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TesT-score growth is a commonly used evaluation tool in edu-
cation research and policy applications. The abrupt cancella-
tion of testing in spring 2020 due to COVID-19 generated a 
gap year in test data in states across the United States, a con-
sequence of which is that it will not be possible to estimate 
traditional growth models in 2021. Motivated by this data 
condition, we assess the potential for reliably estimating test-
score growth over a 2-year period with a gap year in testing.1

Our methodological approach is to simulate a gap year in 
testing in a year preceding COVID-19. Specifically, we 
build a data panel spanning the school years 2016–2017, 
2017–2018, and 2018–2019, and censor the data as if the 
2017–2018 test was never administered. We estimate models 
of student test-score growth using the artificially censored 
data and compare the output with analogous output obtained 
using the full, uncensored data panel over the same 2-year 
period. These comparisons allow us to assess the accuracy of 
gap-year growth estimates relative to the full-data condition. 
Our simulations are not confounded by complicating factors 
associated with the test gap that occurred in reality due to the 
COVID-19 pandemic. This is appealing from the perspec-
tive of understanding the prospects for gap-year growth 
modeling in the absence of other complications. In the con-
text of the pandemic—during which there have been many 
complications—our work is best viewed as providing evi-
dence on a necessary, but not sufficient, condition for the 
resumption of useful growth modeling in spring 2021.

We focus primarily on determining the accuracy with 
which we can estimate test-score growth for districts and 
schools. Districts and schools are natural units of analysis 
from the perspective of state education agency staff inter-
ested in understanding variability in learning rates within 
their states. Moreover, although high-stakes growth mea-
sures from the pandemic period are unlikely to be used for 
accountability purposes, the historical use of district- and 
school-level growth estimates in this way has created inertia 
around metrics at these levels within state education agen-
cies.2 From a research perspective, growth-based analyses at 
the district and school levels are also commonly used to 
evaluate education interventions.

In our simulations, we find that gap-year models produce 
estimates of growth at the district and school levels that are 
highly correlated with estimates that use all the data. 
Specifically, the correlations are consistently around 0.90 for 
districts and range between 0.84 and 0.88 for schools, across 
five different growth model specifications in two subjects 
(math and English language arts [ELA]). We also extend our 
analysis to briefly consider a scenario where there is a 2-year 
test gap (in the case of COVID-19, this would be a situation 
where testing is further postponed to 2022). We do not 
believe that it will be feasible to estimate test-score growth 
for individual schools spanning a 2-year test gap, but we 
show that reasonably accurate district-level growth esti-
mates can still be recovered.
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Though we find broad similarity between the results 
obtained under the gap-year and full-data conditions, the 
estimates are not identical. For the differences that exist, 
we investigate their sources and identify two primary fac-
tors. First, the cohorts of students used to estimate growth 
in the gap-year and full-data scenarios only partially over-
lap. If we force cohort alignment in both scenarios, the cor-
relations reported in the previous paragraph rise by about 
0.05. Second, the remaining discrepancies are the result of 
what we refer to as data and modeling variance—that is, 
they arise because the gap-year model estimates growth 
from period t−2 to t, whereas the full-data analog sums 
single-year estimates of growth from t − 2 to t − 1 and t − 1 
to t. This generates small differences in the predictors of 
contemporary achievement and their coefficients. We rule 
out other sources of the discrepant results due to the gap 
year. Most significantly, conditional on cohort-alignment, 
sampling variance at the individual student level does not 
meaningfully affect growth estimates for districts and 
schools using the gap-year data.

We also examine the extent to which differences in 
growth rankings caused by a gap year can be systematically 
predicted by observable district and school characteristics. 
We find that most of the variance in growth-ranking changes 
is not explained by observable characteristics. However, in 
sparser growth models, they explain a nonnegligible share of 
the variance—up to 25%. In our richest growth specifica-
tion, the explained variance falls dramatically into the range 
of 1% to 5%. In a supplementary analysis, we show that a 
likely explanation for the difference is that estimates from 
the sparser models contain more bias.

Our findings speak directly to the ability of gap-year 
models to recover accurate growth estimates under normal 
circumstances, such as in the event of a technical or policy 
glitch that prevents testing in an otherwise typical school 
year. A recent example occurred in Tennessee in 2015–2016, 
when statewide testing in Grades 3 to 8 was cancelled due to 
problems with test delivery that ultimately resulted in the 
state terminating its contract with the test developer (Tatter, 
2016). There is also the possibility that testing gaps will 
become more common in the future with increasing volatil-
ity around state testing policies.

In the context of COVID-19, in addition to the gap year 
in testing, the pandemic comes with a host of other chal-
lenges that must also be considered in efforts to use growth 
data effectively. Two in particular are notable. First, there 
will be changes in the composition of test-takers in public 
schools when testing resumes, and relatedly, the potential 
for changes to the composition of testing modes among 
students who are tested (e.g., in-person vs. online). 
Because uncertainty along these dimensions is so great 
and conditions vary so much across locales (e.g., see 
Donaldson & Diemer, 2021; Goldhaber et al., 2020), we 

do not attempt to address these issues directly in our simu-
lations. However, to use growth data from the pandemic 
period effectively, researchers will need to account for 
missing and multimode test data.

The second challenge is that the pandemic has affected 
more than just schools, making the attribution of heteroge-
neity in growth across districts and schools more difficult. 
This challenge applies to the use of growth data for account-
ability and in some research projects. Noting these chal-
lenges, our work on the technical implications of the gap 
year is a necessary first step toward restarting the growth 
modeling infrastructure postpandemic.

Method

Growth Models

We estimate five different models in two subjects (math 
and ELA) to recover estimates of test-score growth for dis-
tricts and schools. The models differ in terms of structure 
and the variables included as shown in Table 1 and were 
selected to be representative along key dimensions of many 
models used in practice. For instance, Model 3 is an example 
of what Koedel et al. (2015) refer to as a “standard one-step 
VAM [value-added model],” which is common in research 
and some policy applications, and Model 5 is similar in 
structure and variables to the two-step model that Parsons 
et al. (2019) favor for estimating teacher value-added. 
Models 1 and 2 share a key feature with student growth per-
centiles (SGPs)—which are commonly used in policy appli-
cations—in that they do not include any controls except 
lagged achievement.3

Examples of our fullest specifications, using one-step and 
two-step growth modeling structures, are shown in Equations 
(1) to (3). These specifications are commonly referred to as 
“value-added models”, or VAMs, in the literature. The term 
value-added implies attribution of growth to the units of 
analysis—in our case, schools or districts. However, the 
models can provide useful information about growth differ-
ences between schools and districts even in the absence of 
attribution. Put another way, they can be used diagnostically 
to identify heterogeneity in rates of student achievement 
growth across districts and schools even when it is uncertain 
how much of the differences can be reasonably attributed to 
the actions of districts and schools themselves. In the discus-
sion section below, we elaborate further on the use of growth 
models for diagnostic and evaluation purposes.4

Our full specification for the one-step model is shown by 
Equation (1):

Y eijkmst s ijkmst= + + + + +α γ ϕ0 Y Ximt it_1 1 2αα αα j  (1)

Equations (2) and (3) show the full specification for the two-
step model:
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In Equations (1) and (2), Yijkmst  is the standardized test score 
of student i in grade j, attending school s, in district k, for 
subject m, and year t. Yimt_1  is a vector of lagged-test-score 
controls, of which the key controls are the same-subject and 
off-subject lagged test scores.5 In Equation (2), the vectors 
Y Ym t_ mkt_s 1 1and  include school and district average values 
of the lagged test-score variables. In the gap-year models, 
t−1 scores are unavailable and t−2 scores are substituted.

The vector Xit  contains student characteristics. We 
include indicator variables for student race/ethnicity, gender, 
free or reduced-price lunch (FRL) status, English language 
learner status, whether the student has an individualized 
education program (IEP), and mobility status (i.e., an indica-
tor for whether the student changed schools midyear). We 
also include the school and district shares of these variables 
in the vectors X ts  and X tk  in Equation (2). γ j  and ψ j  are 
grade fixed effects. As written in Equations (1) and (3), ϕs  
and πs are school fixed effects. These are our estimates of 
school-level growth. Note that when we rerun the models to 
recover district-level growth estimates, we replace the 
school fixed effects with district fixed effects (i.e., with sub-
scripts “k” instead of “s”), reestimate the models, and recover 
these parameter estimates instead. eijkmst , εijkmst , and uijkmst  
are the error terms.

The versions of the models shown by Equations (1) to (3) 
are labeled as “Model 3” and “Model 5” in Table 1. Models 
1 and 2 in Table 1 are sparse versions of the one-step and 
two-step models—they include only the Yimt_1  vector and 
the grade fixed effects. Model (4) is a two-step model that 
includes all the information in the full one-step model shown 
in Equation (1)—that is, it includes all student-level controls 
but excludes all district- and school-aggregated information. 
Note that the school- and district-aggregate coefficients are 
not separately identified in a one-step model because there is 
no within-unit (school or district) variation in the aggregate 

TABLE 1
Descriptions of the Five Growth Specifications

Growth specification

Sparse Student controls All controls

(1) (2) (3) (4) (5)

Structure 1-step 2-step 1-step 2-step 2-step
Student lagged test scores (math and ELA) × × × × ×
Individual student characteristics × × ×
School- and district-average student characteristics ×

Note. All models also include fixed effects for student grade levels. The individual student characteristic controls are for race-ethnicity, gender, free/reduced-
price lunch eligibility status, English language learner status, special education status, and mobility status. The school- and district-average characteristics 
are of these same variables, and lagged achievement, to control for the schooling environment. ELA = English language arts.

covariates. This is why we do not estimate a one-step model 
with these controls. The two-step model “resolves” the iden-
tification problem by estimating the parameters sequentially. 
It is beyond the scope of the current article to go into details 
on the technical and policy trade-offs of the various models, 
but Ehlert et al. (2016) and Parsons et al. (2019) provide 
conceptual and technical arguments for why a 2-step model 
with rich controls along the lines of Model (5) is desirable.6

We link student growth to the contemporary school or 
district in all models as a baseline condition. This is the com-
mon approach under normal circumstances—that is, growth 
from year-(t − 1) to year-t is linked to the year-t school or 
district. In the gap-year model, this is a potential concern 
because there is extra mobility during the gap year. We 
examine the sensitivity of gap-year model output to adjust-
ments for student mobility over the course of our analysis.

The last estimation issue that merits brief mention is shrink-
age. All of our estimates are shrunken toward the mean using 
the following procedure described in Koedel et al. (2015), 
which is implemented in two steps. First, for each school or 
district estimate, we produce an estimate-specific shrinkage 
factor, α . For each school s, the shrinkage factor is written as

αs
s

=
+

σ

σ λ



 

2

2
 (4)

In the formula, σ
2
 is an estimate of the variance of true 

growth across schools in the sample (after netting out esti-
mation error), and λ s  is the estimation-error variance of the 
estimate for school s.7 These shrinkage factors can be 
thought of as individual school (or district) reliability ratios 
that reflect the precision of each estimate in the context of 
the total true variance in growth.

With the shrinkage factors in hand, the final, shrunken 
growth estimates are calculated as (again, the formula for 
schools is shown but the formula for districts is analogous):

� �ϕ ϕ ϕs s s s= + −( )α α1  (5)

where ϕs  is estimated growth for school s and ϕ  is aver-
age growth across all schools. Equation (5) embodies the 
intuitive idea that as the estimate for any individual school s 
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becomes less precise, as measured by αs , we put more 
weight on the prior that the school has average growth.

As a final note to this section, the connection between 
the growth estimates from our models and SGPs merits 
additional explanation given the widespread use of SGPs 
by states to measure growth (Data Quality Campaign, 
2019). SGPs are estimated using quantile regression and 
aggregated for schools and districts as median values of 
individual students’ growth percentiles. In addition to 
using quantile regression and focusing on the median 
rather than the mean, SGPs differ from the models we esti-
mate in that they condition only on lagged achievement in 
a single subject (with no other controls), use multiple 
years of lagged test scores for students when available, 
and are based on simple aggregations of the data without 
shrinkage.

Several previous studies have compared output from 
SGPs with output from linear growth models similar to 
ours (Castellano & Ho, 2015; Ehlert et al., 2016; Goldhaber 
et al., 2014). A general expectation based on these studies 
is that SGPs should be affected by the gap year similarly 
to growth estimates from our Models 1 and 2, which also 
condition only on lagged student achievement and exclude 
other controls. For example, Castellano and Ho (2015) and 
Ehlert et al. (2016) show that SGPs and growth estimates 
from linear models are similar when based on the same 
lagged-achievement controls (with correlations at or above 
0.90). If anything, SGPs should be expected to be slightly 
more sensitive to a gap year in testing than our estimates 
from Models 1 and 2 because (a) they are less efficient 
than mean-based growth estimates (Castellano & Ho, 
2015) and (b) there is nothing akin to our ex post shrinkage 
procedure applied to SGPs.8 As a point of related evi-
dence, Goldhaber et al. (2014) show that teacher-level 
SGPs have lower year-to-year stability than growth esti-
mates from linear models.

Gap-Year Simulation

We estimate each model described above with and with-
out simulating a gap year in testing. We begin by using the 
uncensored data to estimate two consecutive growth esti-
mates for each unit (either a school or a district) with data 
from 2016–2017 to 2017–2018, and 2017–2018 to 2018–
2019. We then sum the two single-year estimates to produce 
an estimate of growth over the 2-year period in order to rep-
licate how a typical system would estimate growth over 2 
years, assuming no data were missing. Next, we censor the 
2017–2018 test data and directly estimate growth over the 
2-year period, using data from 2016–2017 and 2018–2019. 
By comparing the “full data” scenario with the “gap-year” 
scenario, we can assess the extent to which the gap-year 
models recover accurate estimates of test-score growth over 
the 2-year period.

We focus primarily on comparing full-data and gap-year 
growth estimates for districts and schools over the same 
2-year timespan. In addition, we compare the gap-year 
growth estimates with growth estimates from only the most 
recent year—that is, in the context of our simulations, we 
estimate gap-year growth from 2016–2017 to 2018–2019 
and compare it with growth from 2017–2018 to 2018–2019. 
This supplementary comparison is informative if policy-
makers were interested in using gap-year growth to approxi-
mate the most recent year of growth, for which a rationale 
might be a rigid accountability framework that does not per-
mit the consideration of multiple years of growth. Ultimately, 
we do not emphasize this comparison for two reasons. First, 
it is not directly informative about the performance of the 
gap-year model because the comparison is confounded by 
real differences in growth rates between schools and districts 
in the nonoverlapping year. Second, outside a rigid account-
ability framework, there is not a strong research or policy 
rationale for ignoring the first year of the 2-year window in 
the event of a gap year in testing.

Finally, we also briefly extend our analysis to simulate 
the presence of two consecutive gap years in testing—in the 
context of the COVID-19 pandemic, this scenario would 
come to pass if testing does not resume until spring 2022. 
For this extension, we bring in an earlier year of data from 
2015–2016, censor the test data in our panel in 2016–2017 
and 2017–2018, and calculate growth from 2015–2016 to 
2018–2019. We then compare growth estimated over the 
3-year period with the analogous “full data” condition, 
where 3-year growth is calculated as the sum of annual 
growth estimates from 2015–2016 to 2016–2017, 2016–
2017 to 2017–2018, and 2017–2018 to 2018–2019.

Data

We use administrative microdata from Missouri cover-
ing all students tested in Grades 3–8 in math and ELA dur-
ing the school years 2015–2016 to 2018–2019. Hereafter, 
we identify school years by the spring year—for example, 
2018–2019 as 2019. We standardize student test scores 
throughout by grade-subject-year. Supplemental Appendix 
Table A1 (available in the online version of this article) 
reports student-level correlations of test scores over time in 
math and ELA, which can be used by other states to get a 
rough sense of the likely generalizability of our findings to 
other assessment contexts. As a related point of informa-
tion, the test reliability ratios in Missouri are at or above 
0.90 in most tested grades and subjects, typical of large-
scale state tests elsewhere.9

We do not expect contextual features of Missouri to limit 
the generalizability of our findings in most respects. That 
said, two aspects of the Missouri data merit brief attention. 
First, Missouri changed its math and ELA tests once each 
between 2016 and 2019. Backes et al. (2018) studied the 
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impact of test-regime changes on value-added estimates in 
math and ELA across multiple states and found that such 
changes typically do not affect model performance substan-
tively. Moreover, we have performed internal diagnostic 
work using the Missouri data specifically that supports this 
inference.10

Second, Missouri has a high ratio of districts to students. 
Said another way, Missouri is a “small district” state. 
Growth estimates for smaller districts will be more sensi-
tive to data changes because they have fewer students to 
balance out the sampling variance that the data changes 
create. These data changes can be of two types. First is the 
imperfect overlap of the samples between the full-data and 
gap-year scenarios, both at the cohort and individual-stu-
dent levels.11 Second, even with perfect overlap of students 
in the full-data and gap-year scenarios, differences in the 
same students’ test scores in the t − 1 and t − 2 years can 
affect the growth estimates. We conduct a subsample anal-
ysis for the 100 largest districts in Missouri—in which 
these data changes are less impactful owing to their size—
to produce results that are more likely to generalize to 
states with larger school districts.

We produce growth estimates for all districts and schools 
with at least 10 tested students. When we correlate and oth-
erwise compare growth estimates using the full data and 
gap-year data, the comparisons are restricted to districts and 
schools that meet the size threshold in both data conditions. 
Only very small Missouri districts and schools are omitted 
from our analysis due to the sample-size restriction.12

Table 2 summarizes our data in terms of students, schools, 
and districts.

Results

Assessing the Alignment Between Gap-Year and Full-Data 
Growth Estimates

We estimate district- and school-level growth using the 
full data, then using the censored data as if the 2018 test was 
not administered and compare the results by estimating the 
correlation between the growth estimates. Each cell in Table 
3 shows one such correlation between school- or district-
level growth estimates, with and without the data censoring, 
defined by three dimensions: (1) the subject (math or ELA) 
and model (Models 1–5) indicated by the column, (2) the 
level of the analysis (district or school) indicated by the two 
horizontal panels, and (3) the precise data and evaluation 
condition, identified by the rows within each horizontal 
panel.

Our baseline findings for districts and schools are reported 
in the first row of each horizontal panel. The two key fea-
tures of the baseline condition, both of which we relax sub-
sequently, are (a) we compare the gap-year and full-data 
results using all available data in each condition and (b) we 
assign growth over the previous period—be it one (t−1) or 

two (t−2) years—to the year-t district or school, which is the 
business-as-usual approach in the absence of a gap year. The 
results for districts show that the gap-year estimates are 
highly correlated with the full-data estimates in both sub-
jects. The correlations are consistently around 0.90 and 
slightly higher in math. The correlations are a little lower for 
individual schools—in the range of 0.84–0.88 across models 
and subjects—but substantively similar.13

A high-level takeaway from the baseline correlations is 
that they indicate a strong correspondence between growth 
estimated with and without the gap year, regardless of level 
of analysis, growth model, or subject. In the online 
Supplemental Appendix Table A2, we provide complemen-
tary transition matrices corresponding to the baseline corre-
lations. Reflecting the fact that research and policy interest is 
often concentrated in the tails of the distribution, the transi-
tion matrices examine the persistence of district and school 
placements in the “bottom 10%,” “middle 80%,” and “top 
10%” of growth rankings with and without the gap year. 
Mirroring the high correlations in Table 3, the transition 
matrices show that most districts and schools (about 85%–
88%) remain in the same ranking category regardless of 
whether the full data or gap-year data are used. Moreover, as 
expected, the districts and schools that change categories are 
relatively close to the 90th- and 10th-percentile cutoffs, on 
average; among these districts and schools, the average 
value of the percentile ranking change caused by the gap 
year of data is about 10 percentile points—for example, a 
move from the 85th to 95th percentile.

Noting that the baseline correlations are generally high, 
one might still wonder why they are not even higher. After 
all, both the gap-year and full-data models aim to recover 
growth estimates over the same 2-year period. Understanding 
what factors drive differences between the estimates is 
important for understanding the limitations of using gap-
year data.

In the second and third rows in each panel of Table 3, we 
explore the extent to which changes in the analytic sample 
between the gap-year and full-data models can explain dif-
ferences in the results. In the second row, we force the gap-
year and full-data models to be estimated on the same 
cohorts of students. In the baseline condition, the full-data 
models include some cohorts that are not represented in the 
gap-year models. As an example, consider a student in the 
third grade during the gap year, which for us is 2018. Her 
growth contributes to estimates from 2018 to 2019 in the full 
data condition, but because she is outside the tested range 
prior to 2018 (i.e., in 2017, she is in the second grade), her 
growth cannot be assessed with the gap-year model. A simi-
lar problem arises for students in the eighth grade during the 
gap year, who age out of the testing window before testing 
resumes.

When we force cohort alignment between the models, the 
correlations in all scenarios rise markedly, on the order of 
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about 0.05 off of the already high baseline values. This indi-
cates that cohort misalignment between the gap-year and 
full-data conditions accounts for a substantial fraction of the 
result discrepancies. This finding is not likely to be policy 
actionable because in the presence of a true gap year, the 
missing cohorts will simply not have data. However, it is 
instructive about why the growth estimates differ.

Next, in the third row in each panel of Table 3, we further 
align the samples across the gap-year and full-data condi-
tions by using the exact same students to estimate the mod-
els. That is, conditional on cohort alignment, we further 
exclude all students within the matched cohorts that do not 
have a test score for all three years (2017, 2018, and 2019). 
The results show that conditional on matching cohorts, 
matching the exact student samples has a negligible effect. 
The correlations do increase when we fix the samples, but 
the increase is very small and in some cases not detectable 
up to the 100th decimal place.

Another way in which the gap-year and full-data models 
differ is in how they treat mobile students. To illustrate, 
consider a student who attends District A in 2017 and 2018, 
but District B in 2019. In the business-as-usual model, her 
growth from 2017 to 2018 will be attributed to District A, 
and her growth from 2018 to 2019 will be attributed to 
District B. However, in the gap-year model and using the 
convention of assigning growth to the contemporary dis-
trict, her growth over the full 2-year period will be attrib-
uted to District B.

We assess the extent to which two different mobility-
based adjustments to the gap-year model improve its perfor-
mance. First, we drop students from the gap-year model who 
were not enrolled in the same district (or school) in period 
t−1 and t—that is, in 2018 and 2019 in our dataset. These 
students only attended the contemporary district (or school) 
for one of the two years over which gap-year growth is esti-
mated, meaning that their full-period growth is partly 

TABLE 2
Summary Statistics for Students, Schools, and Districts in the Analytic Sample

School/student/district information M SD

Student information
 Standardized math score 0.02 0.99
 Standardized ELA score 0.02 0.99
 Asian 0.02 0.14
 Black 0.16 0.36
 Hispanic 0.07 0.25
 White 0.71 0.45
 Multiple and other race/ethnicity 0.04 0.20
 Female 0.49 0.50
 Eligible for free/reduced-price lunch 0.52 0.50
 English language learner 0.05 0.22
 Individualized education program 0.13 0.34
 Mobile student 0.04 0.20
School information
 Urban 0.18 0.38
 Suburban 0.24 0.43
 Rural/town 0.59 0.49
 Enrollment 357 217
District information
 Enrollment (all) 1603 3194
 Average number of schools (all) 4.2 6.1
 Enrollment (large district subsample) 6321 5333
 Average number of schools (large district subsample) 12.4 11.0
N (student years, 2017–2019) 972,877  
N (unique schools, 2017–2019) 1,730  
N (unique districts, 2017–2019) 557  

Note. These summary statistics are based on the analytic sample of students in Grades 4–8 in 2016–2017, 2017–2018, and 2018–2019 who have lagged 
test scores and attend districts and schools with at least 10 test takers. Urbanicity information is taken from the 2018–2019 Common Core of Data. The 
large-district subsample is selected to include the 100 districts in Missouri with the largest populations of test-takers included in the gap-year model. Other 
size-based selection criteria produce a similar sample; we chose this criterion to isolate districts in Missouri with the largest samples relevant for our primary 
analysis. ELA = English language arts.
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misattributed using the convention of assigning growth to 
the contemporary location. In the second mobility modifica-
tion, we retain mobile students in the gap-year dataset but 
assign 50% weight to the districts (or schools) attended in 
2018 and 2019, respectively.14

The results in Rows 4 and 5 of each panel of Table 3 show 
the correlations after making the mobility adjustments to the 
gap-year models. The correlations otherwise maintain the 
baseline evaluation conditions, so the effects of the mobility 
adjustments can be inferred by comparing the results with 
the results in Row 1. For districts, neither mobility adjust-
ment results in an improvement in the performance of the 
gap-year model. In fact, the adjustment where we drop 
mobile students altogether (weakly) reduces the ability of 
the gap-year model to recover the full-data growth estimates. 
The reason is that the lost data reduces efficiency, offsetting 
any (very modest) gains owing to the reduced misattribution 
of mobile students’ growth.

For schools, the strategy of dropping the data for movers 
also performs (weakly) worse for the same reason. However, 
the 50-50 weighting strategy modestly improves estimation 
accuracy in the gap-year model. A reason why the results 
differ between districts and schools—albeit only slightly—
is that there are many more school than district movers dur-
ing the gap year.15

In the online Supplemental Appendix Table A3, we repli-
cate the analyses in Table 3 for the subsample of the 100 
largest districts in Missouri, noting that these findings will 
be more generalizable to “large district” states. The findings 

are substantively similar to our results for all districts in 
Table 3, although the baseline correlations are higher owing 
to the larger sample sizes.

In summary, Table 3 shows that cohort misalignment is 
the single largest observable factor that drives down the 
baseline correlations between the gap-year and full-data 
growth estimates. In the school-level models, differences in 
how the full-data and gap-year models attribute growth for 
mobile students is also a small contributing factor. We are 
left to conclude that the remaining discrepancies arise from 
data and modeling variance.16 Again, this variance stems 
from the fact that we model growth from t − 2 to t − 1 and 
from t − 1 to t in the full-data models, and directly from t−-2 
to t in the gap-year models. Individual students’ t − 1 and t 
− 2 test scores are different (data variability), and the model 
coefficients on the t − 1 and t − 2 test scores are different, 
which in turn can affect other coefficients in the models 
(modeling variability). As unit-level (district or school) sam-
ple sizes become large, the effect of the data variability 
shrinks, but the effect of modeling variability does not.

Finally, in Table 4, we briefly show results from our sup-
plementary comparison of the gap-year growth estimates to 
growth during only the most recent year—from 2018 to 
2019. The reporting in Table 4 follows the same structure in 
Table 3, although we omit the mobility-adjusted estimates 
for brevity. The correlations in Table 4 are uniformly lower 
than in Table 3, with average declines in the district- and 
school-level analyses across models and subjects of 0.09 and 
0.07 correlation points, respectively. The lower correlations 

TABLE 3
Correlations Between Gap-Year and Full-Data Growth Model Output Using Different Models and Different Data and Estimation 
Conditions

Models

Math ELA

Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5

District models
 Baseline 0.91 0.91 0.90 0.90 0.90 0.88 0.88 0.88 0.89 0.90
 Same cohorts 0.95 0.95 0.95 0.95 0.96 0.94 0.94 0.94 0.94 0.96
 Same students 0.96 0.96 0.95 0.96 0.96 0.95 0.95 0.95 0.95 0.97
 Mobility adjustment 1  

(to baseline): omit movers
0.90 0.90 0.89 0.89 0.90 0.87 0.87 0.87 0.87 0.89

 Mobility adjustment 2 (to 
baseline): 50-50 mover credit

0.90 0.90 0.90 0.90 0.91 0.88 0.88 0.88 0.88 0.90

School models
 Baseline 0.88 0.87 0.87 0.87 0.85 0.86 0.85 0.85 0.84 0.84
 Same cohorts 0.91 0.92 0.91 0.92 0.90 0.89 0.89 0.89 0.89 0.89
 Same students 0.91 0.92 0.91 0.92 0.90 0.89 0.89 0.89 0.89 0.90
 Mobility adjustment 1  

(to baseline): omit movers
0.88 0.86 0.87 0.85 0.84 0.86 0.83 0.86 0.83 0.83

 Mobility adjustment 2  
(to baseline): 50-50 mover credit

0.89 0.87 0.88 0.86 0.87 0.87 0.85 0.87 0.84 0.85

Note. Each cell shows a correlation coefficient between growth measures using the gap-year and full-data scenarios. ELA = English language arts.
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are unsurprising because in addition to the above-docu-
mented comparability issues, there is also misalignment 
between the periods over which growth is measured. The 
correlations in Table 4 that decline the most are for Model 5, 
which is the most comprehensive model. An explanation is 
that Model 5 includes the richest control-variable set (and 
perhaps is overcontrolled, per Parsons et al., 2019), which 
limits the scope for correlated bias in the growth estimates 
covering the different (albeit overlapping) time spans.

Factors That Predict Changes in Growth Rankings Induced 
by the Gap Year

Next, we assess whether observable district and school 
characteristics predict ranking changes between the gap-
year and full-data models under the baseline estimation con-
ditions. Tables 5 and 6 show results from regressions where 
the dependent variable is the difference in growth rankings 
between the gap-year and full-data models—that is, we esti-
mate each model separately, assign districts and schools per-
centile ranks based on the growth estimates, and subtract the 
full-data percentile from the gap-year percentile. The inde-
pendent variables are district and school characteristics 
including the 2017 same-subject achievement level, the 
number of test takers, and student shares by race-ethnicity, 
gender, FRL, English as a second language, participation in 
an IEP, and student mobility (in particular, the share of tested 
students who experienced a midyear school move). All the 
independent variables are standardized to have a mean of 
zero and a variance of one—within the district or school dis-
tribution depending on the level of analysis—which allows 
the coefficients to be interpreted in (common) standard devi-
ation units throughout.

We begin by focusing on the R2 values, which give a sum-
mary indication of the predictive power of observable char-
acteristics over gap-year-induced changes to growth 

rankings. For the growth estimates from Models 1 to 4, the 
R2 values indicate that a nonnegligible fraction of the vari-
ance in ranking changes can be explained by observable dis-
trict and school characteristics— about 14% to 25% for 
districts and 10% to 16% percent for schools. Alternatively, 
in Model 5, our fullest specification, observable district and 
school characteristics explain much less of the variance in 
ranking changes—about 4% to 5% for districts and 1% to 
4% for schools.

The primary predictor of the rank changes in all models 
and subjects is the 2017 achievement level. The consistently 
negative coefficients on that variable using the estimates 
from Models 1–4 indicate that higher achieving districts and 
schools are adversely affected in growth rankings by the 
presence of the gap year, compared with the full-data analog. 
The magnitudes of the relationships are moderate, with a one 
standard deviation increase in the 2017 achievement level 
corresponding to a ranking reduction of about 5 to 8 percen-
tile points. Noting that achievement levels can be viewed as 
indicators of socioeconomic advantage, it also bears men-
tioning that the coefficients on some of the other control 
variables in the multivariate regressions temper the relation-
ship between socioeconomic advantage and lower rankings, 
on net.17 Still, on the whole, the lagged test-score coefficient 
dominates all of these, and the end result is that moving from 
the full data condition to the gap-year data condition in 
Models 1 to 4 systematically lowers estimated growth for 
socioeconomically advantaged districts and schools.18

A theoretical explanation for the findings from Models 
1–4 is provided in the online Supplemental Appendix B. 
The appendix shows that the findings are consistent with 
the presence of modest omitted variables bias in the under-
specified growth models. This bias is fully compounded in 
the consecutive single-year estimates used in the full-data 
scenario but partially attenuated in the gap-year estimates. 
The bias explanation is consistent (conceptually and 

TABLE 4
Correlations Between Gap-Year Growth Model Output and Growth Model Output Using Data From Just the Most Recent Year (2018 to 
2019 in Our Simulations) Using Different Models and Data

Models

Math ELA

Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5

District models
 Baseline 0.86 0.85 0.86 0.86 0.76 0.80 0.80 0.81 0.81 0.77
 Same cohorts 0.88 0.87 0.89 0.89 0.80 0.82 0.81 0.83 0.83 0.79
 Same students 0.89 0.88 0.90 0.89 0.80 0.81 0.81 0.83 0.83 0.78
School models
 Baseline 0.86 0.84 0.86 0.84 0.77 0.82 0.79 0.82 0.79 0.74
 Same cohorts 0.87 0.84 0.88 0.86 0.80 0.80 0.76 0.81 0.78 0.74
 Same students 0.87 0.85 0.88 0.86 0.80 0.80 0.76 0.81 0.78 0.74

Note. Each cell shows a correlation coefficient between growth measures using the gap-year data and data from the 2018 to 2019 school years only.  
ELA = English language arts.
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TABLE 5
Observable Predictors of Changes to District Growth Rankings (in Percentiles) Due to the Gap Year in Testing

Predictors

Math ELA

Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5

Period t − 2 test-score 
level (same subject)

−7.76* 
(0.75)

−7.52* 
(0.76)

−8.30* 
(0.81)

−8.06* 
(0.81)

2.36* 
(0.79)

−5.83* 
(0.82)

−5.41* 
(0.83)

−7.09* 
(0.84)

−6.74* 
(0.83)

2.02* 
(0.77)

Period t − 2 percent 
Asian

−0.18 
(0.68)

−0.17 
(0.68)

−0.13 
(0.60)

−0.07 
(0.59)

0.17 
(0.81)

−0.53 
(0.75)

−0.46 
(0.78)

−0.32 
(0.85)

−0.21 
(0.85)

0.61 
(0.77)

Period t − 2 percent 
Black

−1.37* 
(0.61)

−1.37* 
(0.61)

−2.23* 
(0.71)

−2.35* 
(0.70)

−0.57 
(0.63)

−1.21* 
(0.61)

−1.19* 
(0.60)

−2.22* 
(0.63)

−2.15* 
(0.63)

0.06 
(0.65)

Period t − 2 percent 
Hispanic

−0.68 
(1.41)

−0.73 
(1.46)

−1.04 
(1.42)

−0.86 
(1.48)

−0.58 
(1.54)

−2.03 
(1.38)

−2.08 
(1.40)

−2.38 
(1.39)

−2.32 
(1.37)

−0.68 
(1.37)

Period t−2 percent 
other race

0.55 
(0.61)

0.47 
(0.61)

0.16 
(0.63)

0.12 
(0.63)

0.55 
(0.70)

−0.50 
(0.80)

−0.48 
(0.81)

−0.47 
(0.81)

−0.39 
(0.80)

0.08 
(0.76)

Period t − 2 percent 
female

−0.71 
(0.61)

−0.67 
(0.62)

−1.22* 
(0.65)

−1.21 
(0.65)

−1.77* 
(0.76)

−0.01 
(0.77)

0.05 
(0.76)

0.18 
(0.71)

0.19 
(0.70)

−0.42 
(0.72)

Period t−2 percent 
FRL

−1.65* 
(0.80)

−1.75* 
(0.81)

−2.73* 
(0.88)

−2.99* 
(0.88)

1.07 
(0.88)

−0.21 
(0.85)

−0.28 
(0.85)

−1.82* 
(0.86)

−2.31* 
(0.85)

0.18 
(0.81)

Period t − 2 percent 
ESL

1.12 
(1.40)

1.02 
(1.45)

1.13 
(1.43)

0.84 
(1.49)

0.94 
(1.67)

1.92 
(1.47)

1.93 
(1.50)

1.39 
(1.47)

1.41 
(1.45)

1.16 
(1.39)

Period t − 2 percent 
IEP

−1.23* 
(0.49)

−1.15* 
(0.50)

−2.42* 
(0.65)

−2.33* 
(0.66)

0.46 
(0.71)

−1.19* 
(0.52)

−1.07* 
(0.52)

−2.01* 
(0.54)

−1.90* 
(0.54)

0.66 
(0.63)

Period t − 2 percent 
mobile

−1.80* 
(0.65)

−1.75* 
(0.66)

−1.63* 
(0.71)

−1.65* 
(0.72)

0.80 
(0.69)

−0.47 
(0.72)

−0.38 
(0.73)

−0.39 
(0.72)

−0.37 
(0.72)

1.93* 
(0.68)

Number of test takers −0.14 
(0.47)

−0.09 
(0.48)

0.03 
(0.48)

0.02 
(0.47)

−0.14 
(0.47)

−1.37* 
(0.47)

−1.43* 
(0.47)

−1.46* 
(0.54)

−1.42* 
(0.55)

−0.93 
(0.50)

R2 0.247 0.229 0.242 0.233 0.054 0.160 0.140 0.176 0.158 0.039
N 540 540 540 540 540 540 540 540 540 540

Note. The dependent variable in these regressions is each district’s percentile ranking in the distribution of growth estimates using the gap-year data minus 
the percentile ranking using the full data. All variables are in standard deviations of the district distribution in period (t−2), which is 2017. FRL = free or 
reduced-price lunch; IEP = individualized education program; ELA = English language arts; ESL = English as a second language.
*Indicates statistical significance at the 5% level or higher.

directionally) with the bias documented in underspecified 
VAMs in Parsons et al. (2019) and implies that the gap-
year estimates are less biased than their full-data counter-
parts. We caution that this does not mean that the gap-year 
estimates from the underspecified models are preferred 
because they have other limitations, most notably in terms 
of coverage and sample sizes.19

The finding that changes to the growth rankings based on 
Model 5 are not meaningfully explained by observable dis-
trict and school characteristics, combined with the deriva-
tions in the online Appendix B, is consistent with that model 
producing the least-biased growth estimates. However, the 
evidence is not conclusive because Model 5 has the potential 
to overcorrect for student and school circumstances. Previous 
research suggests that overcorrection bias in fully controlled 
2-step models, like Model 5, is more problematic in theory 
than in practice, but it is beyond the scope of the present 
article to delve into these details further. We refer interested 
readers to Ehlert et al. (2016) and Parsons et al. (2019) for 
more information.

Extension (2-Year Gap)

In this section, we briefly consider the prospects for 
estimating growth for schools and districts if there is a 
2-year test gap. In our data, we simulate this situation by 
adding a year to the front end of our data panel and further 
censoring the data to remove the 2017 test. In this sce-
nario, our view is that school-level growth metrics cannot 
be feasibly estimated. This is because most schools would 
not have any students who take both the pre- and postgap 
tests in the same building, which would require schools to 
cover four consecutive grades in the tested span (Grades 
3–8). For example, third-grade students in a K–5 school in 
the pregap year would be sixth graders in a new school 
after a 2-year gap.20 Complex and assumptive models 
could theoretically recover estimates of test-score growth 
for individual schools even in the absence of “fully con-
tained” cohorts to anchor the estimates, but without con-
siderable validity testing, we do not view this as a 
promising strategy.
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Alternatively, district-level growth estimates with a 
2-year gap can be feasibly estimated because most districts 
span four consecutive grades in the 3 to 8 range. Students 
transitioning across schools, as long as they stay in the 
same district, are not problematic for estimating test-score 
growth at the district level. Still, the extra year of missing 
data does present challenges, even for estimating district 
growth. The biggest challenge is that growth can be esti-
mated for even fewer cohorts. Specifically, students in 
Grades 3, 4, and 5 in the pregap year are the only students 
for whom an endpoint score would be available after a 
2-year gap. Given that a lack of cohort overlap is a key 
driver of discrepancies in district growth estimates with 
and without a single gap year, a prediction is that with a 
2-year test gap the discrepancies will be larger.

In the online Supplemental Appendix Table A4, we par-
tially replicate the analysis in Table 3 for districts using 
the 2-year gap scenario. Consistent with our expectation, 
the gap-year growth estimates from 2016–2019 are less 
correlated with estimates based on the full data (in this 

case, 3 years of summed, single-year estimates). The base-
line correlations in the online Supplemental Appendix 
Table A4 range from 0.78–0.84, compared with 0.88–0.91 
in the case of a 1-year test gap in Table 3. The correlations 
are still large and positive, but they also indicate a larger 
degradation of information relative to the full-data case. 
Like in our analysis of the single-year gap, cohort align-
ment greatly improves agreement in the output between 
the gap-year and full-data conditions in online Appendix 
Table A4, although the correlations are lower across the 
board with a 2-year gap.

Discussion: Connecting Our Findings to the COVID-19 
Pandemic Period

The motivation for our study is the COVID-induced gap 
year in testing, but we abstract from the many complications 
associated with the pandemic in our analysis. This is useful 
for isolating the impact of a gap year in testing on the techni-
cal efficacy of growth modeling but does not fully answer 

TABLE 6
Observable Predictors of Changes to School Growth Rankings (in Percentiles) Due to the Gap Year in Testing

Predictors

Math ELA

Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5

Period t − 2 test-score level 
(same subject)

−7.00* 
(0.580)

−7.20* 
(0.589)

−7.14* 
(0.582)

−7.54* 
(0.610)

3.26* 
(0.652)

−6.69* 
(0.67)

−5.91* 
(0.70)

−7.11* 
(0.69)

−6.44* 
(0.72)

1.46* 
(0.73)

Period t − 2 percent Asian 1.17* 
(0.547)

0.52 
(0.546)

1.21* 
(0.544)

0.88 
(0.562)

0.77 
(0.619)

1.74* 
(0.57)

1.12 
(0.58)

1.62* 
(0.57)

1.23* 
(0.59)

0.48 
(0.62)

Period t − 2 percent Black 5.66* 
(2.685)

0.07 
(2.776)

5.65* 
(2.696)

1.23 
(2.840)

2.88 
(3.163)

8.25* 
(2.79)

5.17 
(3.12)

8.46* 
(2.79)

5.64 
(3.11)

2.27 
(3.15)

Period t − 2 percent Hispanic 3.66* 
(1.257)

1.74 
(1.296)

3.71* 
(1.267)

2.48 
(1.331)

1.75 
(1.504)

4.35* 
(1.37)

2.55 
(1.45)

4.58* 
(1.39)

2.70 
(1.46)

1.81 
(1.45)

Period t − 2 percent other race 9.07* 
(2.884)

1.71 
(2.985)

9.46* 
(2.889)

3.82 
(3.047)

3.68 
(3.403)

12.57* 
(3.02)

8.11* 
(3.37)

12.97* 
(3.01)

8.99* 
(3.35)

2.86 
(3.39)

Period t − 2 percent female −0.53 
(0.413)

−0.60 
(0.400)

−0.68 
(0.418)

−0.82* 
(0.412)

−0.80 
(0.478)

0.08 
(0.44)

−0.02 
(0.47)

−0.25 
(0.44)

−0.27 
(0.47)

−0.53 
(0.49)

Period t − 2 percent FRL −0.72 
(0.518)

−1.10* 
(0.533)

−1.02 
(0.533)

−1.93* 
(0.561)

2.89* 
(0.616)

0.61 
(0.61)

0.78 
(0.66)

0.33 
(0.63)

−0.59 
(0.68)

1.29 
(0.69)

Period t − 2 percent ESL −1.40 
(0.756)

−1.27 
(0.769)

−1.53* 
(0.765)

−1.62* 
(0.785)

−0.59 
(0.982)

−1.65 
(0.93)

−0.78 
(0.88)

−2.33* 
(0.98)

−1.39 
(0.93)

−1.11 
(0.91)

Period t − 2 percent IEP −1.80* 
(0.423)

−1.67* 
(0.427)

−2.08* 
(0.417)

−2.09* 
(0.425)

0.55 
(0.491)

−1.82* 
(0.45)

−1.75* 
(0.45)

−2.55* 
(0.43)

−2.68* 
(0.46)

−0.20 
(0.51)

Period t − 2 percent mobile −1.37* 
(0.390)

−1.40* 
(0.470)

−1.06* 
(0.442)

−0.88 
(0.560)

1.70* 
(0.654)

−0.81 
(0.47)

−0.40 
(0.48)

−0.50 
(0.54)

0.11 
(0.55)

1.60* 
(0.60)

Number of test takers 2.67* 
(0.292)

−0.10 
(0.306)

2.91* 
(0.295)

0.05 
(0.311)

0.53 
(0.365)

2.90* 
(0.32)

−0.17 
(0.35)

3.03* 
(0.32)

−0.14 
(0.35)

0.42 
(0.37)

R2 0.149 0.128 0.152 0.119 0.037 0.141 0.100 0.159 0.097 0.013
N 1,527 1,527 1,527 1,527 1,527 1,527 1,527 1,527 1,527 1,527

Note. The dependent variable in these regressions is each school’s percentile ranking in the distribution of growth estimates using the gap-year data minus 
the percentile ranking using the full data. All variables are in standard deviations of the school distribution in period (t−2), which is 2017. FRL = free or 
reduced-price lunch; IEP = individualized education program; ESL = English as a second language; ELA = English language arts.
*Indicates statistical significance at the 5% level or higher.
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the question of how precisely our findings contribute to 
addressing the larger challenge of estimating test-score 
growth during the pandemic period. The most succinct 
description of how we view our findings in this regard is as 
follows: We provide evidence on a necessary condition for 
estimating useful growth metrics during the pandemic, but 
sufficient conditions are much broader.

The remaining conditions for sufficiency depend on the 
objective of using growth. One objective is for diagnostic 
assessment without the need for attribution—for example, 
for state officials to assess heterogeneity in achievement 
growth during the pandemic across a state. The other objec-
tive is for attribution—for example, in a research applica-
tion, this might involve using differences in growth across 
schools or districts during the pandemic to assess the impact 
of a particular intervention or condition; in policy, the typi-
cal use of “attributed” growth metrics is for accountability. 
Growth measures for diagnostic purposes require weaker 
sufficient conditions for effective use than growth measures 
for attribution.

For diagnostic use, the additional requirement of growth 
metrics beyond their accuracy in the presence of a gap year 
is that test coverage is appropriately accounted for. Unlike 
in a typical pre-COVID-19 testing year, it is almost surely 
the case that there will be more students with missing test 
scores in 2021. Differences in who is tested can be expected 
to vary by students’ prior achievement, and SES more 
broadly, and test coverage will also likely differ across dis-
tricts and schools within and across states independent of 
these characteristics. Practitioners and researchers inter-
ested in understanding where achievement growth has been 
highest and lowest during the pandemic period will need to 
make adjustments to account for uneven test coverage in 
spring 2021 in order to avoid biased inference due to sam-
ple selection. A related issue is that students will likely take 
2021 tests in more than one mode (e.g., online and in-per-
son). Work will need to be done in order to assess the ability 
to gain inference about growth for students who take tests in 
different modes, ideally in a way that facilitates cross-mode 
comparability.

Growth measures to be used for attribution require all of 
the above, plus a way to account for nonschool factors that 
may have influenced student achievement during the pan-
demic. Examples of such factors include regional variation 
in access to high-speed internet, the severity of the pan-
demic, and local government responses to the pandemic. 
Researchers may ultimately decide that the task of recover-
ing attributable growth measures during the pandemic period 
is infeasible. Policy sentiment is certainly leaning that direc-
tion as of our writing this article (e.g., as indicated by a letter 
to Chief State School Officers from the U.S. Department of 
Education in February of 2021), but a rigorous assessment of 
the conditions required for attribution and whether they are 
satisfied is beyond the scope of our work.

Conclusion

We assess the potential for recovering accurate estimates 
of test-score growth for schools and districts in the presence 
of a gap year in test data. Our primary analysis is based on a 
3-year data panel of student test scores, in which we simu-
late a gap year in testing by censoring the middle year. We 
compare estimates of test-score growth spanning the gap 
year with estimates that use all the data over the same time 
span. We observe the latter because our analysis is based on 
a simulated, rather than real, gap year in testing.

The fact that we conduct our analysis using data prior to 
COVID-19 is useful because it allows us to understand the 
technical consequences of estimating growth with a gap year 
in the absence of other disruptions. Across a range of models 
that are broadly representative of those used in research and 
policy applications, we show that gap-year growth estimates 
for districts and schools are highly correlated with estimates 
that would be obtained in a full-data condition if the gap year 
did not occur. For districts, correlations between gap-year 
and full-data growth estimates across models and subjects in 
Missouri are on the order of 0.90 (and as high as 0.95 for a 
subset of large districts), and analogous correlations for 
schools are in the range of 0.84 to 0.88. These findings indi-
cate that gap-year growth estimates are not meaningfully 
confounded by statistical issues attributable to the gap year 
itself and lend credence to their use as measures of student 
learning absent other complications.

All the growth models we consider perform similarly in 
the presence of the gap year along most dimensions. The 
one exception is in the extent to which growth-ranking 
changes caused by the gap year are systematically related 
to observable district and school characteristics. In all but 
our richest specification—a two-step growth model with 
extensive controls—changes to growth rankings caused by 
the gap year are at least modestly correlated with district 
and school characteristics. We show that this can be 
explained by the presence of greater omitted variables bias 
in the sparsely specified models, which the gap-year mod-
els attenuate to some degree.

In a brief extension, we consider the potential for estimat-
ing test-score growth with a 2-year gap in testing. We con-
clude that it is infeasible to produce growth metrics for most 
schools covering grades in the typical testing window (i.e., 
Grades 3–8). However, district-level metrics can still be esti-
mated. The district metrics are less reliable compared with 
the full-data condition owing to the larger gap period, but 
they still contain useful information about test-score growth.

Our findings have the clearest applicability when there is 
a gap year in testing but no other disruptions to the school 
system. The experience of Tennessee in 2015–2016—when 
test delivery issues resulted in the cancellation of statewide 
testing in Grades 3 to 8 during an otherwise normal school 
year (Tatter, 2016)—is a recent example. Test gaps under 
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otherwise normal circumstances may also be more common 
in the future if federal testing requirements change.

With regard to the contemporary motivation for our 
work—the COVID-induced gap year in testing—our analy-
sis is best viewed as providing evidence on a necessary (but 
not sufficient) condition for producing useful growth mea-
sures during the pandemic period. For the use of growth for 
diagnostic work, the primary additional challenge will be 
dealing with attrition from the testing sample and variability 
in the testing mode in 2021. For evaluative work in which 
attributable growth measures are desired—whether in 
research applications or for accountability purposes—a fur-
ther challenge will be to separate school and nonschool 
impacts of the pandemic. Our work provides a jumping off 
point for real-time research to address these outstanding 
challenges as data from spring tests become available.
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Notes

1. A companion policy report documents our high-level findings 
(Fazlul et al., 2021)—this article expands on these findings and 
provides technical details for researchers interested in estimating 
test-score growth with a gap year.

2. As a part of their accountability plans under the Every 
Student Succeeds Act, 47 states plus Washington, DC, indicate 
using some form of growth measure for elementary and middle 
schools. For high schools, 20 states indicate using student growth 
measures for accountability (source: Education Commission of 
the States, retrieved on 12.21.2020 at http://ecs.force.com/mbdata/
mbQuest5E?rep=SA172). However, in a letter to Chief State School 
Officers in February 2021, the U.S. Department of Education offers 
great flexibility to states with respect to assessment, accountability, 
and reporting for the 2021 school year. Several states have recently 
indicated that testing will occur in spring 2021 but without account-
ability (e.g., Missouri and Texas).

3. The Data Quality Campaign (2019) lists the following 
as growth models in use in states’ Every Student Succeeds Act 
accountability plans: SGPs (23 states), value table (12 states), 
VAMs (nine states), and gainscore models (three states). Value-
added models and SGPs are discussed in detail in the text (see 
below); value tables and gainscore models are essentially coarse 
VAMs with less desirable properties—see Koedel et al. (2015). A 
final notable approach is SAS’s EVAAS, which is a semipropri-
etary growth model administered by the SAS Institute—Vosters 
et al. (2018) find a high level of agreement between SAS’s uni-
variate response model and linear growth models along the lines of 
what we estimate here.

4. Under normal schooling circumstances and data condi-
tions studied in the United States, there is research support for 
such attribution. Most directly for schools, see Deming, 2014; a 
larger literature at the teacher level is also generally supportive 
about the prospects for attribution from value-added models—for 
example, see Bacher-Hicks et al. (2014), Chetty et al. (2014), and 
Kane et al. (2013).

5. We require a same-subject lagged test score of all students for 
inclusion in each subject-specific model (i.e., math or ELA). We 
include students who are missing the lagged off-subject test score 
(but have the lagged same-subject score) in the models by imputing 
the missing score to the mean and adding an indicator variable to 
the vector Yimt_1  that takes a value of one if the score is missing and 
zero otherwise. Finally, we add an interaction between the missing 
indicator for the off-subject lagged test score and the same-subject 
lagged score, which improves estimation efficiency by allowing the 
model to rely more heavily on same-subject lagged performance in 
order to predict current performance for students who are missing 
the off-subject lagged score.

6. Interested readers can find other discussions of the techni-
cal and policy trade-offs of the various models in the following 
articles, among others: Goldhaber et al. (2014); Guarino, Maxfield, 
et al. (2015); Guarino, Reckase, et al. (2015); Kane et al. (2013); 
and Koedel et al. (2015). Most of these articles focus on estimating 
growth at the teacher level, although the general insights apply to 
other levels of growth modeling as well.

7. We estimate λs  as the square of the standard error of the 
growth coefficient for school s. Note that for the estimates from the 
2-step models, we use the standard errors from the second step in 
these calculations. This is a simplification because it ignores esti-
mation error in the first step. In omitted results, we confirm that the 
practical implications of this simplification are ignorable by com-
paring this approach with a comprehensive approach in which we 
bootstrap the entire two-step procedure to account for estimation 
error in both the first and second steps.

8. SGPs condition only on lagged performance in the same sub-
ject, whereas our models use lagged performance in two subjects. 
However, SGPs also use multiple years of lagged scores for stu-
dents who have them. This discrepancy between the approaches 
does not yield a clear prediction with regard to how the estimates 
will be affected differently by a gap year, but again, available evi-
dence suggests any implications are likely modest—most notably, 
Goldhaber et al. (2014) report that SGPs estimated using one ver-
sus multiple prior test scores produce very similar results.

9. Annual technical documentation from the test publisher 
sometimes notes one or two grade-subject combinations where 
the test reliability drops into the high .8X range, but for the most 
part, the test reliabilities are at or greater than .90 (e.g., see Data 
Recognition Corporation, 2019).

10. For example, at the student level, the predictive value of 
prior achievement as the testing regime changes is stable.

11. As an example of imperfect cohort overlap, note that stu-
dents in seventh grade in 2017 and ninth grade in 2019 will be 
part of the analysis in the full data scenario but not in the gap-year 
scenario. This is because in 2019 when test data are again available, 
the student will be outside the tested grade span. Imperfect student 
overlap within cohorts can also occur—e.g., a fourth grader in 2017 
could miss her test in that year but take the tests in the fifth and 
sixth grades in 2018 and 2019, in which case she would be partly 
included in the full data scenario but not the gap-year scenario.

www.caldercenter.org/about-calder
http://ecs.force.com/mbdata/mbQuest5E?rep=SA172
http://ecs.force.com/mbdata/mbQuest5E?rep=SA172
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12. About 1% to 2% of Missouri districts and schools are 
excluded for this reason (and fewer than 0.10% of students).

13. The SAS Institute (n.d.) reports correlations for growth esti-
mates for districts and schools from its proprietary TVAAS multi-
variate response model with and without a gap year. SAS reports 
much higher correlations at both levels (0.99), purportedly using 
a similar research design. We were surprised by this result, and in 
subsequent correspondence with SAS researchers, we learned that 
the correlations they report are not analogous to the correlations we 
report here. Our interpretation is that the analysis reported on by the 
SAS Institute (n.d.) is not directly informative about the accuracy of 
gap-year growth estimates relative to the full-data counterfactual.

14. We use the 2018 test data to assign students to districts and 
schools in 2018. With a true gap year, test data would be unavail-
able, but this could be achieved using enrollment records instead.

15. A factor that drives higher school mobility, in addition to the 
fact that school catchment areas are smaller than district catchment 
areas, is that there are many more “structural” school movers. A 
structural school move is a move that occurs because a school’s 
grade span has ended, for example, due to a transition from elemen-
tary to middle school.

16. We also shrink each estimate separately in the full-data 
model, and this has the potential to generate small differences 
between conditions because the gap-year output is only shrunken 
once. However, in results omitted for brevity, we verify that our 
findings are nearly identical without shrinkage, ruling out this pro-
cedural difference as a driver of divergent results between models.

17. As an example, take Model 1 in Table 5 for math. Negative 
ranking changes in that model due to the gap year are also asso-
ciated with higher percentages of underrepresented minority stu-
dents, FRL-eligible students, IEP students, and geographically 
mobile students.

18. To assess the net effect more directly, we also estimate ver-
sions of the models shown in Tables 5 and 6 that only include a 
single covariate: the lagged aggregate test score. The influence of 
student demographics correlated with test scores that work in the 
opposite direction are absorbed by the coefficient on the lagged 
aggregate test score in these models, and as a result, its magnitude 
is about 20% smaller in these supplementary regressions than what 
we show in Tables 5 and 6. These results are omitted for brevity but 
available on request.

19. In the interest of scientific transparency, we did not antici-
pate the finding that observable characteristics would systemati-
cally predict ranking changes caused by the gap year in any of the 
models ex ante, and the theoretical explanation provided in the 
online Supplemental Appendix B was developed ex post.

20. The only somewhat common grade configuration in the 3 to 
8 range that meets this criterion is K–6; K–5, 6–8, and 7–8 schools, 
among other configurations, fall short. Using the Common Core 
of Data from 2018–2019, we estimate that just 27% of students 
enrolled in Grades 3 to 8 in a U.S. public school attend a school 
with four consecutive grades in the 3 to 8 range.
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