember the
   value of I at 
     this point 
   as #I, etc. 
If(J < I) { 
   I = J; 
} 

//Remember the 
   value of I at
     this point 
   as #I, etc. 
If (J > I) { 
   I = J; 
} 

a. J is unchanged 
b. K is unchanged 
c. J is the minimum of #J and #K 
d. J is the maximum of #J and #K 
e. K is the minimum of #J and #K 
f. K is the maximum of #J and #K 

a. I = #I 
b. J = #J 
c. I = Min(#I, #J) 
d. I = Max(#I, #J) 
e. J = Min(#I, #J) 
f. J = Max(#I, #J) 

a. I >= #I 
b. I <= #I 
c. J >= #J 
d. J <= #J 
e. I >= #J 
f. J <= #I 

Fig. 3. Matched Pairs Analysis. 
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sulting t-test indicates that the shift in student scores was statistically significant with 
a p-value of 0.0339, as seen in Table 5. The average difference was an improvement 
of 0.049. 

When accounting for the various response methods for each question, we found that 
there was statically significant improvement for students when answering the conditional 
question that required a holistic understanding of the purpose behind the code segment, 
Table 5. The other two question formats did not show any statistical significance, so they 
were omitted from the table. This leads us to believe that using symbolic reasoning while 
working with the online tool helped improve student ability to reason abstractly about 
the purpose behind the functionality of the code. 

5.4. ERQ 2-Self-Efficacy on Conditionals 

The last two questions presented to students in the pre-and post-quiz were about student 
ability to reason about assignments and conditionals. They were designed to be a self 
evaluation in order for us to evaluate student self-efficacy. Students received a 7 point 
Likert scale as seen in Table 6 which was transformed into numerical representation. To 
evaluate if a student’s perceived understanding of reasoning with conditional statements 
changed, we subtracted the pre-score from the post score. 

Table 5
Performance on Conditional Statements

Question Pre-Quiz Score Post-Quiz Score Difference p-value 

Holistic 0.668 0.764 0.096 0.0124 
Total 0.658 0.707 0.049 0.0339 

Table 6
Likert Scale transformation

Strongly Dislike Dislike Slightly Dislike Neutral Slightly Agree Agree Strongly Agree 

-3 -2 -1 0 1 2 3

Table 7
Student Difference in Self-Efficacy 

Statement Pre-Quiz Post-Quiz Diff p-value 

I can trace the execution of code involving conditional state-
ments, using symbolic input values, such as #I and #J

1.02 1.80 0.78 <0.0001
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We found that student perception of their own ability to reason about condition-
al state ments shifted from an average of approximately 1 (Slightly Agree) closer to 2 
(Agree). This shift is statistically significant. This indicates that the tool and its lessons 
may have helped students to feel more confident in their ability to reason about condi-
tional state ments. 

6. Learning Design-by-Contract (DbC) Assertions for Data Abstractions 

6.1. Introduction 

This section focuses on results in a software engineering course in which students learn 
to read and write formal assertions using symbolic reasoning, in the context of data 
abstrac tions. In software engineering using a design-by-contract approach, software 
components encapsulate objects and they have interface contracts. The contracts in-
clude a mathemat ical abstraction for the encapsulated objects and contracts for opera-
tions to manipulate the objects, in the form of pre-and post-conditions. Students com-
plete exercises whereby they write pre-and post-conditions using the same automated 
reasoning tool described in Section 4. Our findings are based on a quantitative analysis 
of data collected by the tool, as well as qualitative data from task-based interviews. 
To assess the persistence of student learning difficulties, we also study student perfor-
mance on relevant exam questions. 

6.1.1. Educational Research Questions 
ERQ 3.1-DbC Basics: What common learning difficulties in reading and writ ing for-
mal Design-by-Contract (DbC) assertions can be pinpointed with an au tomated tool 
and collected data? 
ERQ 3.2-DbC Persistence: Which difficulties persist on a final exam when stu dents do 
not have access to the tool? 

The results help to inform computer science education efforts, not only in software 
de velopment and software engineering courses, but also in discrete mathematics and 
formal languages courses where precise notations are important (Herman et al., 2008; 
Zaccai et al., 2014). 

While this research is based on a specific formalism dictated by an underlying 
tool, we note that the results are generally more applicable because the core ideas of 
mathe matical modeling and logic are shared by many formal approaches. We note 
that syntactic difficulties with formal expressions arise for beginning formal methods 
learners no matter what the language. At the same time, semantic difficulties, such 
as the one discussed in this section concerning the distinction between the input and 
output values of a parameter in an operation’s post-condition, also arise across formal 
specification approaches. 
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6.2. Lessons and the Reasoning Tool 

For the work reported here, the tool utilizes the same interface as the studies discussed 
in Section 4 and 5, but now is instrumented with six symbolic reasoning activities in-
volving DbC assertions on data abstractions. The activities are presented with scaffold-
ing that includes instructions and reference materials, helping to reduce extraneous cog-
nitive load (Moreno, 2004; Sweller et al., 2011; Wouters et al., 2008). 

6.2.1. DbC Assertion 
Basics Given the focus on assertions, the code in each lesson is relatively simple. After 
a short introduction, students have little to no difficulty understanding the code, though 
the syntax is slightly different than what they are used to (e.g., the distinguished argu-
ment is passed as an explicit parameter – Push(K, S), instead of s.push(k)) (Cook 
et al., 2018). 

Formal specifications rely on using mathematical models, such as numbers, tuples, 
sets, or strings to explain the behavior of programming objects. For example, mathemati-
cal sets are useful when modeling a container where the order of the items in the con-
tainer does not matter. Mathematical strings, on the other hand, are useful for modeling 
the be havior of programming objects, such as a stack, a queue, or a list, where order of 
the items in the container is important. Often, the same mathematical concept is used 
to explain a va riety of programming concepts. This distinction between mathematical 
models (e.g., sets and strings) and programming concepts (e.g., lists and hash maps) 
become clear to stu dents with a few examples. The students learn and appreciate, for 
example, that numbers in mathematics have no bounds whereas programming integers 
are necessarily bounded. 

The mathematical string notation used to describe the behavior (but not a represen-
tation or specific implementation) of a data abstraction include Empty_String, o for 
string concatenation, |S| for string length, and <E> to denote a string containing a sin-
gle entry. After a few in-class activities, students become comfortable with basic string 
notations. 

Several of the lessons involve Stack objects and operations. The contract for ob ject 
construction ensures that stack S = Empty_String, whereas the contract for Pop 
requires (a pre-condition) that the stack not be empty, i.e., |S| > 0. In the ensures 
clause (post-condition) of an operation’s contract, it is often necessary to distinguish be-
tween input and output values. For example, the Push specification ensures the value of 
stack S after invoking Push as S = <#E> o #S; i.e., the concatenation of the input 
entry (#E) and the input stack (#S). These specifications are entirely abstract and are 
indepen dent of how the objects might be represented and how the operations might be 
imple mented. 

6.2.2. Lessons 
The first two lessons ask students to consider formal contracts for operations such as 
Push and Pop, and then to reason about code involving those operations. To facilitate 
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symbolic reasoning, as opposed to the use of concrete values, a Remember construct 
is used. 

The code segment for Lesson 1 is shown in Listing 2, with the type declara tions 
omitted. The lesson begins with a newly constructed stack S. The Confirm line 
S = Empty_String serves as an explicit reminder for the students of the stack’s 
initial value. Subsequently, an integer K is read (from standard input) and pushed onto 
the stack. The Activity section on the tool’s screen reminds students to replace all 
/∗ expression ∗/ blocks with a mathematical assertion that expresses the behavior of 
the provided code. 

To answer the question correctly, students must be able to read and understand the 
contract of Push. A correct answer is S = <#K>. Trivial answers, such as S = S, are 
not accepted. Other incorrect answers include the following. 

S = <>  ● – Nothing has been pushed on the stack. 
S = K  ● – Type mismatch; S is a string of entries; K is an integer. 
S =<K>  ● – The Push contract is (purposely) written so that K may be changed 
during the call. (This answer would be correct if Push were specified not to 
change K.) 

Activities 3 and 4 ask students to fill in a suitable pre-condition (or requires 
clause) for an operation so that when the clause is assumed, the operation’s code is cor-
rect. Activ ities 5 and 6 focus on post-conditions (or ensures clauses), where students 
must specify an operation’s behavior based on its code. Taken together, these activities 
cover the essence of operation calls in DbC. 

6.3. Experimental Methods 

6.3.1. Online Tool 
In the S2 study, seventy-one students interacted with the tool across two sections with 
different instructors. The tool was used outside of the classroom with no restrictions 
on the amount of time available. However, completion of the activities was required 
before a specified due date. It is important to note that students’ answers did not affect 
their grades, allowing them to interact with the tool without fear of penalty. Students 
were also told that a (paper and pencil) final exam question would be given, similar to 
the activities encountered when using the tool. All student response data was collected 
automatically. 

Confirm S = Empty_String; 
Read (K);
Remember; 
Push (K, S);
Confirm S = /∗ expression ∗/;

Listing 2. Lesson 1. 
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6.3.2. Final Exam 
The final exam included a logical reasoning question that required students to complete 
DbC activities similar to those encountered with the online tool. Students had access to 
the tool leading up to the exam but not during the exam. 

6.4. Results 

6.4.1. ERQ 3.1-DbC Basics: Automated Analysis of Difficulties 
Analysis of Lesson 1 Responses. Seventy-one students attempted Lesson 1 (Listing  2); 
sixty-four were successful (90%), moving on to subsequent activities. The remaining 
seven are candidates for targeted help. Table 8 shows the distribution of student attempts 
at solving the lesson. 

Of the 439 student responses, 86 unique response types emerged. Three of these 
unique responses (3%) were correct; the remaining 83 (97%) were incorrect. We ana-
lyzed the in correct responses for frequency of appearance and for the type of error caus-
ing the prob lem. Table 9 shows the top 10 most frequently given responses, which are 
incorrect, except for the responses that are highlighted in green. 

Table 8
Student-Response Distribution (Lesson 1)

No. of Attempts No. of Students % 

  1   8/71 11.3% 
  2 ∼ 5 32/71 45.1% 
  6 ∼ 10 17/71 23.9% 
11 ∼ 15 10/71 14.1% 
16 ∼ 20   4/71   5.6% 
> 20   0/71   0% 

Table 9
Top 10 Unique Responses for Lesson 1

No. Responses Occurrence %

  1 Confirm S = K 49/439 11% 
  2 Confirm S = <K>; 43/439 10% 
  3 Confirm S = <#K> o #S; 37/439   8% 
  4 Confirm S = <K> o #S; 27/439   6% 
  5 Confirm S = <#K>; 26/439   6% 
  6 Confirm S = #K; 19/439   4% 
  7 Confirm S = K o #S; 19/439   4% 
  8 Confirm S = /∗ expression ∗/; 18/439   4% 
  9 Confirm S = #S; 13/439   3% 
10 Confirm S = #S o K; 12/439   3% 
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Example Semantic Difficulty: Neglecting Input Values. The second-most common 
incor rect response was S = <K>. (The correct answer is S = <#K>.) Across unique 
responses, the post-conditional value of K appeared in 31 instances (37%), signaling 
a learning diffi culty. Again, the answer is incorrect only because the Push specifica-
tion does not guar antee that the input entry K is left unchanged. Push may change K, 
so the correct answer is S = <#K>. This difficulty could reflect a misunderstanding of 
the “remembered” value notation or a misunderstanding of (or inattention to) the given 
specification of Push. So while a difficulty has been spotted, it is not clear what misun-
derstanding has caused it to arise, a topic addressed further in our qualitative analysis 
(Section 6.4.2). 
Classifying Learning Difficulties. Table 10 summarizes our classification of difficulty 
types across the 83 unique incorrect responses for Lesson 1. Since a single response may 
contain more than one difficulty, the percentage column does not add up to 100% – but 
does reflect the frequency with which the error occurred in the 83 responses. 

This fine-grain classification of obstacles is adequate for the first lesson and makes 
some interventions obvious. However, further refinement is needed for the more 
challeng ing activities. 

6.4.2. Validation through Qualitative Analysis 
The qualitative analysis to address ERQ 3.1 and to identify the misunderstandings under-
lying observed learning obstacles is based on task-based interviews of nine volunteers.
The answers recorded by students were then classified based on the difficulty identified 
in Table 3. 
Overcoming Misunderstandings. Table 11 shows the progress of Student No. 3 (one 
of the nine volunteers), which is consistent with learning. She changed her answer twice 
before submitting, and with each change, moved closer to the correct answer. 

After entering her first answer, she referred to the supporting material on the screen, 
which inspired the change to the second answer based on the post-condition. On a sec-
ond pass through the material, student No. 3 recognized the need to stringify K (place 
it inside <>) and was able to explain the purpose behind this action. When questioned 

Table 10
Classification of Lesson 1 Difficulties

Difficulty Occurrence %

Input Values 31/83 37% 
Stringification 32/83 39% 
String Concatenation 10/83 12% 
String Length   2/83   2% 
Operation Contracts   9/83 11% 
Under-Specification 12/83 14% 
Variables   4/83   5% 
Syntax and Other 16/83 19% 
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about the inclusion of the # symbol after the second failed attempt, No. 3 responded “...
initially I wasn’t thinking I needed to include that, because we didn’t change K, so I was 
thinking K was already its original value... We change K because we use K throughout 
the operation, and so we have to just prove that it is the original that is being added to 
the stack due to... [Push specification].” 

This task-based interview shows that a potential intervention could be as simple as 
recommending to a student that she use the references after a failed attempt, or after a 
fixed amount of time has been spent on the lesson without a submission. This particular 
student worked for four minutes before the first submission. 
Lingering Misunderstandings. While use of the reference material can assist in guid-
ing students to the correct answer, it does not guarantee an accurate understanding of 
the material. Consider Student No. 8’s responses for Lesson 1, shown in Table 12. Stu-
dent No. 8 appears to demonstrate the same growth as No. 3 for this lesson. 

When No. 8 was asked why he included the # symbol, he responded, “I want to be 
able to confirm that K didn’t change between when it was pushed onto the stack and 
when you’re confirming it.” According to this answer, it would appear that he does 
not under stand how an element may be affected by being pushed onto a Stack. This 
suspicion was further confirmed when he reiterated this idea after Lesson 2: “You 
want to show that those values didn’t get changed, they were the original values that 
were pushed on.” With out this task-based interview, it would not have been possible 
to capture this particular misunderstanding since the answers being submitted were 
correct. 
Summary Analysis. In an automated analysis, the two students above are likely 
indistin guishable with respect to the difficulty concerning input values, whereas the 
interventions suggested by the interviews are quite different. 

 

Table 12
Student No. 8 Responses for Lesson 1

No. Response Tool Response

1 Confirm S = K; Incorrect
2 Confirm S = <K> o #S; Incorrect
3 Confirm S = <#K> o #S; Correct

Table 11
Student No. 3 Responses for Lesson 1

No. Response Tool Response

1 Confirm S = #S o K;
2 Confirm S = K o #S;
3 Confirm S = <K> o #S; Incorrect
4 Confirm S = = <#K> o #S; Correct
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For most students, learning occurred and some misunderstandings disappeared as 
they progressed from the first to the second lesson. This is less apparent in the auto-
mated anal ysis. 

Finally, while the online tool only collects student response data when they make 
a submission for checking correctness, in the interviews it is seen that seven of the nine 
par ticipants changed their answers multiple times before ever submitting. Much of stu-
dents’ thought processes may not be visible in the responses collected automatically. 

6.4.3. ERQ 3.2-DbC Persistence: Persistence of Difficulties on Final Exam 
The final exam was administered to a class of 43 students. During the exam, students 
did not have access to the tool. Part 1 of the logical reasoning exam question closely 
resembled Lesson 2, the difference being that students were working with a preempt-
able queue rather than a stack. 86% of students received full credit for part 1. Those 
that received partial credit appeared to confuse the Enqueue() and Inject() op-
erations. 

Part 2 of the logical reasoning question resembled a combination of Activities 3 
through 6 from the tool. Students were required to develop an operation’s pre- and post-
conditions to reflect the behavior of the code provided in the question. 84% of students 
received full credit for the pre-condition, and those that did not receive credit did not 
provide an answer. The post-condition proved to be more difficult for students, result-
ing in 60% of students receiving full credit, 21% receiving partial credit only, and 19% 
not receiving any credit. 

Based on student exam performance, students were able to demonstrate their learn-
ing, thereby answering the question of which difficulties persisted on a final exam when 
stu dents did not have access to the tool. The persistence of semantic difficulties seen 
through the analysis of tool lessons is also seen to a degree on the exam. For example, 
students incorrectly specified the necessary preconditions for a given code segment. 
One confound ing factor in analyzing exam answers is that manual grading might not 
have been as rig orous as the tool. 

7. Learning to Develop Loop Invariants 

7.1. Introduction 

This section focuses on a more challenging aspect of learning to reason about code in-
volving data abstractions and contracts. To formally reason about code involving loops 
that manipulate a data abstraction, with or without the aid of a tool, loop invariants are 
necessary. This section focuses on difficulties beginning students face when learning to 
develop a loop invariant. 
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7.2. Educational Research Questions 

Towards helping students write invariants for loops, we considered the following spe-
cific educational research questions (ERQs) in our research. The reasoning tool that 
aided stu dents in developing the invariants collected data as they performed invariant 
lessons. 
ERQ 4.1-Loop Invariant Basics: What common difficulties do students face, specifi-
cally as it concerns developing loop invariants? 
ERQ 4.2-Loop Invariant Understanding: With respect to developing loop in variants, 
a) what do student responses reveal about their level of understanding of the concepts 
and b) how suitable are their responses for identifying actionable items for interven-
tion? 

We answer both questions based on data collected as third year undergraduate soft-
ware engineering students performed activities using an online verification system and 
developed loop invariants. ERQ 4.2 is answered using a qualitative analysis of written 
responses to determine if the responses show holistic, partial, or no understanding. 
Addi tionally, for ERQ 4.2, we analyze responses from a paper medium and an online 
medium. Obviously, the latter is more amenable to automation. The results are based 
on an analysis of nearly 250 submissions over three semesters, from 105 groups com-
prising two or three students, with a grand total of 272 students having given consent 
to use their data. 

7.3. Online Verifier 

The online system used in this experiment is backed by a formal verification engine 
(Sitara man et al., 2011). Using the verifier requires understanding and use of design-
by-contract (DbC) assertions (Meyer, 1992). In DbC, the requires clause acts as 
a pre-condition meaning that it is the responsibility of the caller of an operation. The 
ensures clause is the corresponding post-condition that tells the caller what to expect 
from the opera tion after the call and tells the called operation’s implementer what the 
operation must guarantee. 

Fig. 4 provides a snapshot of the online verifier. When a user clicks the MP-Prove 
button to verify, the verifier generates and displays the verification conditions (VCs). 
VCs are assertions that are necessary and sufficient to prove code correctness. They 
arise for a variety of reasons including: that the code’s ensures clause is met, 
that the requires clauses of all called operations are met, and that a programmer-
supplied loop invariant is truly an invariant. For each VC, the verifier shows why it 
arises and if it is proved. Every VC needs to be proved for the code to be correct. For 
the example shown in Fig. 4, two of the VCs fail to prove. It turned out for some of 
the submitted invariants that initially failed to verify, the students were able to more 
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quickly (i.e., with fewer attempts) arrive at a proper invariant as compared to some 
of the other submitted incorrect invariants. In other words, not all failures to verify 
show the same level of misunderstanding. We return to this topic in detail in a later 
subsection. 

The use of mathematical strings to model a queue abstractly enables the queue’s 
spec ification to use string notations and the verifier to use results from a theory of strings 
to prove code correctness. This functionality is critical to the formation and use of a loop 
invariant, which serves as an internal contract necessary for verifying the correctness of 
operations containing loops. 

7.4. Experimental Methods 

7.4.1. Experimental Overview 
The experiment was conducted in a required third year course on software engineering 
in which students completed a set of activities on invariants using the online verifier in 
a class period. All invariant attempts collected and analyzed in this section are self re-
ported. Data used for analysis in this section was collected from a total of 272 students 
over three semesters: F3 (101 students), S3 (86), and F4 (85). Students worked on the 
activities in self-selected groups of two or three, totaling 105 groups. 

Fig. 4. Verifier Feedback Using true as Invariant. 
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7.4.2. An In-class Student Invariant Activity 
For this activity, students were given a formal specification and code for an Append 
oper ation, Fig. 4, whose specified goal is to append one queue onto the end of another 
queue. Only an invariant for proving correctness is missing. Whereas classical loop in-
variant ac tivities involving arrays, for example, involve the use of quantifiers, these 
activities are set up to factor out that additional complexity. 

In the description of queues on which the Append operation is based, mathematical 
strings are used to model a queue abstractly and to capture the importance of ordering. 
Importantly, this mathematical modeling has nothing to do with how queues might be 
represented and implemented, such as using arrays, vectors, or linked lists. 

When conceptualized abstractly as a string, a queue (Q) containing the following 
en tries, ~, | would be seen as Q = <~, |>. When Enqueue is called with Q and 
}, ab stractly it is adding the diamond to the right side of the string, resulting in Q = 
<~, |, }>. The removal of an entry by Dequeue conceptually will remove an entry 
from left side of the string, resulting in Q = <|, }>. Together they uphold the First-
In-First-Out nature of a queue. 

The caller is responsible for the requires clause where the combining of the two 
queues, P and Q, will not cause the modified queue P to violate the length constraint of 3. 
Here, the bars surrounding a queue variable (e.g., P) denotes the string length operator. 
The ensures clause P = #P o #Q states that the value of P at the end of the opera-
tion is the concatenation of the input value of P, with the input value of Q. Q is cleared, 
meaning that it is empty after the call to the operation. 

One way to accomplish the task of appending two queues is to use a While loop to 
Dequeue one element from Q and Enqueue it to the end of P. The code is straightfor-
ward. The novel elements of this code are the introduction of a maintaining clause 
that lets a programmer specify a loop invariant and a decreasing clause that lets 
them spec ify a progress metric that is used to prove termination. These assertions (i.e., 
maintaining clause and decreasing clause) are automatically checked by the verifier to be 
legitimate before it uses them in proving code correctness. The verifier is sound (Cook 
et al., 2012a; Sitaraman et al., 2011). 

In this example, students need to replace the assignment’s default invariant true 
with a correct invariant – an assertion that will hold true at the beginning and end 
of every itera tion, and with this particular implementation, is sufficient to guarantee 
that the ensures clause is met after the loop when Append terminates. This task 

Table 13

Example Trace Using Data Abstraction to Discover and Check an Invariant

Iteration P Q Check Invariant P o Q = #P o #Q 

0 <1> <2,3> <1> o <2,3> = <1> o <2,3> 
1 <1,2> <3> <1,2> o <3> = <1> o <2,3> 
2 <1,2,3> < > <1,2,3> = <1> o <2,3> 
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requires identifying the relationship between input values #P and #Q and the current 
values of P and Q, which vary from iteration to iteration. An example trace is shown in 
Table 13 to illustrate how a student might discover an (intended) invariant. 

7.5. Results 

7.5.1. ERQ 4.1-Loop Invariant Basics: Building A Catalog of Difficulties 
We have employed an iterative process to develop a catalog of student difficulties with 
re spect to learning to reason about loop invariants. The process was complicated for 
multiple reasons. Due to the various forms of data collection, all data had to be con-
verted to a digital format to allow for classification. In doing so, notes were included 
such as the number of attempts made. Furthermore, since the research involved col-
lecting student explanations on different types of response media, the researcher had to 
make some judgment calls in order to make all data compatible for analysis. A second 
researcher then reviewed the transcripts, verifying the data obtained and the decisions 
made. This researcher then pro ceeded to use the F3 data as the foundation, grouping 
similar incorrect answers together. These categories were subsequently used to label 
the submitted responses from S3 and F4. The occurrence of incorrect answers that 
belonged to these categories across multiple semesters presented promising results for 
the classification. 
A Catalog and Frequency of Difficulties. This initial classification was then shared 
with a cohort of experts to receive feedback and was subsequently revised to address 
potential needs. The grouping of similar incorrect answers was a good start for iden-
tifying problem areas, but it was found to be inadequate. This led to a final iteration 
for developing activity-specific categories and this is what is reported in the catalog of 
difficulties in Table 14. Data (comprising incorrect answers) from all three semesters 
were re-categorized using the catalog. While F4 has the most groups participating 
(represented by n in Table 14), the format of the collected results provided a confound-
ing factor which is explored in Section 7.5.2 and could explain why fewer difficulties 
were recorded. 
Verifier Feedback and Discussion. We found that when students submitted either the 
In variant Total Size is Conserved or Requires Clause (marked in Table 14 by an aster-
isk), they were more likely to get the correct answer on the next attempt. Of the two 
responses, the former made sense, since conservation of total size is an invariant, but 
just not a suf ficient one. The reason for the latter, if any, is not obvious. This led to an 
examination of the online verifier’s feedback. 

Fig. 4 shows the feedback students get for verifying with the default invariant true. 
The first failed VC returned indicates that the requires clause for a call within the 
loop to Enqueue is not met. It is the second failed VC that concerns the ensures 
clause of the Append operation. If we assume that students follow traditional debug-
ging techniques they would normally begin with resolving the first unproved VC. Upon 
further evaluation, we see that the invariant for conservation of size also results in sat-
isfying the requires clause of Enqueue. So when the students attempt to verify the 
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code with either of these invariants, they notice that only the ensures clause of the code 
fails to prove, focusing their attention on where it needs to be focused. So the process 
of verification with the online tool works as might be expected. 

7.5.2. ERQ 4.2-Loop Invariant Understanding: Student Conceptions 
For ERQ 4.2, student responses were analyzed to determine if students were able to 
com municate a holistic understanding of the task at hand, and to identify any actionable 
infor mation for future instruction as well as automated tutor development. 
Response Medium. In the F3 and S3 experiments, a total of 62 student groups re-
ceived a piece of paper at the start of the activity that contained the instructions men-
tioned above, and a table to use as a scaffold, as seen in Fig. 5. We found that the scaf-
folding encour aged students to record each attempt. Students also used the margins to 
perform traces such as seen in Table 13 using concrete numbers. Analysis of student 
responses was la bor intensive and required some interpretation of what was written, 
making automation difficult. 

For the F4 experiment, 43 student groups received the same instructions, with a free 
response text box for online submission as seen in Fig. 6. While easier for automated 
analysis, a reasonable question is what impact the online medium has on student re-
sponse. 
Level of Understanding. When the medium for response changed, we observed that 
stu dent responses appeared to shift from explaining what individual pieces of invariant 

Table 14

Catalog of Difficulties

General Category Activity Specific Activity Example F3 
n=35

S3 
n=28

F4 
n=43

Use of Loop Condition as 
Invariant

Loop Condition |Q| ! = 0   9 2 2

Use of Constraints as Invariant Data Structure 
Constraints

|P| <= 3   4 3 0

Focus on What is Varying as 
Opposed to What is Invariant

|P| is Changing |P| = |#P| + 1 11 2 6

Use of Irrelevant Math Operators Use of Substring P = #P o Prt_Btwn(0,1,Q) 11 2 4
Use of Reverse #Q = Reverse(P) o Q   5 0 2

Confusion of Data Structure 
Operations (e.g., Stacks vs 
Queues)

Incorrect Concatenation Q o P = #P o #Q   2 1 2

Use of Requires Clause as 
Invariant

Requires Clause* |P| + |Q| <= 3   8 6 7

Use of Ensures Clause as 
Invariant

Ensures Clause P = #P o #Q   6 2 3

Ignoring Some Input Possibilities Assumes #P is Empty #Q = P o Q 11 0 3
Underspecification Total Size is Conserved* |P| + |Q| = |#P| + |#Q|   7 6 4
Other ... ... 21 3 5
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at tempts meant to a reflective analysis of their work, often explaining why a sufficient 
in variant worked. Fig. 6 demonstrates this shift in focus for the response. Rather than 
stating what “should” be happening “now”, this response reflects upon attempts made 
and explaining why they did not work. 

To evaluate this observation, student responses were analyzed for the level of under-
standing communicated. We identified three levels of understanding; None, Partial, and 
Holistic. Figures 5 and 6 demonstrate what would be considered holistic understanding 
for each response medium. 

We conducted an analysis of the significance of medium on observed student under-
standing. Due to the validity conditions for the Chi-Square test not being met (not 
every option has at least 10 observations), simulations of the MAD statistic for 100,000 
shuffles were run to determine an approximate p-value. The higher proportion of stu-
dent responses displaying holistic understanding in the online medium is significant 
with a p-value of 0.0095. 

Fig.5.PaperResponse.

Fig. 6. Online Response.

Table 15
Completed Additional Activities for F4 (Online) 

Understanding Count Activity 2 Activity 3 

Holistic 11   9/11 = 81.2%   9/11 = 81% 
Partial 24 21/24 = 87.5% 19/24 = 79.2% 
None   8   4/8 = 50%   3/8 = 37.5% 
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Table 15 illustrates that students who showed some understanding for Activity 1 
made good progress on subsequent, slightly more complex activities, also involving 
queues. The importance of intervention during the first activity for students who need 
it is clear. 

8. Discussion and Conclusions 

The overarching goal of this research is to help students learn abstract reasoning at 
var ious levels with the aid of tools. Together, the tools help students practice abstrac-
tion and instructors identify and understand student difficulties. We have integrated 
symbolic reasoning into the curriculum for a software development course, and then 
built upon that foundation for reasoning with data abstractions in a third year software 
engineering course. 

8.1. Symbolic Reasoning 

Our research in Section 4 has shown it is possible to teach symbolic reasoning to a 
majority of students (at the 80% or a B grade level). Classroom instruction does have a 
statistically significant impact. One potential threat to validity of the results is that each 
semester had slight variations in the experimental conditions. Using Mann-Whitney 
U-test on the incoming student GPA, we found that the S1 and F2 student populations 
were comparable. While both S1 and F2 were taught by the same instructor, the S1 se-
mester was the first time this instructor taught this course. This could indicate that the 
instructor was better equipped in the F2 semester than in the S1 semester to teach these 
concepts, and why students performed well on this particular exam. Upon further ex-
amination, the overall average course grade for the F2 semester is actually worse than 
the S1 semester, indicating that students did not receive an advantage due to teacher 
experience. 

A follow-on study to the initial work reported in this section is an exploration of 
an automated way to analyze student vocalizations as they perform tool lessons. Ini-
tial results from the analysis from this follow-on study are promising Almazova et al. 
(2021). 

8.2. Conditional Statements 

The research presented in Section 5 examines student ability to translate the skills 
demon strated in Section 4 and apply it to a more challenging application. After working 
with the online tool, students performed better on questions that involved the tracing of 
condi tional statements. Students also reported being more confident with their ability to 
trace code with conditional statements using symbolic values. 
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One potential confounding factor for experiments, such as this one, is that only the 
performance of students who have completed both a pre-and post-quiz are considered. 
In this process, students who perform poorly and most likely needed the additional assis-
tance, may be omitted due to not completing either the pre-or post-quiz. It is also pos-
sible that for the students whose performance improved, the improvement comes simply 
from additional practice through tool lessons, but not from the supporting system and 
feedback. A potential follow-up study could try to account for these factors with appro-
priate control and treatment groups. 

Future work will study the preferred method of student response when asked to ana-
lyze and explain the purpose of code with conditional statements. Since earlier multiple 
choice questions, such as the ones discussed in Section 5, present students with three 
options for the types of reasoning answers, it will be interesting to look for trends as to 
the preferred method of student answers and impact of their chosen method on the cor-
rectness of their answers. 

8.3. Learning Design-by-Contract Assertions 

The research presented in Section 6 has helped identify common difficulties for students 
in learning to understand formal DbC assertions and trace symbolically over code in-
volving data abstractions. While students have syntactic and semantic difficulties, two 
kinds of se mantic difficulties need to be addressed: Those involving mathematical mod-
eling used in describing contracts for operations and those in understanding how and 
why input values need to be distinguished. Such semantic difficulties are programming 
and specification-language neutral, and educators need to understand them in order to 
develop suitable in terventions. 

This research also confirms the importance of using a qualitative analysis to comple-
ment quantitative analysis. While quantitative analysis based on automated data collec-
tion is beneficial for developing tutors and interventions, qualitative analysis provides 
insights behind student misunderstandings that give rise to learning difficulties. 

8.4. Learning to Develop Loop Invariants 

In Section 7 we analyzed explanations of student reasoning to identify their diffi-
culties. A catalog has been constructed to identify places to focus subsequent les-
sons. Analysis of the paper and online versions of student responses allow us to reach 
a qualitative conclusion that the medium impacts the response, and both kinds of 
responses are of interest. We have found more responses in the online medium to show 
a holistic understanding through a subjective analysis. However, that does not mean 
that those using the online medium lacked such an understanding. Rather, this is what 
we are able to say from the responses. The online medium, which makes automation 
easier, is an effective option for collecting actionable information as well. A threat to 
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validity is that our results depend on students accurately reporting their attempts and 
reasons. 

We have developed the process of identifying difficulties in learning loop invariants 
in such a way that it is a useful starting point to generalize and possibly guide the design 
of other systems for helping students to learn formal topics, such as discrete structures 
and automata theory. 

8.5. Conclusions 

We have found that students are able to successfully learn how to do symbolic reason-
ing, given a sequence of assignment statements. Going beyond the basics, we have 
found that students are also able to learn to reason symbolically about code involving 
conditional statements. Using that knowledge, they are successful in learning how to 
use formal spec ification of data abstractions. They are able to progress further and de-
velop loop invariants for code involving data abstractions. In every case, the tools have 
aided in student learning and in helping pinpoint difficulties at a fine-grain level. 

Data that continues to be collected with our tools will help us focus our future 
work on providing targeted feedback. The next version of the tool, a more general 
human-centric reasoning system, aims to take on the role of an intelligent tutor by 
providing tailored feed back to students and creating individualized learning experi-
ences. Additionally, a variety of data will be processed in real time to assist instruc-
tors with identifying students that may need help, or specific sub-concepts that may 
need additional instruction. We need students to understand not only specific technical 
details but also the larger purpose of abstraction and reasoning. Ultimately, the tu-
tor’s aim is not to replace an instructor, but to be of assistance to everyone involved. 
Teasing out the benefits of using a tool in conjunc tion with instruction is among our 
current educational research questions. Exploring the use of the tool and the benefits 
of related symbolic reasoning activities at a diverse set of institutions are among our 
other ongoing research efforts. 
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