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Abstract

Wollack et al. (2015) suggested the erasure detection index (EDI) for detecting frau-
dulent erasures for individual examinees. Wollack and Eckerly (2017) and Sinharay
(2018) extended the index of Wollack et al. (2015) to suggest three EDIs for detect-
ing fraudulent erasures at the aggregate or group level. This article follows up on the
research of Wollack and Eckerly (2017) and Sinharay (2018) and suggests a new
aggregate-level EDI by incorporating the empirical best linear unbiased predictor from
the literature of linear mixed-effects models (e.g., McCulloch et al., 2008). A simula-
tion study shows that the new EDI has larger power than the indices of Wollack and
Eckerly (2017) and Sinharay (2018). In addition, the new index has satisfactory Type I
error rates. A real data example is also included.
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Test administrators are increasingly concerned about fraudulent erasures or ‘‘test

tampering,’’ which is a major type of test fraud (e.g., Wollack & Schoenig, 2018).
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The educator cheating scandal in Atlanta public schools in 2009 (e.g., Maynes, 2013;

Wollack et al., 2015) demonstrated the severity of teacher/administrator tampering

and sent a signal that the U.S. states should actively detect test tampering.

Consequently, the Standard 8.11 of the Standards for Educational and Psychological

Testing (American Educational Research Association, American Psychological

Association, & National Council for Measurement in Education, 2014) includes the

recommendation that testing programs may use technologies such as computer analy-

ses of erasure patterns in the answer sheets to detect possible irregularities. Erasure

analysis is regularly performed for several state tests (e.g., McClintock, 2015)—the

analysis mostly involves the flagging of schools with an unexpectedly large number

of erasures.

Wollack et al. (2015) suggested the erasure detection index (EDI) for detecting

fraudulent erasures for individual examinees. Wollack and Eckerly (2017) and

Sinharay (2018) extended the index of Wollack et al. (2015) to suggest three EDIs

that can be used to perform erasure analysis at an aggregate or group level, where

the groups could refer to the classes, schools, or districts that the examinees belong

to. The main goal of this article is to continue the research of Wollack and Eckerly

(2017) and Sinharay (2018) and to propose a new EDI for performing erasure analy-

sis at an aggregate level using the theory of linear mixed-effects models (LMMs;

e.g., McCulloch et al., 2008). It is demonstrated that the new EDI has larger power

than the indices of Wollack and Eckerly (2017) and Sinharay (2018). In addition, the

new EDI is shown to have satisfactory Type I error rates in all simulation conditions.

The next section includes reviews of the EDIs that were suggested by Wollack

et al. (2015), Wollack and Eckerly (2017), and Sinharay (2018) to detect fraudulent

erasures. The new EDI, which is based on the theory of LMMs, is introduced in the

Method section. In the Simulations section, the Type I error rates and power of the

new EDI are compared with those of the existing EDIs. The new EDI is applied to a

real data in the Real Data section. Conclusions and extensions are provided in the

last section.

Background

Let us consider a test that comprises only dichotomous items whose parameters are

assumed to be known and are equal to the estimates computed from a previous cali-

bration using an item response theory (IRT) model. Let us consider the case when

the examinees belong to G groups. In most applications of erasure analysis, the

groups correspond to the classes or schools or school districts that the examinees

belong to. The number of examinees with at least one erasure in group g is denoted

as ng, g = 1, 2, . . . , G. The total number of examinees with at least one erasure across

all the groups is denoted by n ( =
PG

g = 1 ng).1 The erasures could be fraudulent era-

sures or benign (where benign means ‘‘not fraudulent’’) erasures and could have

been produced by the examinees and/or educators. Let Egk denote the set of items on

which erasures were found for examinee k in group g. For convenience, ‘‘examinee
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k in group g’’ is henceforth used to denote the kth examinee among those with at

least one erasure in group g. Thus, the examinees with no erasures contribute only to

the item-parameter estimation and are ignored in the erasure analysis. Let Ec
gk denote

the set of items on which no erasures were found for examinee k in group g. The sets

Egk and Ec
gk are nonoverlapping and their union is the set of all items administered to

examinee k in group g.

Let Xgk denote the raw score of examinee k in group g on the items in Egk . The

score Xgk is also referred as the wrong-to-right (WTR) score (e.g., Wollack et al.,

2015). Let mgk and sgk , respectively, denote the expectation and standard deviation

of Xgk given the true ability parameter (ugk) of the corresponding examinee. The abil-

ity ugk is unknown and is estimated from the responses on the nonerased items, that

is, items in Ec
gk (Sinharay, 2018; Wollack et al., 2015). The estimates of mgk and sgk

are denoted as m̂gk and ŝgk , respectively, and are obtained by replacing ugk by its

estimate ûgk (typically, the maximum likelihood estimate or weighted likelihood esti-

mate of Warm, 1989, is used as an estimate of the true ability) in the expressions of

mgk and sgk as

m̂gk = Ê(Xgk) =
X
i2Egk

Pi(ûgk),

ŝgk =
ffiffiffiffiffiffiffi
ŝ2

gk

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar(Xgk)

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2Egk

Pi(ûgk)(1� Pi(ûgk)),

s
ð1Þ

where Pi(ûgk) is the estimated probability of a correct answer on item i by examinee

k in group g. The terms Pi(ûgk) are determined by the underlying IRT model. For

example, if the three-parameter logistic model (3PLM) is used in the analysis, Pi(ûgk)

would be given by

Pi(ûgk) = ĉi + (1� ĉi)
eâi(ûgk�b̂i)

1 + eâi(ûgk�b̂i),

where âi, b̂i, and ĉi, respectively, are the estimated slope, difficulty, and guessing

parameters of item i. Wollack et al. (2015), Wollack and Eckerly (2017), and

Sinharay (2018) used the nominal response model (Bock, 1972) as the IRT model,

but noted that other IRT models such as the 3PLM can be used to compute the EDIs

as well.

The individual-level EDI (Wollack et al., 2015) for examinee k in group g is

defined as

EDIInd =
Xgk � m̂gk � 0:5

ŝgk

:

A large positive value of EDIInd indicates potentially fraudulent erasures for exami-

nee k in group g.
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Wollack and Eckerly (2017) extended the individual-level EDI to define the

aggregate-level EDI, or, EDIg , for detecting fraudulent erasures at an aggregate level,

as

EDIg =

P
k = 1

ng

(Xgk � m̂gk)� 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k = 1

ng

ŝ2
gk

s , g = 1, . . . , G: ð2Þ

The groups could refer to the classes, schools, or districts that the examinees belong

to. Wollack and Eckerly (2017) assumed that EDIg approximately follows the stan-

dard normal distribution under the null hypothesis of no fraudulent erasures. The null

hypothesis is rejected and group g is flagged for potentially fraudulent erasures if

EDIg is a large positive number.

Sinharay (2018) suggested two modified versions of EDIg. The first modified ver-

sion, EDIN
g , is defined as

EDIN
g =

P
k = 1

ng

(Xgk � m̂gk)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k = 1

ng

ŝ2
gk

s , g = 1, . . . , G: ð3Þ

The second modified version, EDIA
g , is defined as

EDIA
g =

P
k = 1

ng

Xgk � m̂gk

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k = 1

ng dVar Xgk � m̂gk

� �s , g = 1, . . . , G, ð4Þ

where dVarðXgk � m̂gkÞ = ŝ2
gk + dVar ûgk

� � P
i2Egk

P0i ûgk

� �" #2

, and P0i ûgk

� �
is the deriva-

tive of Pi(ûgk). Sinharay (2018) proved, using theoretical derivations and simulations,

that both EDIN
g and EDIA

g approximately follow the standard normal distribution

under the null hypothesis of no fraudulent erasures for group g. Sinharay (2018)

found that the power of EDIA
g was either equal to or 0.01 less than that of EDIN

g up

to two decimal places in all the simulation cases, and that the power of either of

EDIA
g or EDIN

g was slightly larger, occasionally by up to 0.05, than that of EDIg .

Equations (2) to (4) show that the numerators of EDIg, EDIN
g , and EDIA

g include

the quantity
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X
k = 1

ng

ðXgk � m̂gkÞ=
X
k = 1

ng

Xgk � ngm̂g =
X
k = 1

ng

ðXgk � m̂gÞ,

where

m̂g =
1

ng

X
k = 1

ng

m̂gk :

The quantity m̂g is the estimator of 1
ng

P
k = 1

ng

mgk = �mg, the average expected WTR score

for group g. When ng is small, the estimator m̂g may have a large standard error, and

consequently, EDIg, EDIN
g , and EDIA

g , which are estimates themselves,2 may be far,

on average, from the population quantities they intend to estimate, and may have

poor Type I error rates and power. In fact, Sinharay (2018) found the Type I error

rates of all the aggregate-level EDIs to be considerably smaller than the nominal

level for small schools (e.g., those of EDIA
g were smaller than 0.007 at nominal level

of 0.01 for schools with 15 students). He also found the power of EDIA
g to be consid-

erably smaller for small schools than for larger schools. Consequently, an extension

of EDIg , EDIN
g , and EDIA

g that involves a more accurate estimate (compared with

m̂g) of 1
ng

Png

k = 1 mgk may have better Type I error rates and power compared with

EDIg, EDIN
g , and EDIA

g , at least for small schools. We used theory from LMMs (e.g.,

McCulloch et al., 2008) to suggest such an extension.

Method

In this section, we discuss the derivation of a new index, which is a modified version

of EDIg, for detecting fraudulent erasures at an aggregate level. The new index is

based on the theory of LMMs (e.g., McCulloch et al., 2008). Appendix A includes a

discussion of the theory of LMMs that is relevant to this article.

The Model

To apply the theory of LMMs to aggregate-level erasure analysis, we express m̂gk as

m̂gk = m + bg + egk = mg + egk , k = 1, . . . , ng, g = 1, . . . , G, ð5Þ

where m is the expected mean WTR score for the whole population, bg is the random

effect for group g,

mg = m + bg,
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and egk is the random error of examinee k in group g. Equation (5) looks like a typi-

cal representation of an LMM. For example, the equation is equivalent to Equation

(2.15) of McCulloch et al. (2008). It is assumed in Equation (5) that bg and egk are

independent, bg ;
iid

N 0, s2
b

� �
, egk ;

iid
N 0, Var(egk) = s2

ewgk

� �
, s2

b and s2
e are unknown

variance components, and the wgk’s are known scalar quantities. Since the m̂gk’s may

depend on the individual ability estimates ûgk’s, the Var(egk)’s in the above LMM

may depend on the ûgk’s and hence can be unequal over the examinees. Furthermore,

if the estimated variance of ûgk , dVar ûgk

� �
, is larger, then the extent of uncertainty is

larger in estimating m̂gk . Therefore, we set the wgk’s equal to dVar ûgk

� �
3 so that

Var(egk) is proportional to dVar ûgk

� �
. The model provided in Equation (5) is the same

as that provided in Equation (A2) in Appendix A, with m̂gk in Equation (5) playing

the role of ygk in Equation (A2).

Denoting bm to be the n31 vector that comprises the m̂gk’s of all the examinees

with erasures over all the groups, Equation (5) can be expressed using matrix nota-

tion as

m̂ = m1n + Ub + e, ð6Þ

where 1n is an n31 vector of 1s, U is an n3G known matrix indicating the group

memberships of the examinees and is given by

U =

1n1
0n1

..

.
0n1

0n2
1n2

..

.
0n2

..

. ..
. . .

. ..
.

0nG
. . . . . . 1nG

0BBBBB@

1CCCCCA, ð7Þ

where, for example, 0n1
is an n131 vector of zeroes, b = (b1, b2, :::, bG)0 is a G31

vector of random effects corresponding to the groups, and e is an n31 vector that

comprises all the egk’s. The above equations imply that b;MVN(0, s2
bIG) and

e;MVN(0, s2
eW ), where MVN denotes the multivariate normal distribution and W

is an n3n diagonal matrix comprising the wgk’s. The vectors b and e are independent

of each other.

The Best Linear Unbiased Predictor and Empirical Best Linear Unbiased
Predictor

Equation (6) is just like Equation (A3) of Appendix A, which provides the classic

matrix formulation of the LMM, with m̂ in Equation (6) playing the same role as that

of y in Equation (A3). Therefore, the theory of LMMs that is discussed in Appendix

A is directly applicable to the model provided by Equations (5) and (6) and the best

linear unbiased predictor (BLUP) of mg can be obtained using Equation (A4) of

Appendix A. Simplifications4 of the expression provided in Equation (A4) lead to

the following expression of the BLUP:
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m̂BLUP
g s2

b, s2
e

� �
= êm + ggð êmg � êmÞ= 1� gg

� � êm + gg
êmg, g = 1, . . . , G, ð8Þ

where

gg =
s2

b

s2
b + s2

e

P
k = 1

ng

w�1
gk

� ��1
,

êm =
10diag(s2

bJ ng
+ s2

eW ng
)
�1

m̂

10diag(s2
bJng

+ s2
eW ng

)
�1

1
,

êmg =

P
k = 1

ng

w�1
gk m̂gkP

k = 1

ng

w�1
gk

,

diag(s2
bJng

+ s2
eW ng

) is a block diagonal matrix of order n3n with blocks

s2
bJng

+ s2
eW ng

, Jng
is a matrix of order ng3ng with all elements being 1, and W ng

is

an ng3ng diagonal matrix of the wgk’s for group g, êmg is a weighted average of

m̂gk’s over group g.

The right-hand side of Equation (8) is a weighted sum of êmg, which is the esti-

mated mean WTR score for group g, and êm, which is the estimated overall mean

WTR score across all groups. If s2
eð
Png

k = 1 w�1
gk Þ
�1

in gg is relatively large (that can

happen, e.g., if s2
e is large or ng is small or wgk’s are large), then gg will be small

and more weight in the BLUP will be given to the estimated overall mean êm. If, on

the other hand, s2
b is relatively large, then more weight in the BLUP will be given to

the group-specific mean êmg.

Equation (8) can be used to compute the BLUP when the variance components s2
b

and s2
e are known, but they are unknown for a real data set and have to be estimated.

The variances s2
b and s2

e can be estimated using the restricted maximum likelihood

(REML) method (e.g., McCulloch et al., 2008) under the model in Equation (5). By

replacing s2
b and s2

e by their REML estimates in Equation (8), one obtains what is

referred to as the empirical best linear unbiased predictor (EBLUP; e.g., Agresti,

2015; Harville, 1991) of mg as

m̂EBLUP
g = m̂EBLUP

g ŝ2
b, ŝ2

e

� �
= ð1� ĝREML

g Þm̂REML + ĝg
REML êmg, ð9Þ

where m̂REML and ĝg
REML are obtained by replacing s2

e and s2
b, respectively, by their

corresponding REML estimates (ŝ2
b and ŝ2

e ), in êm and gg, respectively. Note that

the computation of m̂EBLUP
g (that corresponds to group g) in Equation (9) involves the

borrowing of information from the other groups in the sample. Prasad and Rao

(1990) pointed out that the estimator m̂EBLUP
g is essentially identical to the empirical

Bayes estimator (that involves borrowing of information; Ghosh & Meeden, 1986)
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of mg, and has a smaller mean square error (MSE) compared with êmg(i.e., the simpler

estimate of mg), especially when ng is small (Ghosh & Meeden, 1986). Note that

empirical Bayes estimators have been found to be more accurate compared with tra-

ditional (frequentist) estimators in various contexts in educational measurement

including validity studies and survival analysis (e.g., Braun, 1989) and differential

item functioning (Zwick et al., 1999). Therefore, the EBLUP defined in Equation (9)

is anticipated to perform well in aggregate-level erasure analysis. Thus, the EBLUP

represents the more accurate estimate of 1
ng

Png

k = 1 mgk that we sought toward the end

of the previous section of this article.

To estimate dVar m̂EBLUP
g

� �
, which is the variance of m̂EBLUP

g , we applied the boot-

strap method (e.g., Efron, 1981) as discussed in González-Manteiga et al. (2008).

The Index EDIEBLUP
g

After computing m̂EBLUP
g and dVar m̂EBLUP

g

� �
as described above, the new aggregate-

level EDI, denoted by EDIEBLUP
g , is defined as

EDIEBLUP
g =

P
k = 1

ng

Xgk � m̂EBLUP
g

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k = 1

ng dVar Xgk � m̂EBLUP
g

� �s

=

P
k = 1

ng

Xgk � m̂EBLUP
g

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k = 1

ng P
i2Egk

Pi(ûgk)(1� Pi(ûgk)) + ng
dVar(m̂EBLUP

g )

s ð10Þ

because dVar Xgk � m̂EBLUP
g

� �
= dVar Xgk

� �
+ dVar m̂EBLUP

g

� �
due to the independence of

Xgk and m̂EBLUP
g given ugk and dVar Xgk

� �
=
P

i2Egk

Pi ûgk

� �
1� Pi ûgk

� �� �
. Note that the

numerator of EDIEBLUP
g is different from that of EDIN

g and EDIA
g only in the use of

m̂EBLUP
g instead of m̂gk . The denominator of EDIEBLUP

g is larger than that of EDIN
g ,

but could be smaller or larger than that of EDIA
g depending on the magnitude ofdVar m̂EBLUP

g

� �
. The R code (e.g., R Core Team, 2020) for computing EDIEBLUP

g using

the R package sae (Molina & Marhuenda, 2015) as well as the existing EDIs for all

schools for a data set is provided in Appendix B. Note that m̂EBLUP
g or EDIEBLUP

g can-

not be computed for a group in which erasures were found for all or none of the

examinees. For groups without any erasures, erasure analysis cannot be performed

and no EDIs can be computed. For groups in which all examinees made erasures, it
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is possible to use one of the existing EDIs even if a decision has been taken to

employ EDIEBLUP
g for the corresponding test.

Simulation Study

A simulation study was performed to compare the Type I error rates and the power of

the new index (EDIEBLUP
g ) with those of EDIg, EDIN

g , and EDIA
g .

Design of the Simulation

In the simulation study, we artificially created several data sets that look like those

originating from a test with erasures, starting from a real test data set with actual

scores on 46 dichotomous items of 2,710 examinees who belonged to a total of 29

schools. The number of examinees in the schools ranged between 6 and 305, with

the average number being about 93.

The following three factors were varied in the simulations:

� The number of tampered schools, that is, schools in which tampering (or frau-

dulent erasures) took place (NTamp: 0 or 6)
� The percentage of erasure victims in a tampered school (PercVictim: 5, 10, or

20)
� The number of fraudulent erasures per erasure victim (Nerasure: 3, 5, or 10)

When NTamp = 0, there are no tampered schools and no erasure victims. When

NTamp = 6, the other two factors (PercVictim and Nerasure) are fully crossed. Thus,

there are a total of 10 simulation conditions (one for NTamp = 0 and nine for NTamp

= 6). For each of the nine simulation conditions with NTamp = 6, where a simulation

condition is characterized by a specific combination of PercVictim and Nerasure, the

following steps were performed to create the artificial data:

� Randomly sample six schools from the 29 schools and assign them as the

‘‘tampered’’ schools. The 23 schools that are not tampered are referred as the

‘‘untampered’’ schools.
� Draw a random sample of examinees (of size 5%, 10%, or 20%, depending on

the value of PercVictim) from each of the six tampered schools. The exami-

nees in these samples play the role of the erasure victims. The remaining

examinees are nonvictims. Then,

1. For each victim, artificially create fraudulent erasures by sampling

Nerasure (that is equal to 3, 5, or 10) items from all the items that the

victim answered incorrectly and changing the scores of those items

from 0 to 1. If the number of items with incorrect answers is smaller

than Nerasure for a victim, then change the scores of all of them to 1.

Also, for each victim, randomly select two items (that do not overlap
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with the Nerasure items) and mark them as those with benign erasures,

but do not change their scores. Such a strategy was used to simulate

benign erasures in Sinharay et al. (2017).

2. Randomly sample 95% of the nonvictim examinees in the school. For

each sampled examinee, randomly sample two items and mark them

as those with benign erasures, but do not change the scores on those

items. The remaining 5% nonvictims are assumed to not produce any

erasures.
� All the examinees in the 23 untampered schools are nonvictims. For such

schools, sample 95% of the examinees to have two benign erasures, sample

the items that have benign erasures for these examinees, and assume that the

remaining 5% examinees do not produce any erasures.

For the simulation condition with NTamp = 0, all schools are untampered; so for this

condition, for each school, 95% of the examinees are sampled to have two benign

erasures and the remaining 5% examinees are assumed to not produce any erasures.

Computations

For each simulation condition, using the resulting artificial data (that not only includes

many of the item scores from the original data set but also includes some changed

item scores, and the erasure indicators for each examinee–item combination), we com-

puted the ûgk’s, which are the weighted likelihood estimates (e.g., Warm, 1989) of the

examinee ability parameters, and the dVar ûgk

� �
’s using the R package irtoys (Partchev

et al., 2017). The estimated item parameters from the original data set were used in

this computation.5 The 3PLM was used as the IRT model in all calculations. Then,

EDIg, EDIN
g , and EDIA

g were computed for each school using Equations (2) to (4) and

EDIEBLUP
g was computed for each school using the following steps:

� Compute
P
k = 1

ng

Xgk , the sum of the observed WTR scores, for each school.

� Compute
P
k = 1

ng P
i2Egk

Pi ûgk

� �
1� Pi ûgk

� �� �
, the sum of the estimated variance of

the observed WTR scores, for each school.
� Compute the estimated expected WTR score for examinee k in school g as

m̂gk =
P

i2Egk

Pi ûgk

� �
� Set wgk equal to dVar ûgk

� �
for k = 1, . . . , ng, g = 1, . . . , 29.

� Use the R package sae (Molina & Marhuenda, 2015) and the wgk’s to fit the

LMM given by Equation (5) and compute m̂EBLUP
g given by Equation (9) anddVar m̂EBLUP

g

� �
for each school using the bootstrap method.
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� Compute EDIEBLUP
g using Equation (10) for all schools using m̂EBLUP

g anddVar m̂EBLUP
g

� �
computed in the previous step.

We replicated the above steps 1,000 times for each of the 10 simulation conditions.

Then, we used the output of the simulation to compute the Type I error rates and

power of EDIg, EDIN
g , EDIA

g , and EDIEBLUP
g .

Results

Distribution of the Indices Under the Null Hypothesis

Figure 1 shows the histogram of the distribution of the values of EDIEBLUP
g for all the

schools for the simulation condition with NTamp = 0, a condition that is associated

with no fraudulent erasures, and hence the distribution of EDIEBLUP
g should be close

to the standard normal distribution. The standard normal distribution is shown in the

figure using a solid line for comparison. It seems that the empirical distribution of

EDIEBLUP
g under no fraudulent erasures is close to the standard normal distribution,

which is a favorable property of EDIEBLUP
g .

Figure 1. The histogram of the distribution of EDIEBLUP
g for NTamp = 0.

Peng and Sinharay 187



Results on Type I Error Rates

Table 1 shows the Type I error rates at the .05, .01 and .001 levels of significance for

the four indices, EDIg, EDIN
g , EDIA

g , and EDIEBLUP
g . The Type I error rates of the

existing EDIs are somewhat smaller than the nominal level, while those of EDIEBLUP
g

are close to the nominal levels. Though the Type I error rates of EDIEBLUP
g are slightly

larger than the nominal level, they are satisfactory in all cases according to Cochran’s

criterion for robustness (Cochran, 1952) that deems Type I error rates smaller than

.06, .015, and .0015 to be satisfactory at levels .05, .01, and .001, respectively.

Results on Power

Table 2 shows the values of power of EDIg, EDIN
g , EDIA

g , and EDIEBLUP
g at signifi-

cance levels of .05, .01 and .001, averaged over all the levels of the two simulation

factors PercVictim and Nerasure for NTamp = 6. The values of the average power

for EDIEBLUP
g are the largest for each significance level while those for EDIg are the

smallest for any significance level.

Figure 2 shows the power of EDIg , EDIN
g , EDIA

g , and EDIEBLUP
g for different val-

ues of Nerasure and PercVictim for NTamp = 6 at the .05 level (the comparative per-

formance of the indices is similar for levels .01 and .001—so plots for these levels

are not shown). Each panel of the figure shows the power (along the Y-axis) for the

three values of PercVictim (X-axis) for each index for a significance level. The three

Table 1. The Average Type I Error Rates of the Indices.

Index a = :05 a = :01 a = :001

EDIg .0262 .0053 .00028

EDINg .0352 .0068 .00034

EDIAg .0325 .0061 .00034

EDIEBLUP
g

.0541 .0103 .00110

Table 2. The Average Power of the Indices.

Index a = :05 a = :01 a = :001

EDIg .660 .538 .419

EDINg .682 .556 .432

EDIAg .668 .536 .408

EDIEBLUP
g

.719 .591 .465
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line types correspond to the three values of Nerasure (3, 5, and 10). The values of

power for EDIg , EDIN
g , EDIA

g , and EDIEBLUP
g are, respectively, denoted by circle, tri-

angle, plus, and multiplication symbols. The figure shows that the power of

EDIEBLUP
g is larger than those of all the other indices across all the simulation condi-

tions. In addition, the difference in power of EDIEBLUP
g and the other indices

increases as the number of erasures decreases—this result implies that EDIEBLUP
g

would allow investigators to detect fraudulent schools or districts even when the

number of fraudulent erasures is small on average.

We studied the comparative performance of the indices using a simulation design

similar to the one above starting from two other data sets that include larger numbers

of examinees. The results in these additional simulations (not shown here and can be

obtained on request from the authors), especially those regarding EDIEBLUP
g being

more powerful compared with the other indices especially for small schools, were

very similar.

Application to Real Data

We analyzed a data set that includes the responses of 19,107 fifth-grade students to

53 dichotomous items on a state mathematics test—the data set is a subset of the K-

12 education data set described in Cizek and Wollack (2017). The students belonged

to 820 schools in 446 districts. The data providers did not reveal if there were any

fraudulent erasures on the test. Erasures were captured through a scanning process

Figure 2. Power of the indices for different simulation conditions at the .05 level.
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by looking for ‘‘light marks’’ (Cizek & Wollack, 2017, p. 15). On average, the num-

ber of erasures per examinee is two (i.e., 3.7% of all the items on the test), which is

about twice that of what is typically found in similar assessments (see, e.g., Wollack

et al., 2015). Since the LMM does not work for schools or districts in which all or

none of the examinees have erasures,6 those schools or districts were used to esti-

mate the item parameters and then removed from the data, which left 573 schools

and 346 districts in our sample. The 3PL model was used as the IRT model. The four

EDIs were computed for the 573 schools and 346 districts in the data set.

The left and right panels of Figure 3 show plots of EDIN
g (along the X-axis) versus

EDIEBLUP
g (along the Y-axis) for the districts and schools, respectively.7 For conveni-

ence, the panels of the figure include vertical and horizontal dashed lines at the 95th

percentile point (1.64) of the standard normal distribution and vertical and horizontal

dotted lines at the 99th percentile point (2.33) of the standard normal distribution.

Figure 3 shows that EDIEBLUP
g is different from EDIN

g for quite a few districts and

schools and these differences will often lead to EDIEBLUP
g being statistically signifi-

cant even though EDIN
g is statistically nonsignificant or vice versa. Table 3 shows

the number of schools and districts for which EDIEBLUP
g , EDIN

g , and EDIA
g are statis-

tically significant at levels of .05 and .01.

Table 3 shows that the use of EDIEBLUP
g instead of EDIN

g or EDIA
g will lead to dif-

ferent numbers of schools and districts being flagged for potentially fraudulent

Figure 3. Values of the new and existing EDIs for schools and districts.
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erasures at both significance levels. The difference between EDIEBLUP
g and the exist-

ing indices is larger for districts than for schools. For example, while EDIN
g and

EDIA
g are significant for seven districts, EDIEBLUP

g is significant for 12 districts at the

level of .01. Because it is unknown which schools or districts are truly guilty of frau-

dulent erasures, it is difficult to comment with certainty on whether the correct deci-

sion was made from EDIEBLUP
g or the existing EDIs for the schools/districts for

which one of these is significant and the others are not. But Table 3 indicates, like

Figure 3, that the conclusion on whether to flag for fraudulent erasures will differ in

general between EDIEBLUP
g and any of the existing indices for quite a few schools/

districts. Thus, the use of EDIEBLUP
g could lead to practically different conclusions

for several schools/districts in an investigation of test fraud. Also, the satisfactory

Type I error rate of EDIEBLUP
g (see Table 1) and the larger power of the index com-

pared with the existing indices (see Table 2) make us confident that the correct deci-

sion for real data would be made more often by EDIEBLUP
g .

Conclusions

We followed up on the research of Wollack et al. (2015), Wollack and Eckerly

(2017), and Sinharay (2018), and suggested a new index, EDIEBLUP
g , for the detection

of fraudulent erasures at the aggregate level. The derivation of the new index is

based on the theory of linear mixed-effects models. The Type I error rates of the

new index are close to the nominal level and the new index is more powerful than

the indices of Wollack and Eckerly (2017) and Sinharay (2018) in all the simulation

conditions that we considered.

Fraudulent erasures or test tampering is a major problem that is faced by test

administrators (e.g., Wollack & Schoenig, 2018). For a large state with many schools,

a difference in power of only a couple of percentages may lead to many more detec-

tions of fraudulent schools. Thus, the investigator should try to use the most powerful

method that also has satisfactory Type I error rates. If computation is not an issue, the

theoretical and simulation results in this article indicate that EDIEBLUP
g is preferable

compared with the existing indices.

Table 3. The Number of Districts and Schools With Statistically Significant Values of the
Indices.

Level Districts Schools

EDIEBLUP
g EDINg EDIAg EDIEBLUP

g EDINg EDIAg

.05 38 25 20 50 42 40

.01 12 7 7 18 15 14
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Note that our article is not the first to apply LMMs to aggregate-level erasure

analysis. Bishop et al. (2011) suggested the use of three LMMs to detect fraudulent

erasures at the aggregate level. However, Bishop et al. (2011) applied LMMs to

estimate the mean WTR scores of examinee groups and used those estimates to

detect fraudulent erasures. In contrast, we applied LMMs to estimate the expected

WTR scores of examinee groups and used those estimates to compute group-level

EDIs, which are then used to detect fraudulent erasures. In addition, while it is

unclear that Bishop et al. (2011) allowed the error variances to be unequal in their

LMM, we performed our derivations under the assumption of unequal error

variances.

Note that the model used in this article (those provided in Equations 5 and 6) can

also be referred to as a linear random-effects model, which is a special case of the

LMMs, because the only fixed effect in our model is the overall mean m. We refer to

the model as an LMM in our article because the results of, for example, C. R.

Henderson (1975) and Prasad and Rao (1990), which form the basis of the new

index, apply to LMMs.

Erasures usually occur on paper-and-pencil tests and the analysis to detect frau-

dulent erasures for such tests is referred to as erasure analysis (e.g., McClintock,

2015). However, erasures essentially mean answer changes, and computer-based

tests (CBTs) may also suffer from fraudulent answer changes. Foster (2013) noted

that hackers can gain unauthorized access to the scoring system of a CBT and

change lower scores to higher ones. Thus, the indices discussed in this article also

apply to CBTs.

Several extensions on EDIEBLUP
g can be considered in the future. The LMMs are

flexible in incorporating auxiliary variables to predict the dependent variable for a

subpopulation especially when the sample size in that subpopulation is small. So, it

is possible to extend the LMM used in this article by adding auxiliary variables such

as the characteristics of the school, to improve the precision of the prediction of the

expected mean WTR score at school level, which may improve the power of

EDIEBLUP
g further. This extension may be especially beneficial when some schools

have small number of examinees with erasures. We used the REMLs of the variance

components (s2
e and s2

b) of the random effects, but other estimates (e.g., those sug-

gested by Prasad & Rao, 1990) can be used as well. The LMM applied in this article

has random intercepts; however, other LMMs including the random-intercept-and-

slope LMM (e.g., McCulloch et al., 2008) may be used instead. Finally, the metho-

dology presented in this article can be seen as an extension of the individual-level

EDI (Wollack et al., 2015) to the aggregate level using theory from LMMs. It is pos-

sible to perform future research on the extension of other individual-level statistics

for erasure analysis (e.g., those suggested by Sinharay et al., 2017; Sinharay &

Johnson, 2017) and individual-level statistics for detecting other types of test fraud

(e.g., those suggested by Sinharay, 2017; Sinharay & Jensen, 2019; Wollack, 1997)

to the aggregate level using theory from LMMs.
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Appendix A

The Nested-Error Mixed-Effects Model

The General Form of the Linear Mixed-Effects Models

To reduce the estimation error for small samples, LMMs (e.g., McCulloch et al.,

2008) are often used because of their flexibility in effectively combining various

sources of information and explaining different sources of errors (e.g., Jiang &

Lahiri, 2006).

The general LMMs in matrix form are given by

y = X b + U1b1 + � � � + U sbs + e, ðA1Þ

where y is an n31 vector, containing the values of the dependent variable for the

sample, X is a known n3p matrix containing the values of p covariates for the

sampled individuals, b is a p31 vector of coefficients for the fixed effects, U i is a

known n3ti incidence matrix for the i th random effect, bi is a ti31 vector of the i th

random effect, i = 1, . . . , s, e is an n31 vector of random errors. It is assumed that

bi;MVN 0, s2
i I ti

� �
and e;MVN 0, s2

eW n

� �
, where I ti is an identity matrix of order ti

and W n is a known diagonal matrix that consists of the weights of the error variance of

each individual as the diagonal elements. When the weights are equal to 1, W n is an

identity matrix of order n. The quantities bi’s and e are assumed to be independent.

Random-Intercept Linear Mixed Models

Random-intercept linear mixed models (RILMM; e.g., Agresti, 2015; McCulloch

et al., 2008) are special cases of LMMs described in Equation (A1) and are given by

ygk = xgk

0
b + bg + egk , j = 1, . . . , ng, g = 1, . . . , G, ðA2Þ

where ygk is the value of the response variable for individual k in group g, xgk is a

known p31 vector containing the values of p covariates for individual k in group g,

bg is the random effect of group g, and egk is the random error for individual k in

group g. It is assumed that bg ;
iid

N 0, s2
b

� �
. Depending on whether the variances of

random errors are assumed to be equal, egk ;
iid

N 0, s2
e

� �
or egk ;

iid
N 0, s2

ewgk

� �
, where

wgk is the weight of the error variance for individual k in group g, the quantities bg

and egk are assumed to be independent of each other.

The matrix form of the model in Equation (A2) is given by

y = Xb + Ub + e, ðA3Þ

where b;MVN 0, Dð Þ, e;MVN 0, Rð Þ, D = s2
bI t1 , R = s2

eW n, and W n = a diagonal

matrix with wgk’s as its elements. If W n = In, the variances of egk’s are equal.

Equation (A3) implies that Var yð Þ= UDU 0 + R = V : The vectors b and e are assumed

to be independent.
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Best Linear Unbiased Predictors Under Random-Intercept Linear Mixed
Models

Users of an RILMM given by Equation (A3) are often interested in the prediction of

linear combinations of the form

h = k0b + m0b,

where k is an p31 vector and m is a G31 vector. Using a result from C. R.

Henderson (1975), the BLUP of h under the RILMM given by Equation (A3) for the

case of known variance components can be shown to be given by

ĥBLUP s2
b, s2

e

� �
= k0~b + m0DU 0V�1 y� X ~b

� �
, ðA4Þ

where ~b = (X 0V�1X)�1 X 0V�1y
� �

is the generalized least square estimator of b.

Appendix B

R Code to Compute EDIEBLUP
g for a Data Set

library(sae)

library(irtoys)

library(ltm)

pr3PL=function(t,a,b,c){return(c + (1-c)/(1 + exp(a*(b-t))))}#Probability under

the 3PL Model

d13PL=function(t,a,b,c){e=exp(a*(t-b)) return((1-c)*a*e/

((1 + e)*(1 + e)))}#Derivative

#R function to ComputeEDIg , EDIN
g and EDIA

g for a group of examinees

ComputeEDIs=function(scores,erasures,itparm, SchoolInd)

{Nstudents_er=0

EDInumerator=0

EDIdenominator=0

EDIdenominator_A=0

items=1:ncol(scores)

aa=itparm[,1]

bb=itparm[,2]

cc=itparm[,3]

SchoolInds = c()

Mu_gks = c()

Ses = c()

W_sum = 0

Sigma_sum = 0

Nerase_ks = 0

for (k in 1:nrow(scores))

{s=scores[k,]

e=erasures[k,]
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Nerase_k=length(e[e==1])

Nerase_ks=Nerase_ks + Nerase_k

if (Nerase_k\nitem & Nerase_k . 0)

{Nstudents_er=Nstudents_er + 1

W_gk=sum(s[e==1])

ItemE=items[e==1]

ItemNE=items[e==0]

ItemParmNE=as.matrix(itparm[ItemNE,])

NitemNE=nitem-Nerase_k

scoresNE=s[ItemNE]

wl=wle(scoresNE,ItemParmNE) #Compute ability estimate based on nonerased

items

ThetaEst=wl[1]

se=wl[2]

Mu_gk=0

Sigma_gk=0

P_deriv=0

for (i in 1:Nerase_k)

{pr=pr3PL(ThetaEst,aa[ItemE[i]],bb[ItemE[i]],cc[ItemE[i]])

Mu_gk=Mu_gk + pr

Sigma_gk=Sigma_gk + pr*(1-pr)

P_deriv=P_deriv + d13PL(ThetaEst,aa[ItemE[i]],bb[ItemE[i]],cc[ItemE[i]])}

Mu_gks = c(Mu_gks, Mu_gk)

SchoolInds = c(SchoolInds, SchoolInd)

Ses = c(Ses, se)

W_sum = W_sum + W_gk

Sigma_sum = Sigma_sum + Sigma_gk

EDInumerator=EDInumerator + W_gk 2 Mu_gk

EDIdenominator=EDIdenominator + Sigma_gk

EDIdenominator_A=EDIdenominator_A + Sigma_gk + (se^2)*P_deriv*
P_deriv } }

if(Nerase_ks==0 | Nstudents_er==nrow(scores))

{W_sum=c()

Nstudents_er=c()

Sigma_sum=c()

SchoolInds=c()

Mu_gks=c()

Ses=c()}

EDI_g = (EDInumerator-0.5)/sqrt(EDIdenominator)

EDI_N = (EDInumerator)/sqrt(EDIdenominator)

EDI_A = (EDInumerator)/sqrt(EDIdenominator_A)
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return(list(EDI_g = EDI_g,EDI_N = EDI_N,EDI_A = EDI_A, Mu_gks = Mu_gks,

SchoolInds = SchoolInds, W_sum = W_su Sigma_sum = Sigma_sum, Nstudents_er

= Nstudents_er, Nerase_ks=Nerase_ks, Ses=Ses))}

#**********************************************************************

# R function to Compute EDIEBLUP
g for all examinee groups

#**********************************************************************

computeEDI_eblup=function(scores,erasures,itparm,SchoolIDs)

{uSchoolInds =unique(SchoolIDs)

SchoolInds = c()

Mu_gks = c()

N_students = c()

Sigma_sums = c()

W_sums = c()

Ses = c()

Nstudents_er = c()

Nerase_ks = c()

Thetas = c()

Schools_EDIs=NULL

for (i in uSchoolInds)

{ sc=scores[schoolIDs==i,]

er=erasures[schoolIDs==i,]

N = nrow(sc)

results = ComputeEDIs(sc,er,itparm, i)

N_students = c(N_students, N)

EDIs=c(results$EDI_g, results$EDI_N, results$EDI_A)

Mu_gks = c(Mu_gks, results$Mu_gks)

Ses = c(Ses, results$Ses)

SchoolInds = c(SchoolInds, results$SchoolInds)

Nstudents_er = c(Nstudents_er, results$Nstudents_er)

Nerase_ks = c(Nerase_ks, results$Nerase_ks)

W_sums = c(W_sums, results$W_sum)

Sigma_sums = c(Sigma_sums, results$Sigma_sum)

Schools_EDIs =rbind(Schools_EDIs, EDIs)}

invalidschools = uSchoolInds [!uSchoolInds %in%unique(SchoolInds)]

validschools = uSchoolInds [!uSchoolInds %in% invalidschools]

Xmean \- data.frame(validschools)

Popn \- data.frame(validschools, N_students[!uSchoolInds

%in% invalidschools])

ediData_school = data.frame(Mu_gks, SchoolInds)

eblupResults = eblupBHF_uneqlvar(Mu_gks ~ 1, dom=SchoolInds,

meanxpop=matrix(Xmean[,1],ncol = 1), weights=Ses^2, popnsize=Popn,

data=ediData_school)
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mseResults = pbmseBHF(Mu_gks ~ 1, dom=SchoolInds,

meanxpop=matrix(Xmean[,1],ncol = 1), popnsize=Popn, B=50,

data=ediData_school)

EDInumerator_eblup = W_sums 2 Nstudents_er*eblupResults

EDIdenominator_eblup = Sigma_sums + Nstudents_er*(mseResults$mse$mse)

EDI_eblup = EDInumerator_eblup/sqrt(EDIdenominator_eblup)

Output = cbind(uSchoolInds,Schools_EDIs, EDI_eblup)

return(Output)}

# Read the data file that includes the group indicators (1 column), item scores

(I columns, #I=Number of items on the test), and erasure indicators

(I columns)

data=read.csv(‘‘/path/to/the/file.csv’’)

# Read the item parameters from a file

itparm=matrix(scan(‘‘/path/to/the/item_parameter_file.txt’’),ncol = 3,byrow=T)

schoolIDs = data$SchoolIDs #Define the School indicators

scores=data[,grepl(‘‘Score’’,colnames(data))] #Define the item scores

erasures=data[,grepl(‘‘Erasure’’,colnames(data))] #Define the erasure indicators

# Call the R function to compute EDIEBLUP
g for all examinee groups. The output

of the function

# is a matrix with 5 columns—School ID followed by 3 existing EDI’s and the

new EDI

Results = computeEDI_eblup(scores,erasures,itparm,schoolIDs)
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Notes

1. Typically, at least one erasure is found for a large percentage of takers of educational tests.

For example, Liu et al. (2015) found at least one erasure for 98.4% and 95.8% of exami-

nees on GRE Verbal and Quantitative, respectively, in two large samples of GRE test

takers.

2. For example, EDIg is an estimate of

Png

k = 1
Xgk�mgkð Þ�0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPng

k = 1
s2

gk

p .

3. Because ûgk is computed from the nonerased items and the number of nonerased items is

large for almost all examinees, this is a reasonable assumption although future research

could explore setting the wgk’s equal to other values.

4. The simplifications are facilitated by the standard result (see, e.g., H. Henderson & Searle,

1981) regarding the inversion of the matrix A + uv0ð Þ�1
and the observation that in our

case, X, b, k, m, D, U , and V of Equation (A4) are equal to an n3 1 vector of ones, m, 1,

a G31 vector with 1 in position g and 0 in all other positions, s2
bIG , the matrix U given

in Equation (7), and s2
bUU 0 + s2

eW , respectively.

5. The use of the estimated item parameters from the artificial data set does not affect the

comparative performance of the indices.

6. The numbers of schools and districts without any erasures are 53 and 21, respectively. The

numbers of schools and districts where all examinees made erasures are 194 and 79,

respectively.

7. Plots of EDIEBLUP
g versus EDIA

g show similar patterns as Figure 3 and are not included.
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