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Abstract
Learning analytics dashboards commonly visualize data about students with the aim of helping students and
educators understand and make informed decisions about the learning process. To assist with making sense of
complex and multidimensional data, many learning analytics systems and dashboards have relied strongly on AI
algorithms based on predictive analytics. While predictive models have been successful in many domains, there
is an increasing realization of the inadequacies of using predictive models in decision-making tasks that affect
individuals without human oversight. In this paper, we employ a suite of state-of-the-art algorithms, from the online
analytics processing, data mining, and process mining domains, to present an alternative human-in-the-loop AI
method to enable educators to identify, explore, and use appropriate interventions for subpopulations of students
with the highest deviation in performance or learning process compared to the rest of the class. We demonstrate an
application of our proposed approach in an existing learning analytics dashboard (LAD) and explore the recom-
mended drill-downs in a course with 875 students. The demonstration provides an example of the recommendations
from real course data and shows how recommendations can lead the user to interesting insights. Furthermore, we
demonstrate how our approach can be employed to develop intelligent LADs.

Notes for Practice

• The increase in the volume and complexity of student data makes it challenging for instructors to use
conventional learning analytics dashboards (LADs) to make sense of students’ learning processes and to
decide on pedagogical actions to enhance learning.

• Instructors may be better supported in such decision making by using predictive learning analytics, which
can identify at-risk students and automate the process of providing pedagogical interventions. However,
use of predictive models comes with growing concerns about the fairness, accountability, transparency,
and ethics (FATE) of such models.

• The approach presented in this paper recommends to instructors which students should be considered in
more detail due to the highest deviation in performance or learning process from their classmates. The
approach responds to concerns related to FATE by refraining from automatically labelling students; instead,
it guides instructors to make data-informed decisions via recommendations.

• Instructors can gain interesting insights when drilling down into student data in LADs on the basis of the
recommendations. However, a risk of inequity still exists. Rigorous evaluation of our proposed approach is
required before it can be integrated into existing dashboards.
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1. Introduction
Learning analytics aims to analyze data on students for the purpose of understanding and improving student learning, taking
into consideration the diverse needs of the student population (Siemens & Gasevic, 2012). Within learning analytics, the
development and evaluation of learning analytics dashboards (LADs) have received significant attention (Matcha, Ahmad Uzir,
Gasevic, & Pardo, 2019; Jivet, Scheffel, Specht, & Drachsler, 2018; Schwendimann et al., 2017; Verbert, Ochoa, Croon,
Dourado, & Laet, 2020). As the volume, velocity, and variety of student data increase, making sense of multidimensional data
using conventional LADs and identifying actionable insights (e.g., identifying students in need of assistance) become more
challenging.

Many learning analytics systems and dashboards have relied strongly on predictive analytics to automatically identify
students in need of assistance (Hu, Lo, & Shih, 2014; Marbouti, Diefes-Dux, & Madhavan, 2016; Ahadi, Lister, Haapala,
& Vihavainen, 2015). As an example, Course Signals (Arnold & Pistilli, 2012) used predictive models to label students’
risk status using traffic light signals. However, with the wide adoption of predictive models to support automatic decision
making, there are increasing concerns about using predictive models without human oversight in decision-making tasks that
affect individuals (Hajian, Bonchi, & Castillo, 2016). Many factors, such as identifying important variables, dealing with
poor-quality or imbalanced data, determining the appropriate algorithm and model for the problem at hand, hyperparameter
tuning, and knowing when to retrain the algorithm with new data, may bias or reduce the accuracy of the result of a predictive
model. As a consequence, the development of fair, accountable, and transparent AI systems that rely on instructor judgment
has been recognized as an important line of research in learning analytics (Putnam & Conati, 2019; Verbert et al., 2020;
Buckingham Shum & Luckin, 2019; Khosravi, Sadiq, & Gasevic, 2020). In this context, recent LADs have been moving away
from using predictive analytics and toward prescriptive models that focus on pedagogical interventions (Jivet et al., 2018; Park
& Jo, 2019).

Exploratory data-analytic techniques are a well-known alternative to predictive modelling techniques in the analysis of
large datasets. Exploratory techniques allow users to navigate a dataset and make their own judgment in understanding and
interpreting the results. In particular, using the online analytical processing (OLAP) drill-down operation enables users to
meaningfully zoom in to the data at a more granular level (Gray et al., 1996). OLAPs have been successfully adopted and
utilized across many domains, such as finance, telecom, health, and retail (Ain, Vaia, DeLone, & Waheed, 2019). In the context
of LADs, drill-down operations would be performed by progressively adding filters to student attributes (e.g., “program =
Computer Science” and “videos viewed < 5”) to explore the performance or learning process of subpopulations of students that
satisfy the drill-down criteria. The filtering feature can be beneficial in acquiring knowledge about the performance and learning
process of subpopulations as well as seeking possible correlations between students’ features and their learning progress.
Manual drill-down operations work particularly well for curiosity-driven explorations. Wise and Jung (2019, p. 53) found that
“instructors did not always come to analytics use with specific questions, but rather with general areas of curiosity.” In our study,
as later discussed in Section 4.2, examples of curiosity-driven explorations included queries such as “how did international
students or female students perform compared to other students.” Despite their strengths and benefits in data exploration, the
use of manual drill-downs is associated with some shortcomings, including not knowing what attributes to use, failing to find
insightful results, and encountering a drill-down fallacy “where incomplete insights result from potentially confounding factors
not explored along a drill-down” (Lee, Dev, Hu, Elmeleegy, & Parameswaran, 2019, p. 187). These challenges hamper the
most effective use of data, especially by users without a formal background in data analysis.

In light of these challenges, the overarching aim of this paper is to contribute to the understanding of how human-in-the-loop
AI methods in the form of guided exploratory approaches can be employed to develop successful LADs. In particular, it aims to
address the challenges of manual drill-downs in LADs to provide a viable alternative to predictive modelling approaches. To
this end, the paper presents a new vision for intelligent LADs that uses human-in-the-loop AI to support data-driven exploratory
analysis. We employ a suite of state-of-the-art algorithms from different domains, such as online analytics processing, data
mining, and process mining, to present an approach called automated insightful drill-down (AID). AID consists of two
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algorithms that use drill-down trees and a scoring function to search the space across all possible drill-downs to recommend
insightful drill-downs. We define the notion of an insightful drill-down as a set of filtering rules that identify a subpopulation of
students that deviate from the rest of the class based on performance- and learning process–based metrics, as introduced in
Shabaninejad, Khosravi, Indulska, Bakharia, and Isaias (2020) and Shabaninejad, Khosravi, Leemans, Sadiq, and Indulska
(2020). For performance-based divergence, the Kullback–Leibler (KL) divergence function (Kullback & Leibler, 1951) is
used. For process-based divergence, a process mining technique called Earth Movers’ Stochastic Conformance Checking
(Leemans, Syring, & van der Aalst, 2019) is used to examine students’ learning process considering three aspects of these
learning processes: performed learning activities, activity frequency, and activity sequence. Utilizing the learning process,
rather than focusing on aggregated engagement metrics, which is the common approach in LADs (Schwendimann et al., 2017),
is increasingly recognized as essential to understanding and optimizing learning (Trcka & Pechenizkiy, 2009; Matcha, Gasevic,
Uzir, Jovanovic, & Pardo, 2019).

We present a practical application of our approach in an existing LAD called Course Insights, which provides users with
manual drill-down functionality. First, we explore how this drill-down functionality was used in a manual unaided manner
by 71 teaching staff in their course at an Australian university. We then take the case of one such course, with 875 students
in higher education with high demographic and educational diversity, and explore the possible insights that can be derived
from the performance-based and learning process–based drill-downs recommended by AID. Our findings suggest that manual
drill-downs without guidance can be overwhelming and tend to result in simple drill-downs to answer curiosity-driven questions,
while AID provides the opportunity for instructors to utilize data-driven drill-downs alongside curiosity-driven drill-downs.

2. Background

2.1 Learning Analytics Dashboards
Schwendimann et al. (2017) define a LAD as a “display that aggregates different indicators about learner(s), learning process(es)
and/or learning context(s) into one or multiple visualisations.” Learning analytics dashboards have provided a means to
assemble and display visualizations back to stakeholders after data has been pre-processed, thereby facilitating access for a
broader range of stakeholders. Early LADs, such as LeMO (Fortenbacher et al., 2013) and GLASS (Leony, Pardo, de la Fuente
Valentı́n, de Castro, & Kloos, 2012), focused on visualizing clickstream data from popular learning management systems
such as Blackboard and Moodle. LOCO-Analyst is a stand-out example of an innovative approach to LADs, released in
2006, five years before the first LAK conference (Jovanovic, Gasevic, Brooks, Devedzic, & Hatala, 2007). LOCO-Analyst
provided course content access summaries at a granular level, including visualizations for assessment and forum participation
as well as information on individual students (Ali, Hatala, Gasevic, & Jovanovic, 2012). Other LAD examples are the Student
Activity Meter (SAM) visualization tool (Govaerts, Verbert, Duval, & Pardo, 2012), developed to increase the awareness of
time spent online using learning resources; Course Signals (Arnold & Pistilli, 2012), which predicts and visualizes student
success using course grades, time on task, and past performance; and the Loop tool (Bakharia et al., 2016), which seeks to link
learning analytics with learning design. All early attempts at LADs suffered from the “clicks-to-construct” issue (Knight &
Buckingham Shum, 2017), often failing to deliver high-level insights or an understanding of the learning process occurring
from discrete trace data. More recently, there has been a move away from only providing LADs to instructors and including
visualizations to support study advisors in tools such as LISSA (Charleer, Moere, Klerkx, Verbert, & Laet, 2018) and the
Student Explorer (Lonn, Aguilar, & Teasley, 2015). An increasing emphasis has also been placed on involving stakeholders
(i.e., instructors, tutors, learning designers, and management decision makers) as partners in a co-design process (Wise &
Jung, 2019; Echeverrı́a et al., 2018; Ahn, Campos, Hays, & Digiacomo, 2019). Data sources for LADs have moved beyond
analyzing online trace data captured by a learning management system to include richer audiovisual multimodal data (Ez-zaouia
& Lavoué, 2017).

In the last five years, LADs have rapidly evolved to support interventions and the provision of feedback at scale. Tools
such as OnTask (Pardo et al., 2018) and Student Relationship Engagement System (SRES) (Liu, Bartimote-Aufflick, Pardo, &
Bridgeman, 2017) provide visualizations and also include the ability to filter student subpopulations (using engagement and
assessment attributes) and communicate targeted feedback to students (via either email or SMS). Both OnTask and SRES are
examples of LADs that have been developed using co-design techniques (Dollinger, Liu, Arthars, & Lodge, 2019). Jovanovic,
Dawson, Joksimovic, and Siemens (2020), however, argue that the student attributes made available to instructors have a
low level of abstraction (e.g., activity access counts, number of forum posts, overall assessment grades, and even responses
to individual questions in a quiz) and only allow instructors to provide simplistic process-oriented feedback. Jovanovic and
colleagues (2020) go on to articulate the need to support actionable intelligence within LADs and suggest that “feedback
provision systems can benefit from information-rich, interpretable insights into learning behaviour patterns.” Verbert and
colleagues (2020) outline a research agenda for LADs proposing reusable design patterns linking visualizations and outcomes,
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the use of rigorous evaluation methodologies, development of visual analytic tools, and the need for responsible learning
analytics. Of particular relevance to this paper is the call for a new LAD development paradigm using visual analytics tools that
are “explainable, configurable, interactive, integrated and personalised.” While the importance of human-in-the-loop presence
is stressed to prevent algorithmic bias and ensure fairness within predictive algorithms, the bias that human instructors and
stakeholders bring to analysis is under-researched within learning analytics.

The AID approach proposed in this paper seeks to make a significant contribution to flipping from the predictive analytic
paradigm to one of recommendation, allowing stakeholders to analyze and make decisions, and also to removing the bias
involved in manual subpopulation selection.

2.2 OLAP Drill-Downs
OLAP is a multidimensional data analysis approach that supports the decision-making process by enabling rapid analysis of
large collections of historical data (Chaudhuri & Dayal, 1997). It assists analysts, managers, and executives in decision making
by providing insight into a system’s performance through interactive access to various aggregated data views (Queiroz-Sousa &
Salgado, 2020). To analyze a dataset, OLAP includes roll-up (increasing the level of aggregation) and drill-down (decreasing
the level of aggregation) along one or more dimension hierarchies, as well as slice-and-dice (selection and projection) and pivot
(re-orienting the multidimensional view of data) operations (Chaudhuri & Dayal, 1997).

Operations such as drill-down and roll-up can be used by an analyst for more granular data interpretation and exploration in
a system (Caron & Daniels, 2004); however, navigating a highly multidimensional dataset is time-consuming, and making sense
of it is error prone. We use a student-based example to illustrate these challenges in the context of LADs. Let us assume that
three attributes of students, Residential Status, Program, and Assessment Score, are captured. Considering Assessment Score
as the target feature and that Residential Status and Program each have two possible values in our dataset, eight drill-down
actions can be performed. Figure 1, which is inspired by the example used by Lee and colleagues (2019), shows all possible
drill-downs (labelled B to I).

Each chart represents the distributions of assessment scores of the subpopulation versus the rest of the class population.
Each bar in the charts represents the percentage of students with a score value of high, mid, or low. Two drill-down criteria
(marked by blue arrows) identify two subpopulations (highlighted with blue squares)—D (students with Program = “Tourism”)
and I (students with Program = “Engineering” and Residential Status = “Domestic”)—with a significant difference in their
assessment results compared with the rest of the class population. Considering the presented example, three main challenges
with a manual drill-down analysis may be encountered, as discussed below.

1. Too many drill-down choices. To find interesting insights into subpopulations of students, the user has to determine what
features to use for filtering. As the number of attributes and attribute values increases, the number of possible drill-down
actions increases exponentially.

2. Lack of insightful results. A large number of possible drill-down criteria can lead to results that may not be insightful. As a
consequence, insightful drill-downs may be missed via a manual drill-down process. Referring to the example in Figure 1,
many of the drill-downs, such as those presented by subpopulations B, C, and H, may not seem insightful because
the filtered population has similar assessment results to the entire population. In contrast, the two blue-highlighted
subpopulations D and I have significantly different assessment results than the rest of the class population.

3. Drill-down fallacies. An incomplete drill-down analysis may produce a class of errors known as drill-down fallacy (Lee
et al., 2019). Such a fallacy occurs when incorrect reasoning for a deviation found in the dataset is attributed to a smaller
subpopulation while “in fact it is a more general phenomenon” (Lee et al., 2019, p. 186). For instance, as shown in
Figure 1, if the user takes the drill-down path marked by the red arrows, they could conclude that the high percentage
of Low scores and the absence of High scores (shown in chart G) are associated with international students who study
tourism. However, if students are filtered first to tourism (marked with a green checkmark), the user could infer that this
distribution is associated with the tourism subpopulation in general, instead of international students who study tourism
specifically.

Several attempts to address the above challenges have been made. Sarawagi (2001) focuses on finding what is informative
in visited parts of the data to model the users’ expected values in the unvisited parts of the data. Lee and colleagues (2019)
focus on accelerating drill-down via visualization and preventing users from drill-down fallacies. Joglekar, Garcia-Molina, and
Parameswaran (2019) introduce a smart drill-down operator that finds drill-down rules that result in frequent patterns. Many of
the proposed methods for discovering insightful drill-downs focus on detecting anomalies in small data portions (e.g., Sarawagi
(2000, 2001); Lee et al. (2019)), while some focus on identifying interesting differences in larger data subsets (e.g., Joglekar et
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Figure 1. Drill-down and fallacy illustration.

al. (2019)). In the AID approach, we let LAD users request drill-down recommendations at the level of granularity they are
interested in and, thus, reduce drill-down choices without affecting user autonomy.

2.3 Educational Process Mining
Process mining aims to extract process-related knowledge from event logs to discover, monitor, and improve processes (van der
Aalst, 2016). Process mining techniques have been used in the educational context in recent years mainly to visualize, evaluate,
and improve educational and learning processes (Bogarı́n, Cerezo, & Romero, 2018), for instance, to visualize student learning
behaviour (Cairns, Gueni, Assu, Joubert, & Khelifa, 2015); to investigate a correlation between student learning behaviour and
assessment outcomes (Mukala, Buijs, Leemans, & van der Aalst, 2015); to study whether student behaviour corresponds to a
learning model (van der Aalst, Guo, & Gorissen, 2013); to detect bottlenecks in educational processes (Pechenizkiy, Trcka,
Vasilyeva, van der Aalst, & Bra, 2009); and to identify patterns in educational processes (Dekker, Pechenizkiy, & Vleeshouwers,
2009), learning strategies (Matcha, Gasevic, et al., 2019), and time management (Uzir, Gasevic, Matcha, Jovanovic, & Pardo,
2020).

In the educational process context, several attempts have been made to compare student subpopulations. For instance,
van der Aalst and colleagues (2013) explore a comparative process analysis within a process cube by employing a process
alignment method to compare the process of students that passed a course with that of the students who failed it. Saint, Gasevic,
Matcha, Uzir, and Pardo (2020) use an approach to process mining based on first-order Markov models in combination with
expectation-maximization clustering to identify learning tactics followed by students in online learning activities. Visual
properties of some of the process mining tools (e.g., pMineR or bupaR libraries in R) have been used to compare process
models of different student subpopulations. Prior works (Bogarı́n et al., 2018) indicate that process mining techniques in
education have been utilized through general-purpose process mining tools (e.g., PRoM, Disco) and are yet to be integrated into
LADs that are available to frontline users in education (Saint, Gasevic, & Pardo, 2018).

The work presented in this paper extends our previous works, which have focused on employing AI and process mining
techniques to develop intelligent LADs to support instructors with data-driven exploratory analysis of students’ learning
(Shabaninejad, Khosravi, Indulska, et al., 2020; Shabaninejad, Khosravi, Leemans, et al., 2020; Leemans et al., 2020). Sha-
baninejad, Khosravi, Indulska, and colleagues (2020) present an approach that can provide instructors with meaningful and
efficient ways to gain insight into subsets of students with the highest deviation in an attribute (e.g., performance) compared
to the overall class and to recommend subsets of students. Shabaninejad, Khosravi, Leemans, and colleagues (2020) present
an approach that uses a process mining lens to examine learning process differences of students and to identify and recom-
mend subsets of students with the highest difference in learning processes compared to the rest of the class. Leemans and
colleagues (2020) introduce the notion of cohort identification as a method of eliciting features from trace attributes, measuring
the stochastic distance between cohorts defined by sets of these features, and presenting to users this landscape of sets of features
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and their influence on process behaviour. In this paper, we present how cohort identification can be incorporated into
LADs and demonstrate different use cases of how it can provide easy-to-interpret actionable insights into students’ learning
processes.

3. AID
In this section, we introduce our proposed approach, which consists of two underlying algorithms for recommending insightful
performance-based and process-based drill-down criteria in LADs. In Subsection 3.1, we define our problem statement and
introduce formal notation. We present an overview of our approach in Subsection 3.2. Furthermore, we present our proposed
algorithms in Subsection 3.3 and Subsection 3.4. Lastly, in Subsubsection 3.3.1 we present an illustrative example for each of
the two algorithms based on the datasets introduced in Subsection 2.2.

3.1 Notation and Problem Statement
Assume that a LAD has access to an event log L that captures a collection of traces T = {t1, . . . , tN}, each representing a student.
A trace ti has a unique identifier (e.g., a student ID); a set of features F = f1, . . . , fM , where fim = v presents v being assigned to
feature fi for user si; and a sequence of events Ei = 〈ei1, . . . ,eiLi〉 representing the learning path taken by student si, where the
trace length Li can vary for each student. Each event eiLi has a timestamp and a label representing the learning activity. Let
a rule r express a condition on a feature (e.g., “Program” = “Computer Science”). For a feature with numerical values, the
corresponding rule value can be a range instead of a single value (e.g., “Age” > 25). The drill-down criterion σ is defined as
the conjunction of a set of rules (e.g., “Program” = “Computer Science”∧ “Age” > 25). A drill-down criterion σ is said to
cover a student sn if all of the rules in σ match the corresponding values for sn. Consequently, applying σ to L leads to the
selection of a set of students S′ ∈ S such that σ covers each sn ∈ S′. We define the coverage of a drill-down criterion Cσ as |S

′|
|S| ,

which is the fraction of students S covered in the resulting subpopulation S′.

Problem statement Using this notation, our problem of finding performance-based and process-based insights can be
formalized as follows:

• Performance-based insights. Given an event log L, a set of features F ′ ⊆ F , a performance-based feature f̂ ∈ F , a
constant 0≤ α ≤ 1, and a constant k, find a set of drill-down criteria Σ = {σ1, . . . ,σK} that uses a set of features in F ′

such that each criterion σk (1) has a larger coverage than α (i.e., Cσk > α) and (2) maximizes between-subpopulation
performance variability between S′ and the remaining students S\S′ based on f̂ .

• Process-based insights. Given an event log L, a set of features F ′ ⊆ F , a constant 0≤ α ≤ 1, and a constant k, find a
set of drill-down criteria Σ = {σ1, . . . ,σK} that uses a set of features in F ′ such that each criterion σk (1) has a larger
coverage than α (i.e., Cσk > α) and (2) maximizes between-subpopulation learning process variability between S′ and
the remaining students S\S′ in terms of events, relative frequency of each different learning path, and the order using the
sequence of events captured in events E.

The rest of this section presents our approach for finding drill-down actions that result in performance-based and process-
based learning insights.

3.2 Overview
Figure 2 provides an overview of the interaction between instructors and our proposed approach within LADs. The interaction
is an iterative process involving the generation of recommendations by the algorithm and the exploration of the recommended
drill-downs by the instructor. In each iteration, instructors may target different subsets of data and repeat the process.

Figure 3 shows a high level of how recommendations are produced. Using the event log as the input, the steps are as
follows:

1. Elicit all the features from the event log.

2. Build a cohort drill-down tree from all possible subsets of the features.

3. For each node in the tree, compute the distance value by measuring the difference between the learning processes of the
cohort and those of the rest of the students.

4. Convert the cohorts (i.e., tree nodes) with the largest distance value into recommendations.
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Figure 2. An overview of the role of the drill-down recommender in the process
of instructors’ data exploration in the context of intelligent LADs.
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Figure 3. Overview of the approach: students’ features are elicited and a drill-down tree of all cohorts produced,
where each cohort shares a set of features (e.g., residential status: international), the distance between each cohort and

the rest of the students is computed, and drill-downs with the highest distance values are chosen to produce recommendations.

3.3 Performance-Based AID
We present our approach for recommending performance-based drill-downs by first providing a high-level overview of the
underlying algorithm and then describing the automatic drill-down process using an example.

Algorithm 1 provides the high-level pseudocode of our proposed approach for recommendation of performance-based
drill-downs. It takes five parameters as input: the event log L; the features F ′; the target performance-based features f̂ ; the
minimum coverage α ; and the number of drill-down criteria to be recommended, k. The output of the algorithm is a set of top k
scored drill-down criteria. The algorithm consists of three main components, as described below.

Create drill-down tree To provide educators with performance-based drilling-down recommendations, the algorithm ex-
amines all of the cohorts by first extracting all possible drill-down actions from the selected students’ features. The
Trans f ormLogToFeature function transforms the log into a tabular dataset D that captures data on selected feature F ′,
target feature f̂ , and aggregated level features from events on each student. The BuildTree function takes the dataset D as input
and returns a drill-down tree. The function obtains all the values of each feature in D and generates a tree-like collection of
nodes T , where each node represents a splitting rule r for one feature. Each path in the tree consists of a set of feature-value
pairs.

Score nodes and prune the tree The algorithm evaluates the insighfulness of each drill-down action by measuring the
difference between each cohort’s targeted performance feature and that of the rest of the students. The tree embodies all
possible drill-down paths, of which not all will necessarily result in a subpopulation with the required minimum size (i.e., α).
Per f ormancePruneAndScore traverses the tree recursively to examine all of the possible drill-down actions. ObtainSubData
takes each node, which is a feature-value pair, and dataset D as input and filters D to obtain a sub-dataset subCohortData
containing only the data of the subpopulation S. The subpopulation’s size is checked for the covered fraction of the student
population; if the fraction is smaller than α , then childNode and its underlying sub-tree are pruned. Otherwise dataset
D is filtered to obtain the data on S′, which is captured in remainderCohortData. The function ComputeDeviance takes
data on the two subpopulations subCohortData and remainderCohortData and the target feature f̂ as input and scores the
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Algorithm 1 Finding a set of k performance-based drill-down criteria

function MAIN(Log L, Features F ′, Target Feature f̂ , Minimal Coverage α , k)
D← Trans f ormLogToFeature(L) . Transform log to a dataset
T ← BuildTree(D) . Create drill-down tree
PERFORMANCEPRUNEANDSCORE(D, T , f̂ , α)
topK← TopDeviation(T,k) . Sort and return the top K drill-down criteria
return NodeToDrillDown(topK)

end function
function PERFORMANCEPRUNEANDSCORE(dataset D, Node parentNode, Feature f̂ , Minimal Coverage α) . Score nodes based on f̂ and prune the tree

for childNode ∈ parentNode.children do
subCohortData← ObtainSubData(childNode,D)
if (CohortSize(subCohortData)|/CohortSize(D)≤ α then . Pruned because coverage ≤ α

remove childNode
else . Compute score for current child and recurse on child

remainderCohortData← ObtainRemainderData(D,subCohortData)
childNode.deviance←ComputeDeviance(subCohortData,remainderCohortData, f̂ )
PERFORMANCEPRUNEANDSCORE(D, childNode, f̂ , α)

end if
end for

end function

path by measuring the distance between S and S′ using KL divergence, defined as d = ∑x∈X S′(x) log( S′(x)
S(x) ), where d is the

distance between the distribution of the values in S and S′ and X is a set that consists of the values in the domain of f̂ .
Per f ormancePruneAndScore will then be called to explore the sub-tree with root childNode for other potential candidates.

Sort and return the top K drill-down criteria The algorithm returns the cohorts with the most different targeted performance
features. TopDeviation takes the scored drill-down tree T and k as input and returns the k highest scored paths. Our algorithm
then converts the chosen nodes to a set of drill-down criteria Σ, each annotated with distance score, and returns them as a
recommendation to users.

3.3.1 Illustrative Example
We illustrate our approach using an event log with a small set of six students, k = 1, and α = 0.2. We explain how the algorithm
is used to find the insightful drill-down criteria (namely the criteria that identify a subpopulation with the highest deviation in
terms of performance or behaviour) for the event log given in Figure 4 with students {S1 ·S6} and the feature set {Residential
Status, Assessment} as F ′. Our example course has learning activities of {Lecture 1, Lecture 2, Quiz A, Lecture 3, Lecture
4, Quiz B, and Lecture final}, which were made available to students weekly in the mentioned order. The trace of triggered
learning events by each student is shown in Figure 4(a). Each event is represented by an activity label and the timestamp. The
feature set and associated values for each student are given in Figure 4(b). The Activity Engagement attribute is computed by
first taking the sum of activities for each user and then using a discretization algorithm to transform the integer output into a
discrete counterpart to be used by the drill-down tree.

The algorithm initially generates the drill-down tree T . Next, the tree is traversed depth first; based on each node’s filtering
criteria, the dataset is divided into the subpopulations. The nodes covering less than α = 0.4 of the student population are
pruned. For instance, the node [Residential Status = “Domestic” AND Activity Engagement = “High”] is pruned because only
one student (i.e., 0.16 coverage) adheres to this criterion. After pruning, the resulting decision tree includes four candidates,
shown in blue and labelled as P1 to P4, that can be mapped to drill-down paths. AID uses a scoring function based on KL
divergence to evaluate the “insightfulness” of each of these paths. For instance, path P1: [Residential Status = “Domestic”]
with the assessment distribution Low: 0.33, Mid: 0.33, High: 0.34, and the distributions in the assessment of the remainder
population Low: 0.67, Mid: 0, High: 0.33%, will be scored as 0.33 log( 0.33

0.67 )+0.34 log( 0.34
0.001 )+0.34 log( 0.34

0.33 ) = 0.73. As a
side-note, 0 is replaced with a small ε (0.001 in our example) in the computation of the score to address dealing with undefined
log values. The score of the other drill-down candidates is computed in a similar way. These drill-down paths and their resulting
coverage and significance scores are shown in Figure 5(a).

The path with the highest scores (P3) is converted to a set of drill-down criteria and is recommended to the user. Figure 5(b)
shows a prototype representing the input and the resulting recommendation, including the drill-down criteria, coverage, and
significance. The green upward arrow indicates that the average Assessment Score in the subpopulation is higher than the
average Assessment Score in the remaining population. Note that the returned result satisfied both criteria of the problem
statement.

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported
(CC BY-NC-ND 3.0)

140



(a) Students’ learning events. (b) Students’ features.
Figure 4. A sample dataset used for the illustrative example.

.

Figure 5. The drill-down tree and the associated drill-down recommendation for the performance-based illustrative example.

3.4 Process-Based AID
We present our approach for recommending behaviour-based drill-downs by first providing a high-level overview of the
underlying algorithms and then describing the automatic drill-down process using an example.

Algorithm 2 provides the high-level pseudocode of our proposed approach for recommendation of behaviour-based drill-
downs. It takes four parameters as input: the event log L; the features F ′; the minimum coverage α; and the number of
drill-down criteria to be recommended, k. The output of the algorithm is a set of the top k scored drill-down criteria represented
by Σ. The algorithm consists of three main blocks, as described in the remainder of this subsection.

Create the drill-down tree To provide educators with process-based drilling-down recommendations, the algorithm examines
all the cohorts by first extracting all possible drill-down actions from the selected students’ features. The BuildTree function
takes two parameters as input—the event log L and the list of selected features F ′—and returns a drill-down tree. The function
obtains all the values of each feature in F ′ that exist within L and generates a tree-like collection of nodes T , where each node
represents a splitting rule r for one feature. Each path in the tree consists of a set of feature-value pairs.

Score nodes and prune the tree The algorithm evaluates the insighfulness of each drill-down action by measuring the differ-
ence between each cohort’s learning process and that of the rest of the students. The tree embodies all possible drill-down paths,
of which not all will necessarily result in a subpopulation with the required minimum size (i.e., α). BehaviourPruneAndScore
traverses the tree recursively to examine all the possible drill-down actions. ObtainSubLog takes each node, which is a
feature/value pair, and the log L as input and filters L to obtain a sub-log cohortL containing only the data of the subpopulation.
The subpopulation’s size is checked for the covered fraction of the student population; if the fraction is smaller than α , then
childNode and its underlying sub-tree are pruned. Otherwise, log L is filtered to obtain the data on S′, which is captured in
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remainderL. The function ComputeDistance uses a process mining lens to compute the learning process distance between
subpopulations S and S′. It takes two subpopulation logs, cohortL and remainderL, as input and computes the distance between
them using Earth Movers’ Stochastic Conformance Checking (Leemans et al., 2019). BehaviourPruneAndScore will then be
called to explore the sub-tree with root childNode for other potential candidates.

Sort and return the top K drill-down criteria The algorithm returns the cohorts with the most different learning process.
TopDistances takes the scored drill-down tree T and k as input and returns the k highest-scored paths. The algorithm
then converts the chosen nodes to a set of drill-down criteria Σ, each annotated with distance score, and returns them as a
recommendation to users.

Algorithm 2 Finding a set of k process-based drill-down criteria.
function MAIN(Log L, Features F ′, Minimal Coverage α , k)

T ← BuildTree(L,F ′) . Create drill-down tree
BEHAVIOURPRUNEANDSCORE(L, T , α)
topK← TopDistances(T,k) . Sort and return the top K drill-down criteria
return NodeToDrillDown(topK)

end function
function BEHAVIOURPRUNEANDSCORE(Log L, Node parentNode, Minimal Coverage α) . Score nodes based on difference in learning process and prune

for childNode ∈ parentNode.children do
cohortSublog← ObtainSublog(childNode,L)
if (CohortSize(cohortSublog)|/CohortSize(L)≤ α then . Pruned because coverage ≤ α

remove childNode
else . Compute score for current child and recurse on child

remainderSublog← ObtainRemainderSublog(L,cohortSublog)
childNode.deviance←Computedistance(cohortSublog,remainderSublog)
BEHAVIOURPRUNEANDSCORE(L, childNode, α)

end if
end for

end function

3.4.1 Illustrative Example
In this section, we explain how the algorithm is used to find the insightful process-based drill-down criteria for the data given
in Figure 4 with feature set {Residential Status, Assessment} as F ′, α = 0.2, and k = 1. The algorithm initially extracts
all values of F ′ that are present in the event log and generates the drill-down tree T . Next, the tree is traversed depth first;
based on each node’s filtering criteria, the event log is divided into the subpopulation’s sub-log and the remaining students’
sub-log. The nodes covering less than α = 0.2 of the student population are pruned. For instance, the node [Assessment = “Mid
Grade”] is pruned because only one student (i.e., 0.16 coverage) adheres to this criterion. As a result, five actionable drill-down
paths remain (shown in Figure 6(a)); P1: [Residential Status = “Domestic”], P2: [Residential Status = “International”], P3:
[Assessment = “Low Grade”], P4: [Assessment = “High Grade”], and P5: [Assessment = “Low Grade” and Residential Status
= “International”]. The algorithm computes the distance between the sub-logs for each drill-down path and annotates each
node by the distance d and the coverage. The drill-down path P5, which has the highest difference (57%), is the resulting
recommendation. Figure 6(b) shows an example drill-down interface, representing the input and the resulting recommendation,
including the drill-down criteria, coverage, and distance.

To understand the difference between the learning process of the subpopulation and that of the rest of the class, we used
the well-known process mining tool Disco (Fluxicon, n.d.) to visualize the underlying learning processes of each group.
Disco generates a process map in which boxes represent activities, numbers in the boxes represent the frequency of each
activity, arrows represent the sequence the activities were performed in (i.e., the control flow), numbers on the arrows represent
the frequency with which the two connected activities were performed, and the thickness of the arrows represents relative
frequencies. For demonstration purposes, we highlighted in red the activities that were performed in a different order. To
compare the two modelled learning processes, we look at the difference between the activities, their frequencies, and their
sequence. For instance, Figure 6(c) shows that Lecture 3 was skipped by one of the two students in the subpopulation, while
Figure 6(d) shows that the remaining students have done this activity. From a control flow perspective, Quiz A and Quiz B were
performed as the last activities by the selected subpopulation, while the remaining students performed these quizzes during the
semester.
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(c) Sub-cohort’s learning process. (d) Rest of students’ learning process.

(a) Drill-down tree for behaviour-based recommendations. (b) An example drill-down interface.

Figure 6. The drill-down tree and the associated drill-down recommendation and visualization
of the learning processes for the behaviour-based illustrative example.

4. Practical Application
This section presents an application of the AID approach using an existing LAD called Course Insights, which is equipped with
manual drill-down functionality1. Subsection 4.1 introduces Course Insights and its main segments. Subsection 4.2 provides
insights into how manual drill-down functionality was employed by 71 Course Insights users. Finally, Subsection 4.3 presents
results from applying our approach to student data from one of the courses that has previously employed Course Insights. The
recommended performance-based and process-based drill-down criteria and how they are presented to users are discussed in
this section. In addition, we summarize feedback from the instructor of the course.

4.1 Course Insights
Course Insights is an instructor-facing LAD that is under active development at the University of Queensland and is currently
accessible to all courses with a Blackboard presence (i.e., approximately 2,000 in Semester 1, 2020). Course Insights includes
student data from numerous university data sources, including the university’s student information system (i.e., enrolment
and demographic information), trace data from interactions with learning management systems used at the university (i.e.,
Blackboard and edX Edge), and assessment grades. The processing pipeline for the dashboard uses AWS Data Lake technologies
(i.e., AWS Athena) and the Elasticsearch engine with the user interface developed in React and deployed as a serverless lambda
function.

The vision for Course Insights has been to “provide actionable insight,” which has been achieved by adhering to the
following design principles:

1. Provide analytics across the course life-cycle. Providing analytics relevant to time periods across the course life-cycle
(e.g., orientation week, the first week of the semester, post–census date, post-assessment, and end of course) was seen as
fundamental to the success of the Course Insights dashboard and has been achieved by integrating multiple data sources.

2. Provide filterable and comparative student subpopulation visualizations. An essential element in instructor decision
making is comparative analysis, whereby the instructor is able to compare different student subpopulations. Course
Insights includes unique filtering functionality and automatically includes comparative (i.e., multiple series) visualizations
to allow the whole student population to be compared with the filtered subpopulation (e.g., students from a specific
program and/or demographics). The Course Insights filter allows instructors to define query criteria using field-level
attributes from any of the integrated data sources. The query builder is included on all Course Insights dashboards.

3. Facilitate the provision of whole-class scaffolding and personalized feedback. Course Insights has been designed to
bridge the gap between dashboards that provide aggregate cohort data and feedback tools that allow subpopulations of
students to be identified for targeted feedback. The Enrolment, Engagement, and Assessment dashboard screens provide
aggregate visualizations to compare the whole class with a filtered subpopulation. The aggregate visualizations enable
scaffolding at the whole-class level. An additional Students dashboard is included to enable personalized feedback. The
Students dashboard displays students and their attributes from all data sources in a tabular format with the ability to filter
students and provide feedback via email.

1Approval from our Human Research Ethics Committee (#2019002181) of the University of Queensland was received for conducting this study.
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The inclusion of a filter builder across all dashboards available in Course Insights has proved useful and allowed instructors
with very specific criteria to find subpopulations of students (e.g., find students enrolled in the Bachelor of Computer Science
program who are retaking the course and have not engaged with course material before an assessment task). As discussed
throughout the paper, manual drill-downs are challenging to use without assistance. The combination of student attributes across
a growing list of data sources provides a very large search space, making it almost impossible to apply all filter combinations
and analyze the comparative visualization for large distributional differences. Instructors, as reported in Subsection 4.2, have
only used very simple demographic filters, introducing bias and perhaps reasoning that a deviation in distribution is only present
in a smaller subpopulation when it is in fact present in a larger population (i.e., the drill-down fallacy) (Lee et al., 2019). The
inclusion of the AID recommendations within Course Insights can help direct instructors to focus their attention and minimize
any bias present in the selection of student subpopulations. Implementation is underway to incorporate AID into Course Insights
based on two different approaches. The first approach positions the drill-down recommendations as an enhancing feature as
part of the manual filtering process. The second approach utilizes the recommendations to provide actionable periodic (e.g.,
weekly) insights for instructors to consider and act upon.

The filter recommendation approach Figure 7(a) demonstrates a current prototype of our vision in terms of including
a filter recommendation feature as part of a manual filtering process. This interface enables instructors to utilize manual
drill-downs for curiosity-driven explorations while providing recommendations to support data-driven exploration. Figure 7(b)
illustrates a potential interface for presenting drill-down recommendations to instructors, including the drill-down criteria,
coverage (fraction of students covered by the drill-down), and significance (distance score of the target feature).

(a) Filtering interface with recommendation support.

APPLY FILTERCLOSE

Residential Status = DomesticProgram = Engineering and 45 % 25.80%

Program, Residential Status
Minimum Coverage: 

20%
RecommendationsSelected Attributes

2

Program = Tourism 45 % 50.06%

DistanceCoverage

(b) The drill-down criteria recommendation interface.
Figure 7. The filter recommendation approach illustration.

The periodic insights approach Figure 8 demonstrates a current prototype of our vision in terms of providing periodic
actionable insights for instructors. Each drill-down in the interface provides insight into a subpopulation with a different
performance or learning process from the rest of the class. The interface provides three main calls to action: (1) Explore Further
automatically loads the recommended drill-down in the filter interface to enable further exploration, (2) View Students provides
access to available data about students that are covered by the drill-down, (3) Take Action enables instructors to act upon the
provided insights by, for example, contacting the identified subpopulation via email. In the screenshot shown in Figure 8, the
first recommended drill-down is an example of a performance-based insight for a subpopulation with the common features of
Program = “Computer Science” and Video Engagement = “Low”, acknowledging that the subpopulation’s score on Quiz 1
was 15% lower than that of the rest of the class. The second recommended drill-down represents an example of a learning
process–based insight, reporting on a subpopulation whose learning processes are noticeably different from those of the rest
of the class and with an overall engagement level 30% lower than that of the rest of the class. These students have common
features of Residential Status = “International” and Assessment = “Low”.

4.2 Manual Drill-Downs in Practice
To understand the common challenges with manual drill-downs in LADs, and to study how they are being used, we have
analyzed logs from Course Insights. Our investigation was guided by the following questions:

1. How complex are the manual drill-downs applied by users?

2. Which manual drill-downs are commonly applied?
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1

Insights for Week 3 (Mar 24 – Mar 30 2020) 

1) 27% of the class population with Program = Computer Science And Video 
Engagement = low have performed 15% worst than class average on Quiz 1.

2) 28% of the class population with Residential status = International And
Assessment = low have taken a different learning path, these students were 
30% less active than class average.

3) The video Opportunity Cost was Paused and re-watched  by 60% of students.
. 

Figure 8. The periodic insights approach implementation.

To answer these questions, we processed 356 manual drill-down actions performed by 71 teaching staff members who were
involved in teaching graduate or postgraduate courses during 10 weeks of a semester at the University of Queensland in
2019. The drill-down could be performed on student demographics (i.e., age, gender, language, brand new, residential
status), enrolment (i.e, program, selected tutorial session, full-time/part-time, whether or not student is repeating the course),
engagement (five video and platform relation actions), and assessment (each assessment score range) features.

Analysis of data related to the first question shows that using a combination of attributes was less common. Overall,
84% of drill-downs were performed on a single attribute and the average number of attributes for each drill-down was < 2
(Enrolment= 1.35±0.55, Engagement= 1.34±0.68, Assessment= 1.29±0.59, and Students= 1.15±0.36). Table 1 reports
the 10 most common drill-down actions. These results demonstrate that most of the drill-downs consisted of a single attribute
and that only one of the 10 most common drill-downs used a combination of more than two attributes. This result might be
explained by the well-established phenomenon called choice overload from choice theory (Gourville & Soman, 2005), which
suggests that increasing the number of choices given to a user may increase their effort in decision making.

Table 1. Top 10 common manual drill-downs

Single Criterion Total Multi Criteria Total

Age 98 Age & Study Load 22
Program 71 Age & Gender 6
Residential Status 66 Program & Gender 6
Study Load 35 Program & Age 6
Gender 32 Program & Residential Status & Study Load 5

As is evident, teaching staff have commonly used a small subset of the features and rarely drilled down more than one level
into the features. This may suggest that the drill-down functionality has been under-used and that many users may require
assistance to fully benefit from drill-down operation. Furthermore, as evident by the results of Table 1 and as supported by the
findings of Wise and Jung (2019), many of the drill-downs posed by instructors seem to have had a curiosity-driven nature,
focusing on the age, program, residential status, study load, or gender of the students.

4.3 AID Recommendations in Action
We applied AID to an introductory calculus and linear algebra course offered in 2019 to 875 undergraduate students from 48
programs at the University of Queensland. Within the course, students could do three types of learning activities: (1) accessing
course materials—accessing course materials by chapter; (2) participating in formative quizzes—submitting chapter-based
practice quizzes (practice quizzes were formative assessments and thus optional); and (3) reviewing summative assessment
solutions—accessing chapter-based workbook solutions, released weekly. Workbooks were summative assessments, assigned
weekly with a weekly requirement to submit their answer sheets (paper-based submissions). Data from 736 students who
completed the course were used for the study. The event logs included a set of attributes {Brand New (Yes 87%, No 13%)
(i.e., indicating whether they are first semester students), Gender (Male 69%, Female 31%, Other 0.1%), Program (48 different
programs), Residential Status (Domestic 71%, International 29%), Final Exam Score (High 38%, Mid 32%, Low 30%), and the
level of engagement in each learning activity (Course Materials 11%, Formative Quiz 42%, Solution of Summative 47%). In
addition, as a trace of learning events for each student, the learning activity and the related course chapter were included in the
event log. In the remainder of this section, we present the recommendations generated for this course using relatively small
(α = 0.05), medium (α = 0.1), and large (α = 0.3) student populations.
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4.3.1 Performance-Based Drill-Down Recommendations
As the input for the performance-based drill-down, we selected {Brand New, Gender, Program, Residential Status, and the
level of engagement in each of the three learning activities} and {Final Exam Score} as the target feature. Figure ?? presents
the recommendations generated for this course. The arrows indicate whether the average result of the final exam in the
subpopulation was higher (↑) or lower (↓) than that of the remainder of the class. As demonstrated in the figure, the use of
α = 0.3 leads to the generation of drill-down recommendations with a relatively low distance score (average distance = 0.035)
that finds relatively large subpopulations (average coverage = 0.325). As expected, a decrease in α leads to an increase
in distance score. For example, the use of α = 0.05 leads to drill-down recommendations with a higher distance score
(average score = 0.1) on smaller subpopulations (average coverage = 0.05). Contrary to our initial assumptions, the average
length of a drill-down action is not necessarily a good indicator of its distance score. In the reported results, the average length
of drill-downs for α = 0.05 is 3, which is higher than that of drill-downs for α = 0.3 (average length is 1.5) but is lower than
that of α = 0.1 (average length is 4). In relation to the actual features used in the recommendations, it is reassuring to see that
low engagement with learning activities was chosen in five of the drill-down recommendations that had a lower exam grade
than the rest of the class.

α Recommended Drill-Down Criteria Coverage Distance

0.05 (1) [Brand New = “No”] and [Review Solution
of Summative = “Low”] and [Access to Course
Materials = “Low”]

0.05 0.11 ↓

(2) [Program = “Bachelor of Engineering (Hon-
ours)”] and [Brand New = “No”]

0.05 0.09 ↓

0.10 (3) [Gender = “Male”] and [Program = “Bach-
elor of Engineering (Honours)”] and [Review
Solution of Summative = “Low”] and [Submis-
sion of Formative Quiz = “Low”] and [Access
to Course Materials = “Low”]

0.10 0.06 ↓

(4) [Program = “Bachelor of Engineering (Hon-
ours)”] and [Review Solution of Summative
= “Low”] and [Submission of Formative Quiz
= “Low”] and [Access to Course Materials =
“Low”]

0.11 0.06 ↓

0.30 (5) [Review Solution of Summative = “Low”]
and [Submission of Formative Quiz = “Low”]

0.34 0.04 ↓

(6) [Submission of Formative Quiz = “Mid”] 0.31 0.03 ↑

(a) Resulting recommendations generated by AID
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(b) Distribution of final exam scores in
subpopulation of recommendation (1).

Figure 9. Performance of filtered students (by the recommended drill-down) versus the rest of the students.

Visualizing subpopulation performance deviations To further investigate the insights that can be derived from the recom-
mended drill-downs, we projected that the distribution of final exam scores for the identified subpopulation and the remaining
students on a comparative bar graph recommended drill-down (1) (shown in Figure 9(b)). This drill-down results in a subpopu-
lation of Brand New = “No”, Review Solution of Summative = “Low”, and Access to Course Materials = “Low”. According to
the AID result, the performance of the subpopulation on the final exam was 11% different from that of the remaining students.
As Figure 9(b) illustrates, two major differences were the percentage of medium-scoring students (+31 percentage points) and
high-scoring students (−23.81 percentage points). Furthermore, on average, the subpopulation performed 20% worse than
the remaining students, which might be explained (possible correlation) by their low engagement with Review Solution of
Summative and Access to Course Materials activities.

4.3.2 Process-Based Drill-Down Recommendations
As the input for the process-based drill-down, we used {Brand New, Gender, Program, Residential Status} as the selected
features set. Table 2 presents the recommendations generated for this course. It is worth noting that the distance scores resulting
from the two algorithms are not comparable because they use different underlying scoring functions. Similar to the case of
performance-based recommendations, a decrease in α leads to an increase in the distance score. In the reported results, the use of
α = 0.3 leads to the generation of drill-down recommendations with a relatively low distance score (average distance = 0.635)
that finds relatively large subpopulations (average coverage = 0.51). Decreasing α to 0.05 leads to the generation of drill-down
recommendations with a higher distance score (average score = 0.71) on smaller subpopulations (average coverage = 0.05).
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Unlike the case of performance-based recommendations, the average length of drill-down actions correlates with the distance
score. In the reported results, the average length of drill-downs for α = 0.05 is 3.5, which is higher than that of drill-downs for
α = 0.1 (average length is 3), which is higher than that of α = 0.3 (average length is 1.5). In relation to the actual features
used in the recommendations, an interesting observation is that the Brand New (i.e., being in the first semester) feature was
a common feature in five of the drill-down recommendations, which indicates that the learning behaviour was commonly
different in students that were new in the education system of the University of Queensland than that of the rest of the class.

Table 2. Process-based recommendations visualization
α Recommended Drill-Down Criteria Coverage Distance

0.05 (1) [Brand New = “Yes” and Residential Status = “International” and Final Exam = “High” and
Gender = “Male”]

0.05 0.72

(2) [Brand New = “Yes” and Residential Status = “International” and Gender = “Female”] 0.05 0.70

0.1 (3) [Brand New = “Yes” and Residential Status = “International” and Program = “Bachelor of
Engineering (Honours)”]

0.10 0.69

(4) [Brand New = “Yes” and Residential Status = “International” and Gender = “Male”] 0.12 0.68

0.3 (5) [Final Exam = “High”] 0.33 0.64
(6) [Brand New = “Yes” and Residential Status = “Domestic”] 0.69 0.63

Visualizing deviations of subpopulation learning processes Here, we demonstrate the insights derived from the recom-
mended drill-down (1) (shown in Table 2). This drill-down results in a subpopulation of Brand New = “Yes” and Residential
Status = “International” and Final Exam = “High” and Gender = “Male”. According to the AID result, this subpopulation’s
learning process is 72% different from that of the remaining students. To investigate the difference between the two learning
processes, we visualized the underlying process of the subpopulation (shown in Figure 10(a)) and the remaining students
(Figure 10(b)). Each box in the map is an activity, which is labelled by the action type and the relevant chapter (e.g., Formative
Quiz—Chapter1). We used colour coding to visually emphasize the differences in the three types of learning activities in
the process map. In the subpopulation’s process, the arrows between the three different types of activities indicate switching
between the types of learning tasks. Such switching can indicate that the three types of tasks were performed every week before
the next chapter’s activities were made available. In contrast, the underlying process of the remaining students shows that the
activity types related to Chapters 9 to 18 (highlighted in Figure 10(b)) were mainly performed sequentially, which indicates
students performing them at the end of the semester when all tasks were available.

To further investigate our initial findings, we used the Events graph of Disco (Fluxicon, n.d.) to compare the distribution of
the events over the semester. Figures 10(c) and 10(d) demonstrate that the subpopulation was more active during the semester
than the remaining students. Furthermore, the average number of events per student was 36 in the subpopulation and 25 for the
remaining students. To conclude our analysis, the identified subpopulation had a high rate of activities throughout the semester
compared to the remaining students. One of the common features of this subpopulation was their high performance on the
final exam, which might be associated with their learning process. Some other differences identified by comparing the two
process maps are the Formative Quiz of Chapter 8 not being performed by any students in the subpopulation; Solution Review
of Chapters 2, 7, 8, and 9 being the highest-rated activities in the subpopulation; and Solution Review of Chapters 1, 2, 6, 7, 8,
and 9 being the highest-rated activities by the rest of the class.

4.3.3 Feedback from the Instructor
We presented the reported drill-down recommendations and the process visualizations to the instructor of the course to capture
their feedback and comments on the findings. Their feedback can be summarized as follows: (1) While the instructor had
access to Course Insights throughout the semester, they rarely used it and generally found it to be overwhelming. They
considered the large number of potential drill-down options within the platform to be the main reason that using the platform
was overwhelming. (2) Findings of learning process that have led to successful outcomes can be used for positive deviance
(Marsh, Schroeder, Dearden, Sternin, & Sternin, 2004) purposes. The instructor indicated that they would like to share Figure 10
as a recommended pattern of successful learning with their students as evidence that consistent engagement with learning
activities throughout the semester is related to better outcomes. (3) Providing the ability to receive drill-down recommendations
based on a rule (e.g., “Midterm” < 50) would be useful. The instructor indicated that they would like to understand deviations
in low-performing and at-risk students to help them pass the course.

In summary, the practical application confirmed the value of automated drill-down recommendations, while also providing
us with a number of helpful learnings with which to refine and extend AID, as discussed next.
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(a) The learning process of the subpopulation. (b) The learning process of the rest of students.
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(c) Subpopulation’s number of events over the semester. (d) Rest of students’ number of events over the semester.

Submission of Formative QuizAccess to Course Materials Review Solution of Summative 

Chapter 9 to Chapter 18 related activitiesChapter 9 to Chapter 18 related activities

Figure 10. Learning process of filtered students (by the recommended drill-down) versus the rest of students.

5. Discussion and Conclusions
Our overarching aim is to contribute to the understanding of how human-in-the-loop AI methods in the form of guided
exploratory approaches can be employed in the development of successful LADs. In particular, we have developed and
presented the AID approach, which identifies subpopulations of students with the highest deviation in performance or learning
process compared to the rest of the class. Our practical application of AID indicates that AID can be integrated into LADs
to produce intelligent LADs. Such LADs can provide instructors with meaningful and efficient ways to gain insight into
subpopulations of students that would otherwise be missed, or misinterpreted, in current manual or predictive approaches. In
particular, we note that manual drill-downs without guidance can be overwhelming, and many instructors tend to pose simple
drill-downs to answer curiosity-driven questions. Approaches such as AID provide an opportunity for instructors to utilize
data-driven drill-downs alongside curiosity-driven drill-downs.

There are several interesting directions to pursue in future work to overcome current limitations and help prepare AID for
incorporation into LADs, which are discussed below.

Algorithm updates and interface implementations In Subsection 2.2, we referred to fallacy as one of the existing challenges
with a manual drill-down analysis. We have shown how fallacy can occur due to the user failing to explore the entire decision
tree and, therefore, missing the attribute that contributes most to increasing the distance score. Our proposed algorithms explore

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported
(CC BY-NC-ND 3.0)

148



the entire tree to address this issue. However, fallacy can still occur if a child node of the tree increases scores minimally due to
overfitting to the data. Future work aims to explore how we can use regularizers to avoid overfitting, and thus fallacy, affecting
the proposed approach.

To date, more than 10 workshops with over 50 participants, who were mostly academics or learning designers, have been
facilitated on Course Insights. The workshops have generally focused on presenting the current version of the system and
receiving feedback from participants. A few of the sessions focused on co-creation and participatory design, leading to the
design of the presented interfaces (Figure 7 and Figure 8) for inclusion of the AID recommendations within Course Insights.
The participants had very different levels of digital literacy with diverse expectations from the available features in the system.
This makes the task of designing interfaces that are easy to navigate while satisfying the expectations of a diverse audience
quite challenging. Nevertheless, improvements to the underlying algorithms and implementation of easy-to-use interfaces for
engaging with the recommendations may be two of the most effective ways of making AID more accessible to non-technical
users. We provide three examples of the tasks that are in our roadmap: (1) The constant α plays a very important role in the
quality of the generated recommendations. A poor choice of α may lead to disappointing results for the user. Our future work
should extend AID such that the algorithm itself scans over a range of values for α and recommends promising drill-downs with
various coverages. (2) Although AID can generate insightful (high significance score) performance-based or process-based drill-
down recommendations instantly, further work is needed to investigate what criteria can be used to determine insightfulness. We
hope to partner with instructors and learning designers to uncover additional criteria beyond deviation. (3) AID currently uses a
different scoring function for ranking performance-based and process-based recommendations. This makes it challenging for
instructors to compare and contrast performance-based and process-based recommendations. Future work should aim to develop
strategies such as utilizing a common scoring function to compare the insightfulness of performance-based recommendations
against process-based recommendations.

Engaging with the recommendations The focus of this paper has been on the development of an approach for generating
the recommendations; however, an equally important aspect that needs to be investigated is the development of effective
methods to help instructors understand and act upon the provided recommendations. Here, we outline three lines of promising
future work for assisting instructors in engaging with the recommendations. (1) As mentioned in Section 2.3, existing work on
process mining techniques in education has been utilized mostly by educational researchers with a strong technical background
in computer science and data science through general-purpose process mining tools (Saint et al., 2018). We hope to partner with
instructors and learning designers to develop appropriate visualization method(s) for presenting the results of the drill-down
recommendations to frontline users in education. (2) An important component of empowering instructors with insights and
returning meaningful learning analytics data to them is to inform learning design decisions (Corrin et al., 2016). A number
of frameworks have been proposed for connecting learning analytics and learning design (Bakharia et al., 2016; Lockyer,
Heathcote, & Dawson, 2013; Schmitz, van Limbeek, Greller, Sloep, & Drachsler, 2017). We hope to work with instructors and
learning designers to operationalize these frameworks into guidelines and practical tips for employing AID toward actionable
pedagogical recommendations. (3) Another important component of empowering instructors with insights is to enable them to
share these insights with students to promote self-regulation (Roll & Winne, 2015) and to encourage change (i.e., application of
positive deviance). However, previous work has demonstrated that inappropriate sharing of information on student performance
in comparison with their peers can also have negative impacts and lead to student demotivation (Lonn et al., 2015). Future
work should investigate best practices of sharing insights derived from the use of AID in LADs with students to encourage
self-regulation and positive deviance without negative impacts.

Evaluation In this paper, we presented the use case of automated drill-down recommendations in the context of one course.
As a first step, future directions include replicating this study with courses across different disciplines to investigate the
generalizability of our current findings. The second step of evaluation includes the incorporation of AID into Course Insights to
investigate how instructors may utilize recommended data-driven drill-downs alongside manually navigated curiosity-driven
drill-downs.

Equity and fairness considerations There is an increasing awareness in AI about the risk of inequity and unfairness with
the knowledge generated through the machine learning algorithms and the way we interpret and operationalize this knowledge
for education-oriented applications (Dudı́k et al., 2020; Holstein, Wortman Vaughan, Daumé III, Dudı́k, & Wallach, 2019).
Because machine learning techniques learn from historical data, there is a danger of attracting extreme attention to historically
disadvantaged groups, and some populations may become vulnerable to incorrect predictions or judgments (Rajkomar, Hardt,
Howell, Corrado, & Chin, 2018); this also holds for the approaches introduced in this paper. While this paper provides a
human-in-the-loop approach, the risk of inequity still exists. For instance, if students from a particular ethnicity are shown to
have lower grades, could that be harmful in any way? Could it further bias the instructor and lead to further stereotyping? Other
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concerns exist in terms of overreliance on the recommendations for assisting students, which may disadvantage students who
were not identified by recommendations. Further investigation is needed to avoid this challenge.
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