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This study examines future secondary physics teachers’ knowledge related to the 
teaching of sound waves, and specifically the topics of sound level and sound 
intensity. The data is comprised of future teachers’ responses to a task in which 
they had to compose a script for an imaginary dialogue between a teacher and a 
group of students and to provide a commentary elaborating on their instructional 
choices. The topics selected for the task were chosen intentionally as they provide 
authentic and rich opportunities to bridge mathematics and science concepts, 
while challenging future teachers to consider the logarithmic measurement scale 
and its role in science. The task provided the participants with the beginning of a 
dialogue that featured student confusion about the measurement of sound level 
using a decibel scale. Future physics teachers were asked to extend this dialogue 
through describing envisioned instructional interactions that could have ensued. 
The instructional interchange related to the relationship between sound intensity 
and sound level, and particular teachers’ responses to the student ideas related to 
the meaning of a decibel sound level scale were analysed. These responses were 
categorized as featuring superficial or deep, and conceptual or procedural 
knowledge for teaching. We describe each category using illustrative excerpts from 
the participants’ scripts. We conclude with highlighting the affordances of 
scriptwriting for teachers, teacher educators, and researchers. 
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1 Introduction 

Exploring ways to describe and strengthen teachers’ knowledge has long been of 
interest to science educators and researchers. Ample attention has been paid to the 
concepts that pose difficulties for learners in order to propose pedagogical approaches 
to address them, such as the concepts of electric current, forces, etc. (McDermott, 
2001; McDermott et al., 2006). Within this general avenue of science education 
research, we focus on the topic of sound, specifically, sound level and sound intensity.  

We engaged a group of future physics teachers in extending an imaginary dialogue 
between a teacher and several students, in which a student exhibited confusion about 
the measurement of sound level and the meaning of the differences in measures 
expressed in decibels. Our analysis of the scripted dialogues examined the teachers’ 
knowledge for teaching utilized in the envisioned instructional interactions.   

2 Background 

In this section, we first describe different aspects of teachers’ knowledge, focusing on 
the knowledge needed for teaching.  Then, we introduce scripting tasks, a particular 
kind of task related to approximation of practice, used both to reveal and strengthen 
teachers’ knowledge. We proceed with a brief overview of the concepts related to 
sound level and sound intensity and conclude with describing prior education 
research on sound and logarithms.   

2.1 Knowledge for Teaching (K4T) 

Teachers’ knowledge and practice have received substantial attention in education 
research. Following Shulman’s (1986, 1987) classical studies, and his distinction 
between Content Knowledge (CK or Subject Matter Knowledge SMK) and Pedagogical 
Content Knowledge (PCK), researchers proposed various elaborations on the 
components of knowledge needed for teaching. Contemporary frameworks focusing 
on knowledge for teaching (K4T) have expounded on a variety of additional facets. 
These include the familiarity with the subject and its overall structure, understanding 
how the subject matter relates to other subjects and everyday life, awareness of 
potential student difficulties and willingness to use modern technologies to support 
student learning (Milner-Bolotin, 2019, 2020). Moreover, descriptions of K4T often 
highlight topics related to the current state of affairs in the field of education, such as 
contemporary advances in educational technologies, ethical challenges, student 
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engagement, and unsolved problems. Researchers appear to agree that subject-
specific K4T is paramount for effective teaching and this pertains to teaching all 
subjects, including elementary or secondary mathematics (e.g., Zazkis & Zazkis, 2011) 
and science  (Campbell et al., 2014; Depaepe et al., 2013). 

Our research stems from a position that deep and comprehensive understanding 
of subject matter is a cornerstone of effective pedagogy (Biggs, 1987). Yet, it is well 
known that an undergraduate science degree hardly guarantees the depth and breadth 
of knowledge necessary for successful secondary school teaching. For example, 
researchers have measured the gain in conceptual knowledge acquired by students in 
introductory science courses. These studies documented that a significant number of 
undergraduates fail to transcend factual memorization (Hake, 1998).  

The realization that subject-matter knowledge is essential for successful teaching 
and not all teachers might possess it is not new (Shulman, 1986). It has been a key 
concern of previous education reforms, such as the science and mathematics 
education reforms of the 1960’s, 1980’s, and 2000’s (Center for Education Reform, 
2018). Many notable scientists and mathematicians have collaborated with educators 
to produce textbooks and resources for elementary, secondary, and even post-
secondary teachers (Arons, 1997; Feynman, 1994; Klein, 2004). 

Advancing teachers’ knowledge is the main goal of teacher education and 
professional development. Therefore, we should move beyond the general claims of 
labelling teachers’ K4T as “lacking” and to understand the specific details pertaining 
to particular topics relevant to teaching. This leads to a question: How is it possible to 
gain access to K4T of a group of future physics teachers in order to design and adjust 
subsequent instruction?  One possibility is to engage teachers in writing a script for a 
lesson, a method that we elaborate next.  

2.2 Lesson play and scripting approaches 

Scriptwriting, a valuable pedagogical strategy and an innovative research tool, was 
originally developed in the context of mathematics teacher education (Zazkis et al., 
2013). While scriptwriting was novel in mathematics education research, its roots 
trace to the Socratic dialog and to the style of Lakatos’ (1976) evocative ‘Proofs and 
Refutations’ in which a fictional interaction between a teacher and students 
interrogates mathematical claims. 

Initially, scriptwriting was introduced in mathematics teacher education as a 
lesson play, where participants script interactions between an imaginary teacher-



MILNER-BOLOTIN & ZAZKIS (2021) 

339 
 

character and student-character(s) (Zazkis et al., 2009). Juxtaposed with a classical 
lesson plan describing merely content and activities, the lesson play aims at revealing 
how teaching-learning interactions might unfold. In later research, the lesson play 
approach was extended to an activity of writing an imaginary dialogue that is not 
necessarily restricted to a lesson, referred to as scriptwriting. In teacher education, 
scriptwriting opens doors for “approximations of practice”, which “include 
opportunities to rehearse and enact discrete components of complex practice in 
settings of reduced complexity” (Grossman et al., 2009, p. 283), thus becoming  
especially valuable for teacher preparation. 

Scriptwriting is both an instructional tool and a research data collection tool. It 
has been implemented in recent research (Kontorovich & Zazkis, 2016; Zazkis & 
Kontorovich, 2016; Zazkis & Marmur, 2018; Zazkis et al., 2013; Zazkis & Zazkis, 2011), 
where participants had to identify problematic issues in the presented topics, and 
subsequently clarify these by designing a scripted dialog. The affordances of 
scriptwriting for future teachers, teacher educators, and researchers were detailed in 
the aforementioned studies.  

For teachers, writing a script is an opportunity to examine a personal response to 
a situation, explore erroneous or incomplete approaches of students, revisit and 
possibly enhance personal understandings of the concepts involved, and enrich the 
repertoire of potential responses to be used in future teaching. Challenging future 
teachers to think about the science content from this teaching perspective could 
encourage them to consult more advanced science resources. Moreover, while the 
teachers’ ability to anticipate and address potential student difficulties depends on the 
teachers’ experience, novice teachers can learn from other educators’ experiences. 
This could motivate future teachers to consult science education literature. Thus, the 
scriptwriting activity helps uncover and draw on students’ prior knowledge, while 
imagining a lesson as an interactive “living process”, as opposed to following a 
previously designed rigid lesson plan.  

For researchers, the scripts result in a rich data source that can be scrutinized 
from various perspectives, providing a lens for examining images of teaching and 
insights into the scriptwriter’s understanding of the subject matter (Zazkis & 
Kontorovich, 2016). Scripts composed by teachers may reveal not only their K4T 
relevant to a particular concept, but also their own difficulties and 
misunderstandings. 
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For teacher educators, the scripts provide insights into planned pedagogical 
approaches that can be consequently highlighted and discussed in working with 
teachers. Furthermore, scripts composed by future teachers provide teacher 
educators with a view on the relevant knowledge of their students, which can 
subsequently be incorporated into instructional activities aimed at extending and 
strengthening this knowledge (Zazkis & Marmur, 2018).  

The chosen science content for our investigation is sound and sound level, which 
is ultimately related to a logarithmic scale. A brief overview of this topic is provided 
in the next section.   

2.3 A brief physics overview: Sound level and a logarithmic scale 

Sound is a mechanical wave (Hawkes et al., 2018). In a fluid, sound consists of 
compressional longitudinal waves (rarefactions and compressions), while in a solid, 
sound propagates either as a longitudinal or a transverse wave. Sound waves transfer 
energy through the vibrations of the medium generated by the sound source such as 
an oscillating object.  

Humans can perceive an extremely wide range of frequencies. The threshold of 
human hearing for a normal adult is about 20 Hz, while the upper limit is 20 kHz. 
This is three orders of magnitude difference! The range of frequencies perceivable by 
different species is shown in Table 1 (Ahlborn, 2004). 

Table 1.  Ranges of frequencies perceivable by different species 

Species Lower frequency of sound (Hz) Upper frequency of sound (Hz) 
Humans 20.00  20,000 
Dogs 50.00  45,000 
Cats 45.00  85,000 
Bats 20.00                                 120,000 
Dolphins   0.25                                 200,000 
Elephants   5.00  10,000 
Birds                    1,000.00    4,000 

 
The physical properties of the sound waves influence the physiological features of 

sound: its loudness, pitch, and timbre. The energy transmitted by a sound wave (E) 
per unit of time (t) is called the power of the sound wave (P): 

𝑃𝑃 =
𝐸𝐸
𝑡𝑡
⇒  [𝑃𝑃] =

joules
second

= watts (W) 
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Since sound waves spread isotropically, one can calculate how much energy is 
transmitted per unit area S, located a distance r from the source. This quantity is 
called the sound intensity (I) and can be described as the power transmitted by the 
wave per unit area: 

𝐼𝐼 =  
𝐸𝐸

𝑡𝑡 × 𝑆𝑆
=  
𝑃𝑃
𝑆𝑆

=  
𝑃𝑃

4𝜋𝜋𝑟𝑟2
 

The sound intensity is measured in watts per square meter: [𝐼𝐼] = W
  m2. 

So far, we have focused on the physical description of sound waves. In addition, 
we have to consider the range of sound intensities perceptible by humans, as well as 
how our ears perceive sound. Examining sound perception helps justify why the 
concepts of logarithms and a logarithmic scale are used to describe sound intensity.  

There is almost 16 orders of magnitude difference between the softest sound an 
average human can hear (𝐼𝐼0 = 10−12  W

m2 ) and the loudest sound that will completely 

destroy our hearing by bursting our eardrums (𝐼𝐼max = 104  W
m2 ) (Table 2). To describe 

a physical quantity with such a vast range of values, it is common to utilize a 
logarithmic scale. This scale is especially convenient for achieving a manageable range 
of numbers. Thus, the sound level, β, was originally defined as the logarithm of the 
ratio of the given sound intensity and the softest sound perceivable by humans, 𝐼𝐼0: 

𝛽𝛽 (in B) = 𝑙𝑙𝑙𝑙𝑙𝑙
𝐼𝐼
𝐼𝐼0

,   𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒  𝐼𝐼0 = 10−12  
W
m2 

Sound level is measured in bel (1 B), in honour of Alexander Graham Bell (1847-
1922), a Scottish-born inventor, scientist, and engineer who patented the first 
telephone, the phonograph (gramophone), and a few other devices. However, this unit 
is too large (imprecise) to be useful, thus it was suggested that one tenth of the unit, 
the decibel or dB where 1 B = 10 dB be used. Today, the sound level is most often 
measured in dB: 

𝛽𝛽 (in dB) = 10 𝑙𝑙𝑙𝑙𝑙𝑙 𝐼𝐼
𝐼𝐼0

,    (𝐼𝐼0 = 10−12  W
m2)          (1) 

There is another reason why the dB sound level scale is useful. Our ears respond 
logarithmically to changes in intensity (Gray, 2000) and this is what a logarithmic 
scale is constructed to display. How our ears perceive the change in loudness depends 
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on the ratio between the original and current sound intensities. Let us illustrate what 
this means with the following example. 

Let us assume that the sound level increases from 10 dB to 20 dB. What is the 
perceived increase in the loudness of sound and what is the increase in sound 
intensity? We have: 

𝛽𝛽1 = 10 dΒ; 𝛽𝛽2 = 20 dΒ, therefore 𝛥𝛥𝛽𝛽 = 10 dΒ 

We need to find the ratios between the initial and final sound intensities, that is, 
𝐼𝐼2
𝐼𝐼1

  . We will show that the change of sound level of 10 dB means that the intensity of 

the sound, I, increased tenfold.  

𝛽𝛽1 = 10 dB ⇒ 10 𝑙𝑙𝑙𝑙𝑙𝑙
𝐼𝐼1
𝐼𝐼0

= 10 ⇒ 𝑙𝑙𝑙𝑙𝑙𝑙
𝐼𝐼1
𝐼𝐼0

= 1 ⇒
𝐼𝐼1
𝐼𝐼0

= 10 

𝐼𝐼1 = 10𝐼𝐼0 ⇒ 𝐼𝐼1 = 10−11  
W
m2 

𝛽𝛽2 = 20 dB ⇒ 10 𝑙𝑙𝑙𝑙𝑙𝑙
𝐼𝐼2
𝐼𝐼0

= 20 ⇒ 𝑙𝑙𝑙𝑙𝑙𝑙
𝐼𝐼2
𝐼𝐼0

= 2 ⇒
𝐼𝐼2
𝐼𝐼0

= 100 

                                                          𝐼𝐼2 = 100𝐼𝐼0 ⇒ 𝐼𝐼2 = 10−10 W
m2 = 10𝐼𝐼A1                                    (2) 

Thus, a sound level change from 10 to 20 dB means that the final intensity is 
tenfold the original one (Eq. 2).  Similarly, a change from 20 to 30 dB, or any other 10 
dB increase, will result in a tenfold increase of the original intensity. This derivation 
follows from the sound level definition (Eq. 1). It relies on a direct application of the 
rules of operations of logarithms. While a student might think that a 20-dB sound is 
twice more intense than a 10-dB one, this is not the case. The power delivered to the 
ear in the second case is 10 times the original power (Eq. 2).  

The difference between the perception of sound and the actual amount of energy 
reaching our ears is the key to understanding why the logarithmic scale is used in 
describing the sound intensity. This difference follows from our physiology. Our ears 
function according to a logarithmic and not to a linear scale. This is the topic of 
psychoacoustics - the study of how humans perceive sound.  

To develop intuition regarding the sound level measurement, one can consider 
how we perceive different sounds and how much power is delivered in each case 
(Table 2). 
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Table 2.  Sound intensity levels perceptible by humans and corresponding phenomena (The Physics 
Hypertextbook https://physics.info/intensity) and relevant physical phenomena  

Sound 
intensity 
level β (dB) 

Intensity, I, 
(W/m2) Example/effect 

−∞  0 Absolute silence   

−24 1 x 10-14.4 sounds quieter than this are not possible due to the random motion of 
air molecules at room temperature (∆P = 1.27 μPa) 

−20.6 1 x 10-14.06  Current world’s quietest room (Microsoft Building, Redmond, WA, USA) 
−9.4 1 x 10-12.94 former world's quietest room (Orfield Lab, Minneapolis, MN, USA) 

0 1 x 10-12 Threshold of hearing at 1000 Hz, reference value for sound pressure of 
20 mPa 

10 1 x 10-11 Normal breathing, rustling of leaves 
20 1 x 10-10 Whisper at 1 m distance 
30 1 x 10-9 Quiet home 
40 1 x 10-8 Average home 
50 1 x 10-7 Average office, soft music, quiet residential area 
55 1 x 10-7.5 Dishwasher, electric shaver, electric toothbrush, large office, rainfall 
60 1 x 10-6 Normal conversation, quiet TV 

70 
 
1 x 10-5 

Noisy office, busy traffic, air conditioner, automobile interior, 
alarm clock, background music, loud television, vacuum cleaner, 
washing machine, hair dryer, flush toilet 

80 1 x 10-4 Loud radio, coffee grinder, noisy restaurant, ringing telephone, 
whistling kettle, blender, doorbell, food processor 

86 1 x 10-3.4 Inside a small single engine plane, such as Cessna, or twin engine such as 
Piper Seminole 

90 
 
1 x 10-3 

Inside a heavy truck or a tractor, very heavy traffic, hand saw, 
lawn mower, machine tools. Sound generated by Niagara Falls Prolonged 
exposure is dangerous 

100 1 x 10-2 Noisy factory, siren at 30 m, electric drill, shouted conversation, tractor, 
truck. Exposure of 8+ hours a day is dangerous 

110 

 
1 x 10-1 

Shouting or barking in the ear, boom box, factory machinery, motorcycle, 
school dance, snow blower, snowmobile, 
squeaky toy held close to the ear, subway train, and woodworking class. 
Serious damage from 30 min per day exposure. 

113 1 x 10-1 Loudest clap (Alastair Galpin, New Zeeland, 2008) 

120    1 Loud rock concert, pneumatic chipper at 2 m, a clap of thunder, 
threshold of pain 

130 1 x 101 Baby cry, peak stadium crowd noise 
140 1 x 102 Jet airplane at 30 m. Severe pain, damage in seconds 

150 1 x 103 Jet aircraft at a few meters, during take-off; explosive blast. Severe pain, 
instantaneous damage  

160 1 x 104 Bursting of eardrums 

 

https://physics.info/intensity/
https://dx.doi.org/10.1121/1.1943116
https://www.google.com/maps/place/Orfield+Laboratories/@44.9570481,-93.2348655,17z
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It takes effort to gain an intuitive understanding of how sound intensities can be 
described using a logarithmic scale. The lack of exposure, as well as an inherent 
complexity associated with logarithms, contribute to many difficulties that students 
experience when learning these concepts. We attend to research that explored some 
of these difficulties in the next section. 

2.4 Brief overview of prior research on sound and logarithms 

Research has shown that the concepts of logarithms and a logarithmic scale pose 
substantial challenges for students. Even after learning the procedures of operating 
with logarithms, student conceptual understanding is often lacking (Berezovski & 
Zazkis, 2006; Berger et al., 1987; Liang & Wood, 2005; Weber, 2016).  

For example, Liang and Wood (2005) analysed secondary students’ 
misconceptions related to logarithms. They classified these misconceptions into three 
categories: (1) knowledge or computational errors, (2) understanding errors, and (3) 
application errors. The first category comprised routine questions that required direct 
recall or application of the definition and laws of logarithms, or simple manipulations 
requiring a minimal number of steps. Not surprisingly, 86% of the students were able 
to answer these questions correctly. Yet, when the questions became more complex, 
where students had to decide how to apply their understanding to a slightly unfamiliar 
situation, only 66% of them were able to provide a correct answer. Finally, only 39% 
of the students were able to solve questions that required applying their 
understanding to a novel situation.  

Several studies focused on students’ misconceptions related to the basic properties 
of mechanical waves, such as sound (Periago et al., 2009). For example, many 
students found it difficult to visualize how waves can transfer energy without 
transferring matter. In the case of longitudinal waves such as sound, this becomes 
even more complicated. The properties of waves and their interrelationships are also 
often confused, such as loudness of sound and its pitch. Yet, the investigation of sound 
level provides an additional complication where the human perception of sound and 
the immense range of sound intensities provide an obstacle for the students who are 
used to dealing with linear scales and with small ranges of quantities. The 
mathematical description of sound level using a logarithmic scale creates an 
additional obstacle. 
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3 Theoretical framing 

The key premise of this study is that effective teaching is based on the teachers’ deep 
and extensive content understanding, at the level exceeding the one required from 
students. Paraphrasing a famous mathematician and educator, Felix Klein (2004), 
one might say that teaching requires educators to acquire an advanced standpoint on 
the subject. Thus, in order for teachers to become effective, they have to understand 
the concepts they ought to teach in great depth. But what does it mean “to understand 
in-depth”? Science and mathematics educators have developed different 
conceptualizations of this notion.  

Richard Skemp’s original conceptualization of understanding in mathematics 
distinguished between instrumental and relational understanding (Skemp, 1976). 
Instrumental understanding refers to the ability to perform procedures, without 
necessarily being aware of the reasons behind them. This kind of understanding relies 
heavily on rote memorization and is driven by the question of how and not why. A 
classic example of instrumental understanding, and how deeply it is ingrained in the 
teaching of mathematics, is a well-known phrase used to “help” students learn to 
divide fractions: “You don’t need to know why, just invert and multiply” (Ma, 1999; 
Milner-Bolotin, 2018a, 2018b). Note that the emphasis here is not on the why, but on 
the how. 

Instrumental understanding is not unique to mathematics. For example, in 
science students recognize patterns and match problems with equations, often 
without gaining a deeper conceptual understanding of the process or even recognizing 
various ways of representing the same concepts. In science, instrumental 
understanding is often expressed by a student ability to solve problems when 
recognizing patterns and matching givens with formulas, while stumbling with 
conceptual problems requiring the making of predictions by applying science laws to 
everyday life (Hake, 1998).  

Skemp also described relational understanding, which focuses on the reasons and 
justifications on connections between different concepts and on applications. In 
science education, it is often referred to as conceptual understanding (Milner-
Bolotin, 2014). This is in accordance with the distinctions made by Hiebert (1986) 
between procedural and conceptual knowledge. Conceptual knowledge has been 
defined as understanding of the principles and relationships that underlie a domain 
(Hiebert & Lefevre, 1986) or knowing why, while the core of procedural knowledge 
is in knowing algorithms and rules for completing tasks and procedures. 
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Similar descriptions were provided by other researchers. For example, Rittle-
Johnson and Alibali’s (1999) empirical study about conceptual and procedural 
knowledge in mathematics defined them as follows: 

We define conceptual knowledge as explicit or implicit understanding of the 
principles that govern a domain and of the interrelations between pieces of 
knowledge in a domain. We define procedural knowledge as action sequences 
for solving problems. (p. 175) 

Educators argued for the facilitation of students’ conceptual development, noting 
that a large part of mathematics instruction focusses on procedures and skill 
development (Hiebert & Grouws, 2007). However, distinguishing “knowledge of 
procedures” and “knowledge of concepts and relationships” did not provide 
information about the depths or quality of knowledge. While the conceptual–
procedural distinction was adopted by many researchers, Star (2005, 2007) criticized 
the implicit preference of educators toward conceptual knowledge, arguing that many 
scholars who are interested in mathematics teaching and learning, tend to conceive of 
conceptual and procedural knowledge as types of knowledge rather than in terms of 
qualities of knowledge. Star (2005) argued:  

The term conceptual knowledge has come to encompass not only what is known 
(knowledge of concepts) but also one way that concepts can be known (e.g., 
deeply and with rich connections). Similarly, the term procedural knowledge 
indicates not only what is known (knowledge of procedures) but also one way 
that procedures (algorithms) can be known (e.g., superficially and without rich 
connections). (p. 408) 

In order to disentangle knowledge type and knowledge quality, Star (2005) 
introduced a further refinement by making a distinction between deep procedural 
knowledge and superficial conceptual knowledge. According to Star, deep procedural 
knowledge is rich in relationships and may entail the flexible application of 
procedures. Deep procedural knowledge also entails the ability to choose an 
appropriate and efficient procedure that justifies its use, while being linked with 
understanding and critical judgement. Superficial conceptual knowledge, as the term 
implies, refers to surface level knowledge and the reproduction of known facts. The 
investigation of this refined distinction is our main focus.  

In this study, we are interested in the quality of a teachers’ knowledge related to 
sound level and sound intensity. Our access to teachers’ knowledge was through the 
imagined instructional interactions that they described (see the description of the task 
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in Section 4). We used thematic content analysis (Creswell, 2008) of these imagined 
instructional interactions to uncover and categorize the participants’ knowledge for 
teaching (K4T). In particular, we focused on the idea that sound level is related to 
logarithms and the logarithmic scale. Acknowledging this relationship demonstrates 
the connection between concepts in mathematics and science, and can be considered 
as conceptual knowledge. But simply declaring that there is a connection, points to a 
superficial conceptual K4T. Deep conceptual K4T can be evident, for example, when 
using multiple representations, drawing connections with daily experiences, and 
explaining (rather than citing) underlying relationships.  

Guiding students into substituting numbers into formulas correctly, or into 
memorizing the rules of operations with logarithms, is an indication of procedural 
K4T. However, deep procedural K4T may be exhibited through the teacher’s ability 
when explaining resulting conclusions, such as “every increase in 3 dB doubles the 
intensity”, or “every increase in 10 dB multiplies the intensity by 10”. The teacher’s 
deep procedural K4T may also be exhibited when guiding students to extrapolate 
from these conclusions when considering other changes in sound level. Our 
operational definitions of the categories as related to K4T are summarized in Table 3. 

Table 3.  Description of four categories of teachers’ K4T that guided this study 

Category of teacher’s 
K4T 

Description of the category 

Superficial conceptual Declaring connections between concepts without elaboration 
Deep conceptual Explaining underlying relationships between concepts 
Superficial procedural Focusing on the use of procedures without elaborating on the underlying 

principles 
Deep procedural Connecting procedures to underlying principles 

 
In light of the discussion above, this study aims to address the following research 

question: What do participants’ scripts reveal about the scriptwriters’ K4T for 
teaching the topic of sound, in particular the concepts of sound intensity and sound 
level?    
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4 Methodology 

4.1 Participants and context 

Twelve future physics teachers participated in the study. They all had an extensive 
physics background at the tertiary level. Eight of the ten participants had a B.Sc. in 
Physics, two had an M.Sc. in Physics, one had an engineering degree, and one had a 
Ph.D. in Astronomy. At the time of the study, the participants were enrolled in a 
methods course for secondary physics teachers in their teacher education program. 
This required course was delivered in 39 hours over 13 consecutive weeks. It took 
place in a physics laboratory, and therefore included both theoretical and hands-on 
activities related to secondary physics teaching.  

4.2 Scripting Task 

During the course, the participants completed the task, Exploration of Sound, which 
included composing a script for a play that was referred to as a lesson play (Figure 1). 
As a preparation for this task, the concept of a lesson play (Section 2.2) was presented 
and discussed in class. The participants were asked to review the science related to 
sound waves relevant to the secondary physics curriculum in advance. During class, 
they discussed the task in small groups. This was followed by a whole class discussion 
of the underlying concepts, pedagogical approaches, and potential student difficulties. 
The future physics teachers were then asked to complete the task individually over a 
two-week period.  

The task presents the beginning of a dialogue that features student confusion 
related to sound measurement. In addition to composing a lesson play, in which the 
teacher and student characters continue the dialogue and discuss sound levels, the 
participants were asked to address the following questions: 

1.  How do you understand the concept of sound level? The way you understand 
the idea yourself could be different from the way you explain it to students. If 
this is the case, please indicate how you could clarify the issue to yourself, or to 
another physics teacher. 

2.  What are key physics concepts students need to acquire to understand the 
concept of sound level and how it is measured? 

3.  What are potential student difficulties, misconceptions or alternative 
conceptions? 



MILNER-BOLOTIN & ZAZKIS (2021) 

349 
 

4.  How might a teacher help students understand these concepts? What 
pedagogical approaches would you recommend and why? 

5.  What resources did you use to write your Lesson Play that helped you figure it 
out? (Research papers, pedagogical forums, websites, etc.) 

 

Figure 1.  A scripting task on the topic of sound implemented in the study 
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4.3 Data analysis procedures 

The scripts composed by the participants, along with their responses to the five 
questions, comprised the data for our study. We have read and analysed all the scripts 
independently, identified major themes, checked for the accuracy of the explanations 
and the examples, and considered not only what was present in the scripts, but also 
what the scriptwriters chose to omit. We then compared our analyses and 
observations and discussed our interpretations of the data.  

5 Results and Analysis 

In this section, we describe four examples illustrating different categories of K4T in 
the context of teaching the topic of sound. While we realize that these categories are 
not disjoint representations of teachers’ K4T and can be better represented by a 
spectrum, we use representative examples from the participants’ lesson plays as 
illustrations. We then discuss how this pedagogical tool can be used in science teacher 
education to support future teachers in developing their K4T. All the future teachers’ 
names below are pseudonyms. 

5.1 Case 1: Superficial Conceptual K4T 

5.1.1 Jamie’s lesson play 

The teacher-character in Jamie’s script began the discussion of sound and its 
properties by connecting sound phenomena to students’ prior experiences. While this 
was a natural start, most of the interactions during the lesson were factual statements 
either from the teacher or from the students. It appeared as if Jamie tried to include 
everything that he could remember about sound and sound waves. Jamie’s lesson play 
included the discussion of many sound properties, such as its sources, frequency, 
pitch, and loudness. Additionally, the use of PhET simulations, while relevant to the 
general exploration of sound waves or their interference, was irrelevant to the lesson 
(Wieman et al., 2010). In Jamie’s script, the discussion initiated by the teacher left no 
sufficient time to focus on the physics and mathematics concepts. The following 
excerpt illustrates this: 

Denny:  Oh yeah, what is a dB?  
 

Teacher:  Well a dB, or a decibel, is the intensity level you hear the sound at. Notice 
the Deci prefix in the word decibel is Latin for tenth. The intensity level is 
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relative to something we call the Threshold of Hearing, which is 0 dB. And 
its logarithmic after that. The difference between 10 dB and 20 dB is 10 
times greater.  
 

Sanders:  Okay, what? So, decibels are on a logarithmic scale?  
 

Wendy:  So, if I heard something at 30 dB, does that mean it is a thousand times 
greater than 1 dB? Or if a sound was 70 dB, and I heard something at 90 dB, 
it is 100 times louder?  
 

Teacher:  Correct. […] 
 

Wendy:  What I thought that was a small 10% difference in threshold is a lot. As the 
scale gets higher, the magnitude is much greater, it’s not a linear 
relationship with the threshold of hearing.  

 
Teacher:  So now you know! We must treasure our hearing. Let’s set this on a scale 

now. Using Health-BC, sounds that are harmful are above 85 dB, and the 
concert at 91 dB is like a subway, or a shouting conversation. That is loud! 
Especially over a long period of time, you are putting your ears against very 
different frequencies, to overly large amplitudes... 

5.1.2 Analysis of Jamie’s lesson play 

This excerpt illustrates why we categorized this script as an example of Superficial 
Conceptual K4T, as it is rife with lost opportunities for supporting student conceptual 
understanding. Jamie’s script also shows how teacher’s Superficial Conceptual K4T 
could reinforce students’ misunderstanding and confusion.  For instance, there was 
no explanation of why the 20-decibel difference meant a hundred-fold increase in 
sound intensity. It is unclear why a logarithmic scale was chosen to describe the sound 
level. On one hand, a lot of complex information was given to the students without 
any explanation, on the other hand, the teacher discussed the meaning of the prefix 
Deci used in the name of the sound level unit (decibel). This was a striking example of 
a “pedagogical shield” (Koichu & Zazkis, 2013; Marmur & Zazkis, 2018; Zazkis & 
Leikin, 2008), that is, certain pedagogical choices made by teachers to protect them 
from exposing their inability to attend to the core of the task.  

In the reflection, Jamie acknowledged having a rather shallow understanding of 
the content, yet he did not try to delve deeper into it. The topics of logarithms and the 
logarithmic scale were hardly mentioned in the script and were not elaborated upon.  
This is how Jamie described it: “I was confused about the approach I would take... I 
really wasn’t sure what sound level meant.”  
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5.2 Case 2: Deep Conceptual K4T 

5.2.1 Alex’s lesson play 

We illustrate Deep Conceptual K4T with the case of Alex, who approached the 
discussion of sound level and sound intensity without requiring students to delve into 
any formal calculations. Alex split the script into three scenes. Scene 1 introduced 
students to the concept of sound level by combining their perception of sound 
loudness and the measurement of the sound level. This part had an experiential focus 
and culminated with identifying the discrepancies between students’ prior knowledge 
and the results of their experiences of measuring sound levels with their smartphones. 
In Scene 2, a more formal definition of sound intensity was introduced and the 
students were given a version of  Table 2. In Scene 3, the students returned to the 
initial problem to reconcile their original measurement of a 3-decibel increase in 
sound level when doubling the number of sound sources.  

Alex realized that while a notion of loudness of sound was familiar to the students 
from everyday life, the concepts of sound level and intensity were not. Moreover, the 
students did not possess the necessary mathematical background of logarithms to 
approach this subject computationally. Consequently, the teacher-character in Alex’ 
script supported students in acquiring conceptual understanding without reverting to 
calculations. To do that, she used a smartphone application that could measure the 
ambient sound level, so the students experienced the differences in sound levels first 
hand. This was a deliberate pedagogical choice related to technology use, as students 
today have access to smartphones, but few use this powerful tool for work in 
mathematics or science (Maciel, 2015; Milner-Bolotin, 2016). 

Alex intended to help her students understand what the concepts of sound 
intensity and sound level represented through the physical experiences of sound and 
its measurement. To achieve this, the teacher-character in Alex’s lesson play spread 
the students around the classroom and asked them to measure the sound levels 
produced by one and then by two identical xylophones: 

Teacher:  That’s interesting. So, if that’s true, that would mean that the decibel scale 
doesn’t measure how loud the original sound was, it measures how loud it is 
when it gets to you. Now, the other interesting thing is how the number 
changed. I want to do another demo to make that clearer. Everyone measure 
and write down how loud this one xylophone is in dB. [The teacher plays one 
key of one xylophone.] Now, if I played two xylophones and hit just as hard, 
how loud do you expect it to be compared to just one xylophone? 
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While the teacher in this script never discussed the logarithmic scale, she 
challenged the students to think about what would happen if instead of a single sound 
source (e.g., a xylophone), there were two identical sources. This easy to perform 
experiment has a significant pedagogical value, and reveals Alex’s Deep Conceptual 
K4T, as illustrated by the following dialogue: 

Jiyun:   Well, it should be twice as loud because there’s two.  
 
Teacher:   Great, our first suggestion is twice as loud. Any other suggestions? [The class 

shakes their heads.] Okay, let’s measure it. Don’t say your number right 
away. [The Teacher plays both xylophones at once.] Okay everyone, write 
down what your phone measured. Now, I want to ask everyone, did the 
xylophones sound twice as loud as one xylophone? Did you feel like your ears 
were dealing with twice as much sound?  

 
Julia:   I think so.  
 
Austin:  Not really! It only sounded a little louder than one xylophone. Like, I could 

tell there were two, but it didn’t hurt my ears or anything.  
 
Teacher:   Okay, we have two different opinions! Let’s see which one matches how the 

decibel scale measures. Everyone, please summarize your two 
measurements.  

 
Julia:   I got 75 and 78. 
 
Austin:   I got 65 and 69. 
 
Jiyun:   I got 70 and 72. 

This dialogue illustrates how comparing the measurements of the sound levels of 
one versus two identical sources can help students develop a conceptual 
understanding of the key property of logarithms, log(𝑎𝑎𝑎𝑎)=log(a)+log(b), and the 
correspondence between linear and logarithmic scales. The teacher-led the students 
through having an experience of the logarithmic scale, used to measure sound level, 
without actually realizing that they were using such a mathematical construct. Having 
two sound sources instead of one does not double the dB value, but adds 3 dB to the 
original one. In this script, the students experienced how the measurement of the 
sound level created by two xylophones added about 3 dB to the original sound level. 
In the follow-up lesson, the teacher introduced the table demonstrating the sound 
level and sound intensity connection (Table 2), and asked the students to discuss the 
patterns they might have noticed, thereby connecting what the students observed with 
their earlier experiences. Thus, the lesson came to a full circle. 
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5.2.2 Analysis of Alex’s lesson play 

Alex’s choices in the lesson play pointed to her Deep Conceptual K4T. Alex identified 
key physical, physiological, and mathematical concepts involved in teaching this 
topic. Through considering potential student difficulties, by evoking powerful 
examples, and asking questions that encouraged students to confront their own 
understandings, Alex built on students’ prior knowledge yet expanded it while 
bridging multiple representations of the phenomenon. Her thoughtful approach was 
based on juxtaposing intuitive student understanding of sound level with its direct 
measurement using a smartphone application. While Alex avoided introducing a 
rigorous mathematical description and computational approaches in the script, she 
helped students build some intuitive conceptual understanding. The deliberate and 
pedagogically rich choices made in this script were informed by Alex’s own 
understanding of the concept and her awareness of student conceptual difficulties. As 
Alex wrote in her reflection: 

Talking about sound is difficult because there are a lot of concepts. When you 
decide to shift the focus of your lesson on the spot you may not have a lesson 
properly scaffolded for the concept. I am okay at checking for understanding, 
but my imaginary teacher was not always checking whether people were 
silent because they did or did not understand.  

Alex recalled from her undergraduate physics courses that describing sound 
intensity required some “advanced mathematics”. Yet, Alex decided to help students 
build conceptual, intuitive understanding, which in turn required the teacher to have 
a deep understanding of the subject matter. This is how Alex described it: 

I hadn’t studied sound of decibels for a long time, and all I remembered was 
the core math. I had to do a lot of research about air pressure, sound waves, 
intensity and sound level, and even though air pressure wasn’t explained in 
depth in the lesson play, having extra understanding was really important for 
knowing how to best help the students. You need to understand a subject 
much deeper if you want to teach the basics. 

This lesson play demonstrates Alex’s Deep Conceptual K4T. While she refrained 
from using procedural knowledge when calculating sound level, her approach could 
be considered as an important first step in introducing students to the concepts of 
logarithms and the logarithmic scale. 
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5.3. Case 3: Superficial Procedural K4T 

5.3.1 Valery’s lesson play 

Valery’s lesson play exemplifies Superficial Procedural K4T. Valery had a solid 
understanding of the relevant concepts and was aware of related student difficulties. 
In the reflection, he reminisced about an undergraduate physics course where these 
topics were discussed in detail, as they were still fresh in his memory. For example, 
Valery clearly distinguished the concepts of loudness and sound intensity. In the 
words of his teacher-character, Valery emphasized that human perception of sound 
and the vast range of sound intensities were the reason for choosing a logarithmic 
scale for describing this phenomenon. He also stressed the difference between the 
linear and logarithmic scales and how they are used to describe sound properties: 

Teacher:   … I know that all of you are very comfortable with linear scales. If I double a 
certain quantity, then the number with its associated unit is doubled as well. 
This does not work when talking about decibels. If I speak at 50 dB, then 
double the sound intensity, I do not speak at 100 dB. I will now give you a 
short introduction to logarithms, and in pre-calculus 12 next year, you will 
go more in depth learning about them.  

Teacher writes the following equation on the board:  𝛽𝛽 = 10 log 𝐼𝐼
𝐼𝐼0

 . 

This is equation we use when we talk about sound intensity measured in 
decibels. The log(x) says to take the logarithm of the quantity in the 
parentheses, using base 10. This can be done by using the log function on 
your calculator. As an example, I want you all to calculate what the logarithm 
of 10 is in base 10. 

At this moment in the script, the teacher-character realized that the students 
might not have studied logarithms in their mathematics classes, so the focus was 
turned to the procedure for calculating logarithms using calculators. The teacher-
character even told the students that while they might not know what these 
calculations meant, they would later learn it in their mathematics class. Then, the 
teacher-character mentioned to the students that “In math, the logarithm is an inverse 
of the exponential”. The teacher focussed on the steps of how to calculate logarithms 
and interpret a logarithmic scale. The teacher also tried to help students gain some 
intuitive understanding of a logarithmic scale by showing an example of 100 and 102, 
emphasizing that the second number is 100 times larger than the first one, while the 
second exponent is only two steps removed from the first one. The teacher in Valery’s 
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script stated “… so even though the two values are 2 units apart, they actually stand 
for a factor of 100 between them!” From this moment on, the lesson focussed on 
calculating different sound levels and comparing the sound of 86 dB with 91 dB. The 
teacher led the students in deriving the expression which showed that the intensity of 
the 91-decibel sound is almost 4 times larger than the intensity of the 86-decibel 
sound. In this script, the students followed the teacher’s derivation written on the 
board, confirming that it all made sense to them now: 

Teacher:  Hopefully you feel better, Jerry! Back to your initial guess, Leah. You were 
on the right track. The only thing you have to keep in mind about the decibel 
scale is the (10 dB) term in front. You need to combine that with your 
exponents to properly compare the two decibel values, like such.  

 Teacher writes on the board: 10
91−85
10 ~3.98. 

This was a surprising culmination of the lesson, as it is unclear if the students 
would be able to justify or even follow these steps. To understand the approach to 
solving this problem, one needs to be familiar with logarithms and the definition of 
sound level. For some reason, the teacher in Valery’s play skipped these steps and only 
showed the students the final solution. Thus, the entire lesson culminated in a 
mathematical procedure while ignoring the reasons for it.  

5.3.2 Analysis of Valery’s lesson play 

This lesson play presents a teacher who has deep knowledge of the underlying 
concepts from both a mathematics and a physics perspective. Yet, Valery chose to 
focus on the procedures or the steps the students have to go through in order to 
calculate and compare different sound levels and the sound intensities associated with 
them. Moreover, while focussing on the procedures, a lot of teachable moments were 
lost, that could have been used to help students make sense of the fascinating 
properties of logarithms. As such, we consider Valery’s pedagogical choices as an 
example of Superficial Procedural K4T.  

In his reflection, Valery wrote the following: 

I learned this topic in first-year university and so I was well equipped 
mathematically compared to grade 11 students. Introducing new math 
functions in a physics class before a math class is not anything new, but I 
think it is more impactful at the secondary school level.  
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Surprisingly, Valery did not use a table of various sound intensities (Table 2) to 
illustrate an exponential growth, and did not compare linear and logarithmic scales 
using graphical representations. Instead, Valery chose to spend most of the time on 
the procedural steps of how to calculate the sound level and not why sound level is 
calculated in this way. We show how both the why and the how could be incorporated 
into the lesson play in the final example.  

5.4 Case 4: Deep Procedural K4T 

5.4.1 Chris’s lesson play 

Chris’s lesson play illustrates Deep Procedural K4T.  While reflecting on the 
connection between mathematics and science, she wrote: 

I would want to use the example they were talking about. As physicists, this 
is part of what we do: poke at problems with math. During the lesson I want 
to give them an opportunity to make noise and measure the resulting sound 
level in decibels. I would also want to give them at least one other example of 
a logarithmic scale.  

This reveals that Chris is ready to help students bridge mathematical and physical 
representations with experimental evidence. Chris realized that the students might 
find it difficult to connect linear and logarithmic scales and decided to expand on it in 
her lesson play. As such, the teacher-character in Chris’s script began by helping 
students generate experimental evidence through using a smartphone application 
that measured the sound level of a thud created by a falling textbook. 

Sam:   Maybe sound adds up. Like, if we are talking and we drop a textbook it will 
measure the combined sound.  

 
Teacher:  Yes, we’re aiming to measure the sound of one thing at a time, so we don’t 

want the app to pick up other sounds. Ok, who wants to go first?  
 
Pippin:   Me! Ready with your app, Merry? 3 … 2 … 1 … [drops textbook on to desk] 
 
Merry:   That was [some number] dB. Teacher: Alright. I would like to go next. 

[Rustles paper.]  
 
Merry:   That was [some other number] dB. Sam: Can I go next?  
 
Teacher:   Go ahead. Sam taps a ruler on a desk. Merry: That was [yet another number] 

dB.  
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Teacher:   The loudness seems to change a lot, are the number of decibels changing a 
lot too?  

 
Merry:   Only from the super quiet sounds to the louder sounds. 

In this dialogue, the teacher-character supported students in making connections 
between linear and logarithmic scales. The students heard a significant increase in the 
loudness and juxtaposed it with the “small change” in sound level as expressed on a 
decibel scale. This is important, as up to this point the teacher had not introduced the 
mathematical description of the sound level. Only at this point, the teacher introduced 
the formula connecting the sound level with the sound intensity. The teacher prefaced 
the sound level formula by saying, “Because we are physicists, we can write down 
how sound level depends on intensity in a formula.” The teacher then helped the 
students connect the mathematical description of sound level to the students’ physical 
experiences of loudness: 

Teacher writes β(in dB)=10log I/Io on the board. 
 
Teacher:  Where beta is the sound level, I is the intensity of the sound wave we are 

interested in, and Io is the intensity of the quietest sound that a good ear can 
hear. The logarithm is base 10. What happens if I is equal to 𝐼𝐼0? 

 
Frodo:  Then you have log of one.  
 
Teacher:  Does beta equal zero?  
 
Merry:  No, because there’s still sound.  
 
Teacher draws a logarithmic curve on the board.  
 
Sam:   Wait, I remember this from math. log(1) = 0. So, if 𝐼𝐼 = 𝐼𝐼0 , then β = 0 dB.  
 
Teacher:   So, if I measure 0 dB, does that mean there is no sound? 
 
Frodo:   No, because to get 0 dB I has to be the same as 𝐼𝐼0. 
 
Teacher:   That’s right, and I0 is the quietest sound a human can hear…  

It is noteworthy how connections between mathematical and physical 
representations of the phenomenon were made. For example, instead of introducing 
the concept of the threshold of hearing, the teacher invited the students to see for 
themselves the meaning of 𝐼𝐼0 – the quietest sound they could hear. Then the teacher-
led the students through the steps of the mathematical description: 
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Teacher:  Let’s return to the physics and start thinking about louder sounds now, 𝐼𝐼0 =
1.0 × 10−12  W

m2 
 [writes Io value on the board, is a given, it’s]. Sam, you were 

right that sound levels above 85 dB can do damage. Can we use this formula 
[points at formula on the board] to find the intensity of the sound wave for 
that sound level?  

 
Pippin:   I can’t. I don’t like logs.  
 
Teacher:  From general properties of logarithms, if log base b of n equals a, then n is b 

to the exponent a. [Writes equations as she speaks: log𝑏𝑏(𝑛𝑛) = 𝑎𝑎 → 𝑎𝑎𝑎𝑎 = 𝑛𝑛.  
 
Sam:   I don’t like logs either, but with this information I think I can rearrange the 

formula.  
 
Teacher:  Go ahead and give it a try. We are looking for the intensity given that the 

sound level is 85 dB and 𝐼𝐼0 = 1.0 × 10−12  W
m2.  

Students attempt calculation.  

Teacher:   When I rearrange the formula, I get 𝐼𝐼 = 𝐼𝐼010𝛽𝛽/10. [writes formula on board]. 
Then, given β =85 dB and 𝐼𝐼0 = 1.0 × 10−12  W

m2 , 𝐼𝐼 = 3.2 × 10−4  W
m2. Let’s do the 

same for 91 dB. What is I for 85 dB compared to I for 91 dB?  
 
Merry:   I get 1.3 × 10−3.  
 
Teacher:   Always remember to state your units. You got 1.3 × 10−3 what?  
 
Merry:   Right, W

m2.  
 
Teacher:   So, what is I for 91 dB over I for 85 dB?  
 
Sam:   Just about 4!  
 
Pippin:   Always state your units!  
 
Teacher:   Well, in this case we’ve taken something in Watts per meter squared and 

divided by something also in Watts per meter squared, so we get a unit-less 
number.  

 
Merry:   So, 91 dB is like 4 times more intense than 85 dB, even though the difference 

in the number isn’t that big. That’s so weird! 

The students in the script discussed ratios of sound intensities and how these 
ratios could be expressed using a logarithmic scale and decibels. They connected 
different mathematical representations of the same phenomenon.  

The teacher-character led the students through the mathematical procedure while 
realizing that some students might be apprehensive of it. Yet, the teacher decided not 
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to avoid the mathematical procedure but instead helped the students develop the 
mathematical skills necessary when dealing with logarithms. The teacher also 
described how the logarithmic scale is used to describe earthquakes. 

The script culminated with the teacher asking the students to calculate the ratio of 
intensities for 85-decibel and 91-decibel sounds. The teacher modelled the derivation 
for the calculation on the board by starting with the log rule that students should be 
already familiar with, log(𝑥𝑥) − log(𝑦𝑦) = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑥𝑥

𝑦𝑦
�. Finally, the teacher used this rule to 

help students derive the difference in sound levels between two sounds, 𝛽𝛽2 − 𝛽𝛽1 =
10log �𝐼𝐼2

𝐼𝐼1
� , and then asked the final question: 

Teacher:  Here is a question to try: what 𝛽𝛽2 − 𝛽𝛽1 do we need to get 𝐼𝐼2
𝐼𝐼1

= 2? 
 
Sam:   I get 3.01 dB. 
 
Merry:  Wow, only 3 dB. 
 
Teacher:   That’s right, only 3 dB to double the intensity. So Merry, does it make sense 

that your head hurts when you experienced 91 dB and 85 dB is where damage 
will start to occur?  

 
Merry:   Yup! 

5.4.2 Analysis of Chris’s lesson play 

This lesson play illustrates the merging of the teacher’s Deep Procedural K4T. Chris’s 
teacher-character not only led the students through the mathematical representation 
of the physical phenomenon, but she also anticipated when the students might have 
potential pitfalls and misconceptions. The teacher seamlessly moved between 
different representations and made a deliberate effort to connect these 
representations to the students’ everyday life experiences. The chosen juxtaposition 
of the difference in decibels with the ratios of intensities is a valuable pedagogical 
approach, in which we also recognise Deep Conceptual K4T. 

Chris’ reflection also reveals that although she did not have the physics content 
knowledge prior to designing this lesson play, she was fully capable of acquiring it and 
making connections to students’ lives while helping them with concrete examples of 
abstract concepts. This is how Chris described it: 

I think this is a pretty traditional lesson…. I didn’t know much about the 
topic, so I found the relevant sections in Giancoli [a physics textbook] and 
introduced concepts as they did. There was some discussion, a bit of 
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demonstration in which the students were involved, some exploration of the 
math, and then a tie-back to the opening question.  

6 Discussion 

This study aimed at addressing the following research question: What do participants’ 
scripts reveal about the scriptwriters’ knowledge for teaching the topic of sound, in 
particular the concepts of sound intensity and sound level? To address this question, 
we implemented a scriptwriting task (Figure 1) in a methods course for future 
secondary physics teachers. We found that all of the scripts submitted by the future 
teachers could fit into one of four broad categories of describing their K4T (Table 3). 
From analysing future teachers’ reflections and juxtaposing them with the scripts, it 
became clear that future teachers’ knowledge of the relevant content was a significant 
factor in their lesson plays.  

When future teachers (e.g., Jamie) felt insecure about their content knowledge, 
they avoided dealing with the topic directly and digressed into discussing superficial 
or less relevant issues and avoided any mathematical representations (Superficial 
Conceptual K4T). This was an example of the pedagogical shield described in the 
literature (Kontorovich & Zazkis, 2016). On the other hand, some teachers (e.g., Alex) 
avoided using complex mathematical representations, but were able to focus on the 
concepts and helped students connect these concepts to their everyday lives. Those 
future teachers demonstrated Deep Conceptual K4T. We also found that even if future 
teachers were confident in their mathematical and science content knowledge (e.g., 
Valery), this did not guarantee that they would demonstrate Deep Procedural K4T. 
Few future (e.g., Chris) teachers demonstrated Deep Procedural K4T in their lesson 
plays. 

In their reflections, all of the future physics teachers emphasized the value of the 
scriptwriting activity. It helped them identify their own pedagogical challenges, while 
encouraging them to imagine the interactions that might happen in a real secondary 
physics classroom. The focus on the learning as an interactive dialogical process was 
something that future physics teachers did not encounter during traditional lesson 
planning activities. Importantly, all of the future physics teachers emphasized the 
value of the scriptwriting process in helping spur their pedagogical growth.  

Moreover, as the scriptwriting activity occurred over an extended period of time, 
the future teachers were not limited by the knowledge they already possessed but were 
encouraged to expand their content and pedagogical horizons. The leading questions 
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in the first part of the scripting task (Figure 1) modelled pedagogical experiences of 
practising teachers preparing for lessons that might be outside of their direct area of 
expertise. Thus, unlike a traditional lesson plan, the scriptwriting activity provides a 
fertile ground for challenging future teachers to explore pedagogical approaches when 
teaching more advanced topics. Furthermore, the scriptwriting activity provides an 
opportunity for educational researchers to peek into future teachers’ K4T and 
consider how teacher educators can help future teachers expand upon it. 

7 Conclusions 

Our study adds to the growing body of research that investigates future science 
teachers’ knowledge for teaching (K4T). The study’s particular contributions can be 
grouped into two major categories. First, while scriptwriting was used in a variety of 
studies in mathematics education, our contribution is in extending the applicability 
of scriptwriting to physics education. Scriptwriting invites future physics teachers to 
imagine possible instructional interactions, student questions, and pedagogical 
approaches. This may help future physics teachers begin to break down the existing 
rigid subject matter barriers and to consider how future physics teachers can make 
their physics lessons more engaging and meaningful for their students.  

Second, we extend research on teachers’ knowledge related to sound intensity, 
focusing on how such knowledge plays out in an imaginary teaching scenario. While 
the measurement of sound intensity is based on logarithms, some of the scriptwriters 
demonstrated how the mathematics could be highlighted in a manner accessible to 
students, while others illustrated how mathematics could be avoided without 
hindering the integrity of the instruction. Our work builds upon the studies of 
researchers who questioned the traditional facets of knowledge, as conceptual and 
procedural, and who provided refinement of these notions (Star, 2005). We 
operationalized the facets of K4T (deep/superficial and conceptual/procedural) in the 
context of sound intensity and sound level and illustrated them using the participants’ 
scripts.  

In light of our findings, we believe that incorporating scriptwriting tasks in 
mathematics and science teacher education has a number of potential advantages. For 
teacher educators, this process can reveal both the content and pedagogical 
knowledge of future teachers, as well as their own misconceptions and challenges. 
This information is valuable for designing effective methods courses. For researchers, 
analysing the scripts can guide them towards the design of effective prompts that may 
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help generate meaningful scriptwriting tasks for pedagogically powerful experiences 
for the next group of future teachers. Finally, for future teachers, participating in the 
scriptwriting activity can help them practise designing and implementing meaningful 
lessons in a non-threatening and reflective environment while gaining confidence and 
expanding their K4T.  

Acknowledgements 

We would like to thank anonymous reviewers for their insightful and detailed 
comments and suggestions for improvement. 

References 
Ahlborn, B. (2004). Zoological Physics: Quantitative Models of Body Design, Actions, and 

Physical Limitations of Animals. Springer Verlag.  
Arons, A. B. (1997). Teaching introductory physics. John Wiley and Sons.  
Berezovski, T., & Zazkis, R. (2006). Logarithms: Snapshots from Two Tasks. Proceedings of 30th 

International Conference for Psychology of Mathematics Education., Prague, Czech 
Republic. 

Berger, C. F., Pintrich, P. R., & Stemmer, P. M. (1987). Cognitive consequences of student 
estimation on linear and logarithmic scales. Journal of Research in Science Teaching, 
24(5), 437–450. https://doi.org/10.1002/tea.3660240506  

Biggs, J. B. (1987). Student Approaches to Learning and Studying. Research Monograph. 
Australian Council for Educational Research.  

Campbell, P. F., Nishio, M., Smith, T. M., Clark, L. M., Conant, D. L., Rust, A. H., DePiper, J. N., 
Frank, T. J., Griffin, M. J., & Choi, Y. (2014). The relationship between teachers’ 
Mathematical Content and Pedagogical Knowledge, teachers’ perceptions, and student 
achievement. Journal of Research in Mathematics Education, 45(4), 419–459. 
https://doi.org/https://doi.org/10.5951/jresematheduc.45.4.0419  

Center for Education Reform. (2018). A nation still at risk? Results from the latest NAEP recall the 
report from 35 years ago. https://www.edreform.com/2018/04/a-nation-still-at-risk/ 

Creswell, J. W. (2008). Educational research: Planning, conducting, and evaluating quantitative 
and qualitative research (3rd ed.). Pearson.  

Depaepe, F., Verschaffel, L., & Kelchtermans, G. (2013). Pedagogical content knowledge: A 
systematic review of the way in which the concept has pervaded mathematics educational 
research. Teaching and Teacher Education, 34, 12–25. 
https://doi.org/https://doi.org/10.1016/j.tate.2013.03.001  

Feynman, R. (1994). The Character of Physical Law (Modern Library Edition ed.). Random House 
Inc.  

Gray, L. (2000). Properties of Sound. Journal of Perinatology, 20, S5-S10.  
Grossman, P., Hammerness, K., & McDonald, M. (2009). Redefining teaching, re-imagining 

teacher education, Teachers and Teaching. Theory and Practice, 15(2). https://doi.org/ 
http://dx.doi.org/10.1080/13540600902875340  

https://doi.org/10.1002/tea.3660240506
https://doi.org/https:/doi.org/10.5951/jresematheduc.45.4.0419
https://www.edreform.com/2018/04/a-nation-still-at-risk/
https://doi.org/https:/doi.org/10.1016/j.tate.2013.03.001
https://doi.org/
http://dx.doi.org/10.1080/13540600902875340


LUMAT 

364 
 

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student 
survey of mechanics test data for introductory physics courses. American Journal of 
Physics, 66(1), 64–74.  

Hawkes, R., Iqbal, J., Mansour, F., Milner-Bolotin, M., & Williams, P. (2018). Physics for scientists 
and engineers: An interactive approach (2nd ed.). Nelson Education.  

Hiebert, J. (Ed.). (1986). Conceptual and procedural knowledge: The case of mathematics. 
Routledge, Taylor & Francis Group. 
https://doi.org/https://doi.org/10.4324/9780203063538.  

Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students' 
learning. In J. F. K. Lester (Ed.), Second Handbook of research on mathematics teaching 
and learning (pp. 371-404).  

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An 
introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case 
of mathematics (pp. 1-27). Routledge: Taylor & Francis Company. 
https://doi.org/https://doi.org/10.4324/9780203063538  

Klein, F. (2004). Elementary Mathematics from an Advanced Standpoint: Arithmetic, Algebra, 
Analysis (E. R. Hedrick & C. A. Noble, Trans.; Vol. 1). Dover Publications.  

Koichu, B., & Zazkis, R. (2013). Decoding a proof of Fermat's Little Theorem via script writing. 
Journal of Mathematical Behavior, 32, 367–376.  

Kontorovich, I., & Zazkis, R. (2016). Turn vs. shape: Teachers cope with incompatible perspectives 
on angle. Educational Studies in Mathematics, 93(2), 223–243.  

Lakatos, I. (1976). Proofs and Refutations: The logic of mathematical discovery. Cambridge 
University Press.  

Liang, C. B., & Wood, E. (2005). Working with logarithms: students' misconceptions and errors. 
The Mathematics Educator, 8(2), 53–70.  

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers' understanding of 
fundamental mathematics in China and in the United States. Lawrence Erlbaum 
Associates.  

Maciel, T. (2015). Smartphones in the classroom help students see inside the black box. APS News, 
24(3), 5–6.  

Marmur, O., & Zazkis, R. (2018). Space of fuzziness: Avoidance of deterministic decisions in the 
case of the inverse function. Educational Studies in Mathematics, 99(3), 261–275. 
https://doi.org/https://doi.org/10.1007/s10649-018-9843-2  

McDermott, L. C. (2001). Oersted medal lecture 2001: Physics education research: The key to 
student learning. American Journal of Physics, 69, 1127–1137.  

McDermott, L. C., Heron, P. R. L., Shaffer, P. S., & Stetzer, M. R. (2006). Improving the 
preparation of K-12 teachers through physics education research. American Journal of 
Physics, 74(9), 763–767.  

Milner-Bolotin, M. (2014). Using PeerWise to promote student collaboration on design of 
conceptual multiple-choice questions. Physics in Canada, 70(3), 149–150.  

Milner-Bolotin, M. (2016). Promoting Deliberate Pedagogical Thinking with Technology in physics 
teacher education: A teacher-educator’s journey. In T. G. Ryan & K. A. McLeod (Eds.), The 
Physics Educator: Tacit Praxes and Untold Stories (pp. 112-141). Common Ground and The 
Learner.  

Milner-Bolotin, M. (2018a). Evidence-based research in STEM teacher education: From theory to 
practice. Frontiers in Education: STEM Education, October, 14. 
https://doi.org/10.3389/feduc.2018.00092  

https://doi.org/https:/doi.org/10.4324/9780203063538
https://doi.org/https:/doi.org/10.4324/9780203063538
https://doi.org/https:/doi.org/10.1007/s10649-018-9843-2
https://doi.org/10.3389/feduc.2018.00092


MILNER-BOLOTIN & ZAZKIS (2021) 

365 
 

Milner-Bolotin, M. (2018b). Nurturing creativity in future mathematics teachers through 
embracing technology and failure. In V. Freiman & J. Tassell (Eds.), Creativity and 
Technology in Math Education (pp. 251-278). Springer. 
https://www.springer.com/gp/book/9783319723792  

Milner-Bolotin, M. (2019). Technology as a catalyst for 21st century STEM teacher education. In S. 
Yu, H. M. Niemi, & J. Mason (Eds.), Shaping Future Schools with Digital Technology: An 
International Handbook (pp. 179-199). Springer. 
https://www.springer.com/gp/book/9789811394386  

Milner-Bolotin, M. (2020). Deliberate Pedagogical Thinking with Technology in STEM Teacher 
Education. In Y. Ben-David Kolikant, D. Martinovic, & M. Milner-Bolotin (Eds.), STEM 
Teachers and Teaching in the Era of Change: Professional expectations and advancement 
in 21st Century Schools (pp. 201-219). Springer. 
https://doi.org/https://doi.org/10.1007/978-3-030-29396-3  

Periago, C., Pejuan, A., Jaen, X., & Bohigas, X. (2009, 22-24 June 2009). Misconceptions about 
the propagation of sound waves. 2009 EAEEIE Annual Conference,  

Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge: Does one lead 
to the other? Journal of Educational Psychology, 91(1), 175–189. 
https://doi.org/10.1037/0022-0663.91.1.175  

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational 
Researcher, 15(2), 4–14. http://www.jstor.org/stable/1175860  

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard 
Educational Review, 57(1), 1–23. http://her.hepg.org/content/j463w79r56455411/  

Skemp, R. R. (1976). Relational Understanding and Instrumental Understanding. Mathematics 
Teaching, 77, 20–26.  

Star, J. R. (2005). Reconceptualizing Procedural Knowledge. Journal for Research in 
Mathematics Education, 36(5). https://www.jstor.org/stable/30034943  

Star, J. R. (2007). Foregrounding Procedural Knowledge. Journal For Research in Mathematics 
Education, 38(2), 132–135.  

Weber, C. (2016). Making logarithms accessible – operational and structural basic models for 
logarithms. Journal für Mathematik Didaktik, 37(1), 69–98. 
https://link.springer.com/article/10.1007/s13138-016-0104-6#citeas  

Wieman, C. E., Adams, W. K., Loeblein, P., & Perkins, K. K. (2010). Teaching physics using PhET 
simulations. The Physics Teacher, 48(4), 225–227.  

Zazkis, R., & Kontorovich, I. (2016). A curious case of superscript (−1): Prospective secondary 
mathematics teachers explain. The Journal of Mathematics Behavior, 43, 98–110.  

Zazkis, R., & Leikin, R. (2008). Exemplifying definitions: a case of a square. Educational Studies 
in Mathematics, 69(2), 131–148. https://doi.org/10.1007/s10649-008-9131-7  

Zazkis, R., Liljedahl, P., & Sinclair, N. (2009). Lesson plays: Planning teaching versus teaching 
planning. For the Learning of Mathematics, 29(1), 39–46.  

Zazkis, R., & Marmur, O. (2018). Scripting tasks as a springboard for extending prospective 
teachers' example spaces: A case of generating functions. Canadian Journal of Science, 
Mathematics and Technology Education, 18(4), 291–312.  

Zazkis, R., Sinclair, N., & Liljedahl, P. (2013). Lesson play in mathematics education: A tool for 
research and professional development. Springer.  

Zazkis, R., & Zazkis, D. (2011). The significance of mathematical knowledge in teaching elementary 
methods courses: Perspectives of mathematics teacher educators. Educational Studies in 
Mathematics, 76(3), 247–263.  

 

https://www.springer.com/gp/book/9783319723792
https://www.springer.com/gp/book/9789811394386
https://doi.org/https:/doi.org/10.1007/978-3-030-29396-3
https://doi.org/10.1037/0022-0663.91.1.175
http://www.jstor.org/stable/1175860
http://her.hepg.org/content/j463w79r56455411/
https://www.jstor.org/stable/30034943
https://link.springer.com/article/10.1007/s13138-016-0104-6#citeas
https://doi.org/10.1007/s10649-008-9131-7

	1 Introduction
	2 Background
	2.1 Knowledge for Teaching (K4T)
	2.2 Lesson play and scripting approaches
	2.3 A brief physics overview: Sound level and a logarithmic scale
	2.4 Brief overview of prior research on sound and logarithms

	3 Theoretical framing
	4 Methodology
	4.1 Participants and context
	4.2 Scripting Task
	4.3 Data analysis procedures

	5 Results and Analysis
	5.1 Case 1: Superficial Conceptual K4T
	5.1.1 Jamie’s lesson play
	5.1.2 Analysis of Jamie’s lesson play

	5.2 Case 2: Deep Conceptual K4T
	5.2.1 Alex’s lesson play
	5.2.2 Analysis of Alex’s lesson play

	5.3. Case 3: Superficial Procedural K4T
	5.3.1 Valery’s lesson play
	5.3.2 Analysis of Valery’s lesson play

	5.4 Case 4: Deep Procedural K4T
	5.4.1 Chris’s lesson play
	5.4.2 Analysis of Chris’s lesson play


	6 Discussion
	7 Conclusions
	Acknowledgements
	References

