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Abstract: Raven’s Standard Progressive Matrices (SPM) test and related matrix-based tests are
widely applied measures of cognitive ability. Using Bayesian Item Response Theory (IRT) models,
I reanalyzed data of an SPM short form proposed by Myszkowski and Storme (2018) and, at the same
time, illustrate the application of these models. Results indicate that a three-parameter logistic (3PL)
model is sufficient to describe participants dichotomous responses (correct vs. incorrect) while persons’
ability parameters are quite robust across IRT models of varying complexity. These conclusions are
in line with the original results of Myszkowski and Storme (2018). Using Bayesian as opposed to
frequentist IRT models offered advantages in the estimation of more complex (i.e., 3–4PL) IRT models
and provided more sensible and robust uncertainty estimates.
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1. Introduction

Raven’s Standard Progressive Matrices (SPM) test (Raven 1941) matrix-based tests are widely
applied measures of cognitive ability (e.g., Jensen et al. 1988; Pind et al. 2003). Due to their non-verbal
content, which reduces biases due to language and cultural differences, they are considered one of
the purest measures of fluid intelligence (Myszkowski and Storme 2018). However, a disadvantage of
the original SPM is that its administration takes considerable time as 60 items have to be answered
and time limits are either very loose or not imposed at all (e.g., Pind et al. 2003). Thus, using it as
part of a bigger procedure involving the administration of the SPM as part of a battery of tests and/or
experiments may be problematic. This is not only due to direct time restrictions but also because
participants’ motivation and concentration tends to decline over the course of the complete procedure,
potentially leading to less valid measurements (e.g., Ackerman and Kanfer 2009).

Recently, Myszkowski and Storme (Myszkowski and Storme 2018) proposed a short version
of the original SPM test, called SPM-LS, comprising only the last block of the 12 most complex
SPM items. They evaluated the statistical properties of the SPM-LS using methods of Item Response
Theory (IRT). IRT is widely applied in the human sciences to model persons’ responses on a set of
items measuring one or more latent constructs (for a comprehensive introduction see Embretson
and Reise 2013; Lord 2012; van der Linden and Hambleton 1997). Due to its flexibility compared to
Classical Test Theory (CTT), IRT provides the formal statistical basis for most modern psychological
measurement. The best known IRT models are likely those for binary responses, which predict the
probability of a correct answer depending on item’s properties and the participant’s latent abilities.
As responses on SPM items can be categorized as either right or wrong, I focus on these binary models
in the present paper (although other models for these data are possible as well; see Myszkowski
and Storme 2018). Myszkowski and Storme (Myszkowski and Storme 2018), whose data I sought
to reanalyze, used frequenstist IRT models for inference. In this paper, I apply Bayesian IRT models
instead and investigate potential differences to the original results. In doing so, I hope to improve our

J. Intell. 2020, 8, 5; doi:10.3390/jintelligence8010005 www.mdpi.com/journal/jintelligence

http://www.mdpi.com/journal/jintelligence
http://www.mdpi.com
https://orcid.org/0000-0001-5765-8995
http://dx.doi.org/10.3390/jintelligence8010005
http://www.mdpi.com/journal/jintelligence
https://www.mdpi.com/2079-3200/8/1/5?type=check_update&version=2


J. Intell. 2020, 8, 5 2 of 18

understanding of the robustness of the inference obtainable from the SPM-LS test and to illustrate the
application of Bayesian IRT methods.

2. Bayesian IRT Models

In Bayesian statistics applied to IRT, we aim to estimate the posterior distribution p(θ, ξ|y) of the
person and item parameters (θ and ξ, respectively, which may vary in number depending on the model)
given the data y. We may be either interested in the posterior distribution directly, or in quantities that
can be computed on its basis. The posterior distribution for an IRT model is defined as

p(θ, ξ|y) = p(y|θ, ξ) p(θ, ξ)

p(y)
. (1)

In the above equation, p(y|θ, ξ) is the likelihood, p(θ, ξ) is the prior distribution, and p(y) is the
marginal likelihood. The likelihood p(y|θ, ξ) is the distribution of the data given the parameters and
thus relates the data to the parameters. tThe prior distribution p(θ, ξ) describes the uncertainty in
the person and item parameters before having seen the data. It thus allows explicitly incorporating
prior knowledge into the model and/or helping to identify the model. In practice, we factorize the
joint prior p(θ, ξ) into the product of p(θ) and p(ξ) so that we can specify priors on person and items
parameters independently. I provide more details on likelihoods and priors for Bayesian IRT models
in the next section. The marginal likelihood p(y) serves as a normalizing constant so that the posterior
is an actual probability distribution. Except in the context of specific methods (e.g., Bayes factors),
p(y) is rarely of direct interest.

Obtaining the posterior distribution analytically is only possible in certain cases of carefully chosen
combinations of prior and likelihood, which may considerably limit modelling flexibility but yield
a computational advantage. However, with the increased power of today’s computers, Markov-Chain
Monte-Carlo (MCMC) sampling methods constitute a powerful and feasible alternative to obtaining
posterior distributions for complex models in which the majority of modeling decisions is made based
on theoretical and not computational grounds. Despite all the computing power, these sampling
algorithms are computationally very intensive and thus fitting models using full Bayesian inference is
usually much slower than in point estimation techniques. If using MCMC to fit a Bayesian model turns
out to be infeasible, an alternative is to perform optimization over the posterior distribution to obtain
Maximum A-Posteriori (MAP) estimates, a procedure similar to maximum likelihood estimation just
with additional regularization through priors. MCMC and MAP estimates differ in at least two aspects.
First, MCMC allows obtaining point estimates (e.g., means or medians) from the unidimensional
marginal posteriors of the quantities of interest, which tend to be more stable than MAP estimates
obtained from the multidimensional posterior over all parameters. Second, in contrast to MAP, MCMC
provides a set of random draws from the model parameters’ posterior distribution. After the model
fitting, the posterior distribution of any quantity that is a function of the original parameters can be
obtained by applying the function on a draw by draw basis. As such, the uncertainty in the posterior
distribution naturally propagates to new quantities, a highly desirable property that is difficult to
achieve using point estimates alone.

In the present paper, I apply Bayesian binary IRT models to the SPM-LS data using both MCMC
and MAP estimators. Their results are compared to those obtained by frequentist maximum likelihood
estimation. For a comprehensive introduction to Bayesian IRT modeling see, for example, the works of Fox
(Fox 2010), Levy and Mislevy (Levy and Mislevy 2017), and Rupp, Dey, and Zumbo (Rupp et al. 2004).

2.1. Bayesian IRT Models for Binary Data

In this section, I introduce a set of Bayesian IRT models for binary data and unidimensional person
traits. Suppose that, for each person j (j = 1, . . . , J) and item i (i = 1, . . . , I), we have observed a binary
response yji, which is coded as 1 for a correct answer and 0 otherwise. With binary IRT models, we aim
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to model pji = P(yji = 1), that is, the probability the person j answers item i correctly. In other words,
we assume a Bernoulli distribution for the responses yji with success probability pji:

yji ∼ Bernoulli(pji) (2)

Across all models considered here, we assume that all items measure a single latent person
trait θj. For the present data, we can expect θj to represent something closely related to fluid
intelligence (Myszkowski and Storme 2018). The most complex model I consider in this paper is
the four-parameter logistic (4PL) model and all other simpler models result from this model by fixing
some item parameters to certain values. In recent years, the 4PL model has received much attention in
IRT research due to its flexibility in modeling complex binary response processes (e.g., Culpepper 2016,
2017; Loken and Rulison 2010; Waller and Feuerstahler 2017). Under this model, we express P(yji = 1)
via the equation

P(yji = 1) = γi + (1− γi − ψi)
1

1 + exp(−(βi + αiθj))
. (3)

In the 4PL model, each item has four associated item parameters. The βi parameter describes the
location of the item, that is, how easy or difficult it is in general. In the above formulation of the model,
higher values of βi imply higher success probabilities and hence βi can also be called the “easiness”
parameter. The αi parameter describes how strongly item i is related to the latent person trait θj. We
can call αi “factor loading”, “slope”, or “discrimination” parameter, but care must be taken that none
of these terms is used uniquely and their exact meaning can only be inferred in the context of a specific
model (e.g., see Bürkner 2019 for a somewhat different use of the term “discrimination” in IRT models).
For our purposes, we assume αi to be positive as we expect answering the items correctly implies
higher trait scores than when answering incorrectly. In addition, if we did not fix the sign of αi, we
may run into identification issues as changing the sign of αi could be compensated by changing the
sign of θj without a change in the likelihood.

The γi parameter describes the guessing probability, that is, the probability of any person
answering item i correctly even if they do not know the right answer and thus have to guess.
For obvious reasons, guessing is only relevant if the answer space is reasonably small. In the present
data, participants saw a set of 8 possible answers of which exactly one was considered correct.
Thus, guessing cannot be ruled out and would be equal to γi = 1/8 for each item if all answer
alternatives had a uniform probability to be chosen given that a person guesses. Lastly, the ψi parameter
enables us to model the possibility that a participant makes a mistake even though they know the
right answer, perhaps because of inattention or simply misclicking when selecting the chosen answer.
We may call ψi the “lapse”, “inattention”, or “slipping” parameter. Usually, these terms can be used
interchangeably but, as always, the exact meaning can only be inferred in the context of the specific
model. As the answer format in the present data (i.e., “click on the right answer”) is rather simple and
participants have unlimited time for each item, mistakes due to lapses are unlikely to appear. However,
by including a lapse parameter into our model, we are able to explicitly check whether lapses played
a substantial role in the answers.

We can now simplify the 4PL model in several steps to yield the other less complex models.
The 3PL model results from the 4PL model by additionally fixing the lapse probability to zero,
that is, ψi = 0 for all items. In the next step, we can obtain the 2PL model from the 3PL
model by also fixing the guessing probabilities to zero, that is, γi = 0 for all items. In the last
simplification step, we obtain the 1PL model (also known as Rasch model Rasch 1961) from the
2PL model by assuming the factor loadings to be one, that is, αi = 1 for all items. Even though
didactically I find it most intuitive and helpful to introduce the models from most to least complex,
I recommend the inverse order in applications, that is, starting from the simplest (but still sensible)
model. The reason is that more complex models tend to be more complicated to fit in the sense
that they both take longer (especially when using MCMC estimation) and yield more convergence
problems (e.g., Bürkner 2019; Gelman et al. 2013). If we started by fitting the most complex model and,
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after considerable waiting time, found the model to not have converged, we may have no idea which
of the several model components were causing the problem(s). In contrast, by starting simple and
gradually building towards more complex models, we can make sure that each model component
is reasonably specified and can be reliably estimated before we move further. As a result, when a
problem occurs, we are likely to have much clearer understanding of why/where it occurred and how
to fix it.

With the model likelihood fully specified by Equations (2) and (3) (potentially with some fixed
item parameters), we are, in theory, already able to obtain estimates of person and item parameters via
maximum likelihood (ML) estimation. However, there are multiple potential issues that can get into our
way at this point. First, we simply may not have enough data to obtain sensible parameter estimates.
As a rule of thumb, the more complex a model, the more data we need to obtain the same estimation
precision. Second, there may be components in the model which will not be identified no matter how
much data we add. An example would be binary IRT models from 2PL upwards as (without additional
structure) we cannot identify the scale of both θj and αi at the same time. This is because, due to the
multiplicative relationship, multiplying one of the two by a constant can be adjusted for by dividing
the other by the same constant without changing the likelihood. Third, we need to have software that
is able to do the model fitting for us, unless we want to hand code every estimation algorithm on our
own. Using existing software requires (re)expressing our models in a way the software understands.
I will focus on the last issue first and then address the former two.

2.2. IRT Models as Regression Models

There are a lot of IRT specific software packages available, in particular in the programming
language R (R Core Team 2019), for example, mirt (Chalmers 2012), sirt (Robitzsch 2019), or TAM
(Robitzsch et al. 2019; see Bürkner 2019 for a detailed comparison). In addition to these more specialized
packages, general purpose probabilistic programming languages can be used to specify and fit Bayesian
IRT models, for example, BUGS (Lunn et al. 2009; see also Curtis 2010), JAGS (Plummer 2013; see also
Depaoli et al. 2016; Zhan et al. 2019), or Stan (Carpenter et al. 2017; see also Allison and Au 2018; Luo
and Jiao 2018). In this paper, I use the brms package (Bürkner 2017, 2018), a higher level interface to
Stan, which is not focused specifically on IRT models but more generally on (Bayesian) regression
models. Accordingly, we need to rewrite our IRT models in a form that is understandable for brms or
other packages focussed on regression models.

The first implication of this change of frameworks is that we now think of the data in long format,
with all responses from all participants on all items in the same data column coupled with additional
columns for person and item indicators. That is, yji is now formally written as yn where n is the
observation number ranging from 1 to N = J × I. If we needed to be more explicit we could also
use yjnin to indicate that each observation number n has specific indicators j and i associated with it.
The same goes for item and person parameters. For example, we may write θnj to refer to the ability
parameter of the person j to whom the nth observation belongs.

One key aspect of regression models is that we try to express parameters on an unconstrained
space that spans the whole real line. This allows for using linear (or more generally additive)
predictor terms without having to worry about whether these predictor terms fulfill certain boundaries,
for instance, are positive or within the unit interval [0, 1]. In the considered binary IRT models, we need
to ensure that the factor loadings α are positive and that guessing and lapse parameters, γ and ψ,
respectively, are within [0, 1] as otherwise the interpretation of the latter two as probabilities would
not be sensible. To enforce these parameter boundaries within a regression, we apply (inverse-)link
functions. That is, for α, we use the log-link function (or equivalently the exponential response function)
so that

α = exp(ηα) (4)

where ηαn is unconstrained. Similarly, for γ and ψ, we use the logit-link (or equivalently the logistic
response function) so that
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γ = logistic(ηγ) =
1

1 + exp(−ηγ)
, (5)

ψ = logistic(ηψ) =
1

1 + exp(−ηψ)
(6)

where ηγ and ηψ are unconstrained. The location parameters β are already unbounded and as such do
not need an additional link function so that simply β = ηβ. The same goes for the ability parameters θ.
On the scale of the linear predictors, we can perform the usual regression operations, perhaps most
importantly modeling predictor variables or including multilevel structure. In the present data, we do
not have any additional person or item variables available so there are no such predictors in our models
(but see Bürkner 2019 for examples if you are interested in this option). However, there certainly is
multilevel structure as we have both multiple observations per item and per person, which we seek to
model appropriately, as detailed in the next section.

2.3. Model Priors and Identification

When it comes to the specification of priors on item parameters, we typically distinguish between
non-hierarchical and hierarchical priors (Bürkner 2019; Fox 2010; Levy and Mislevy 2017) with the
former being applied more commonly (e.g., Bürkner 2018; Levy and Mislevy 2017). When applying
non-hierarchical priors, we directly equate the linear predictor η (for any of the item parameter classes)
with item-specific parameters bi, so that

ηn = bin (7)

for each observation n and corresponding item i. Since η is on an unconstrained scale so are the bi
parameters and we can apply location-scale priors such as the normal distribution with mean µ and
standard deviation σ:

bi ∼ normal(µ, σ) (8)

In non-hierarchical priors, we fix µ and σ to sensible values. In general, priors can only be
understood in the context of the model as a whole, which renders general recommendation for prior
specification difficult (Gelman et al. 2017). If we only use our understanding of the scale of the
modeled parameters without any data-specific knowledge, we arrive at weakly-informative prior
distributions. By weakly-informative I mean penalizing a-priori implausible values (e.g., a location
parameter of 1000 on the logit-scale) without affecting the a-priori plausible parameter space too much
(e.g., location parameters within the interval [−3, 3] on the logit-scale). Weakly informative normal
priors are often centered around µ = 0 with σ appropriately chosen so that the prior covers the range
of plausible parameter values but flattens out quickly outside of that space. For more details on priors
for Bayesian IRT models, see the works of Bürkner (Bürkner 2019), Fox (Fox 2010), and Levy and
Mislevy (Levy and Mislevy 2017).

A second class of priors for item parameters are hierarchical priors. For this purpose, we apply the
non-centered parameterization of hierarchical models ( Gelman et al. 2013) as detailed in the following.
We split the linear predictor η (for any of the item parameter classes) into an overall parameter, b,
and an item-specific deviation from the overall parameter, b̃i, so that

ηn = b + b̃in (9)

Without additional constraints, this split is not identified as adding a constant to the overall
parameter can be compensated by subtracting the same constant from all b̃i without changing the
likelihood. In Bayesian multilevel models, we approach this problem by specifying a hierarchical prior
on b̃i via

b̃i ∼ normal(0, σ) (10)
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where σ is the standard deviation parameter over items on the unconstrained scale. Importantly,
not only b̃i but also the hyperparameters b and σ are estimated during the model fitting.

Using the prior distribution from (10), we would assume the item parameters of the same item to
be unrelated but, in practice, it is quite plausible that they are intercorrelated (Bürkner 2019). To account
for such (linear) dependency, we can extend Equation (10) to the multivariate case, so that we can
model the vector b̃i = (b̃βi , b̃αi , b̃γi , b̃ψi ) jointly via a multivariate normal distribution:

b̃i ∼ multinormal(0, σ, Ω) (11)

where σ = (σβ, σα, σγ, σψ) is the vector of standard deviations and Ω is the correlation matrix of the
item parameters (see also Bürkner 2017, 2019; Nalborczyk 2019). To complete the prior specification
for the item parameters, we need to set priors on b and σ. For this purpose, weakly-informative
normal prior on b and half-normal priors on σ are usually fine but other options are possible as well
(see Bürkner 2019 for details).

A decision between hierarchical and non-hierarchical priors is not always easy. If in doubt, one can
try out both kinds of priors and investigate whether they make a relevant difference. Personally, I prefer
hierarchical priors as they imply some data-driven shrinkage due to their scale being learned by the
model on the fly. In addition, they naturally allow item parameters to share information across
parameter classes via the correlation matrix Ω.

With respect to the person parameters, it is most common to apply hierarchical priors of the form

θj ∼ normal(0, σθ) (12)

where, similar as for hierarchical priors on item parameters, σθ is a standard deviation parameter
estimated as part of the model on which we put a weakly-informative prior. To give the reader intuition:
With the overall effects in our model, we model the probability that an average person (with an ability
of zero, thus imagine the ability to be centered) answers an average item (with all item parameters
at their average values which we estimate). The varying effects then give us the deviations from the
average person or item, so that we can “customize” our prediction of the solution probability to more
or less able persons, more or less easy items, more or less discriminatory items, etc.

In 2PL or more complex models, we can also fix σθ to some value (usually 1) as the
scale is completely accounted for by the scale of the factor loadings σα. However, when using
weakly-informative priors on both θ and α as well as on their hyperparameters, estimating σθ actually
poses no problem for model estimation. Importantly, however, we do not include an overall person
parameter θ as done for item parameters in (9) as this would conflict with the overall location parameter
bβ leading to substantial convergence problems in the absence very informative priors. This does
not limit the model’s usefulness as only differences of person parameters are of relevance, not their
absolute values on an (in principal) arbitrary latent scale.

3. Analysis of the SPM-LS Data

The Bayesian IRT models presented above were applied to the SPM data of Myszkowski and
Storme (Myszkowski and Storme 2018). The analyzed data consist of responses from 499 participants
on the 12 most difficult SPM items and are freely available online (https://data.mendeley.com/
datasets/h3yhs5gy3w/1). The data gathering procedure was described in detail by Myszkowski and
Storme (Myszkowski and Storme 2018). Analyses were performed in R (R Core Team 2019) using
brms (Bürkner 2017) and Stan (Carpenter et al. 2017) for model specification and estimation via
MCMC. To investigate potential differences between hierarchical and non-hierarchical priors on the
item parameters, models were estimated for both of these priors. Below, I refer to these approaches
as hierarchical MCMC (MCMC-H) and non-hierarchical MCMC (MCMC-NH). Priors on person
parameters were always hierarchical and weakly informative priors were imposed on the remaining
parameters. All considered models converged well according to sample-agnostic (Vehtari 2019) and
sampler-specific (Betancourt 2017) diagnostics. In the presentation of the results below, I omit details

https://data.mendeley.com/datasets/h3yhs5gy3w/1
https://data.mendeley.com/datasets/h3yhs5gy3w/1
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of prior distributions and auxiliary model fitting arguments. All details and the fully reproducible
analysis are available on GitHub (https://github.com/paul-buerkner/SPM-IRT-models).

In addition to estimating the IRT models using MCMC, I also fitted the models via optimization
as implemented in the mirt package (Chalmers 2012). Here, I considered two options: (1) a fully
frequentist approach maximizing the likelihood under the same settings as in the original analysis of
Myszkowski and Storme (Myszkowski and Storme 2018); and (2) a Bayesian optimization approach
where I imposed the same priors on item parameters as in MCMC-NH. I refer to these two methods
as maximum likelihood (ML) and maximum a-posteriori (MAP), respectively. For models involving
latent variables, such as IRT models, ML or MAP optimization have to be combined with numerical
integration over the latent variables as the mode of the joint distribution of all parameters including
latent variables does not exist in general (e.g., see Bates et al. 2015). Such a combination of optimization
and integration is commonly referred to as expectation-maximization (EM). A thorough discussion on
EM methods is outside the scope of the present paper but the interested reader is referred to the work
of Do and Batzoglou (Do and Batzoglou 2008).

3.1. Model Estimation

For estimation in a multilevel regression framework such as the one of brms, the data need to
be represented in long format. In the SPM-LS data, the relevant variables are the binary response of
the participants (variable response2) coded as either correct (1) or incorrect (0) as well as person and
item identifiers. Following the principal of building models bottom-up, I start with the estimation of
the most simple sensible model, that is, the 1PL model. When both person and item parameters are
modeled hierarchically, the brms formula for the 1PL model can be specified as

formula_1pl <- bf(
formula = response2 ~ 1 + (1 | item) + (1 | person),
family = brmsfamily("bernoulli", link = "logit")
)

To apply non-hierarchical item parameters, we have to use the formula response2 ~ 0 + item
+ (1 | person) instead (see the code on Github for more details). For a thorough introduction and
discussion of the brms formula syntax, see Bürkner (2017, 2018, 2019). As displayed in Figure 1, item
parameter estimates of all methods are very similar for the 1PL model. In addition, their uncertainty
estimates align closely as well. The brms formula for the 2PL model looks as follows:

formula_2pl <- bf(
response2 ~ beta + exp(logalpha) * theta,

nl = TRUE,
theta ~ 0 + (1 | person),
beta ~ 1 + (1 |i| item),
logalpha ~ 1 + (1 |i| item),

family = brmsfamily("bernoulli", link = "logit")
)

When comparing the formulas for the 1PL and 2PL models, we see that the structure has changed
considerably as a result of going from a generalized linear model to a generalized non-linear model
(see Bürkner 2019 for more details). As displayed in Figure 2, item parameter point and uncertainty
estimates of all methods are rather similar for the 2PL model but not as close as for the 1PL model.
In particular, we see that the slope estimates of Items 4 and 5 vary slightly, presumably due to different
amounts of regularization implied by the priors. The brms formula for the 3PL model looks as follows:

https://github.com/paul-buerkner/SPM-IRT-models
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formula_3pl <- bf(
response2 ~ gamma + (1 - gamma) *

inv_logit(beta + exp(logalpha) * theta),
nl = TRUE,

theta ~ 0 + (1 | person),
beta ~ 1 + (1 |i| item),
logalpha ~ 1 + (1 |i| item),
logitgamma ~ 1 + (1 |i| item),

nlf(gamma ~ inv_logit(logitgamma)),
family = brmsfamily("bernoulli", link = "identity"),
)
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Figure 1. Item parameters of the 1PL model. Horizontal lines indicate 95% uncertainty intervals.
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Figure 2. Item parameters of the 2PL model. Horizontal lines indicate 95% uncertainty intervals.
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Note that, in the family argument, we now use link = "identity" instead of link = "logit"
and build the logit link directly into the formula via inv_logit(beta + exp(logalpha) * theta).
This is necessary to correctly include guessing parameters (Bürkner 2019). As displayed in Figure 3,
item parameter estimates of all methods are still quite similar when it comes to locations and slopes of
the 3PL model. However, guessing parameter estimates are quite different: ML obtains point estimates
of 0 for all but three items with uncertainty intervals ranging the whole definition space from 0 to
1. This is caused by an artifact in the computation of the approximate standard errors because point
estimates are located at the boundary of the parameter space at which maximum likelihood theory
does not hold. In contrast, point estimates of guessing parameters as obtained by all regularized
models are close to but not exactly zero for most items and corresponding uncertainty estimates appear
more realistic (i.e., much narrower) than those obtained by pure ML.

On Github, I also report results for the 3PL model with guessing probabilities fixed to 1/8 derived
under the assumptions that, in the case of guessing, all alternatives are equally likely. According to
Figure 3 and model comparisons shown on GitHub, this assumption does not seem to hold for the
present data.

Location Slope Guessing
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MCMC−H
MCMC−NH
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Figure 3. Item parameters of the 3PL model. Horizontal lines indicate 95% uncertainty intervals.

In Figure 4, I display person parameter estimates of the 3PL model. As we can see on the left-hand
side of Figure 4, ML and MCMC-H point estimates align very closely. However, as displayed on the
right-hand side of Figure 4, uncertainty estimates show some deviations, especially for more extreme
point estimates (i.e., particularly good or bad performing participants). The brms formula for the 4PL
model looks as follows:



J. Intell. 2020, 8, 5 10 of 18

formula_4pl <- bf(
response2 ~ gamma + (1 - gamma - psi) *

inv_logit(beta + exp(logalpha) * theta),
nl = TRUE,

theta ~ 0 + (1 | person),
beta ~ 1 + (1 |i| item),
logalpha ~ 1 + (1 |i| item),
logitgamma ~ 1 + (1 |i| item),

nlf(gamma ~ inv_logit(logitgamma)),
logitpsi ~ 1 + (1 |i| item),

nlf(psi ~ inv_logit(logitpsi)),
family = brmsfamily("bernoulli", link = "identity")
)
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Figure 4. Comparison of 3PL person parameters: (Left) scatter plot of point estimates; and (Right)
scatter plot of the associated 95% uncertainty interval widths (UIW).

As displayed in Figure 5, item parameter estimates of the 4PL model differ strongly from each
other for different methods. In particular, ML point estimates were more extreme and no uncertainty
estimates could be obtained due to singularity of the information matrix. It is plausible that the 4PL
model is too difficult to be estimated based on the given data via ML without further regularization.
Moreover, the estimates obtained by MCMC-H and MCMC-NH differ noticeably for some item
parameters in the way that MCMC-NH estimates tend to be more extreme and uncertain as compared
to MCMC-H. This suggests that, for these specifically chosen hierarchical and non-hierarchical priors,
the former imply stronger regularization.

3.2. Model Comparison

Next, I investigate the required model complexity to reasonably describe the SPM data. For this
purpose, I apply Bayesian approximate leave-one-out cross-validation (LOO-CV; ref. Vehtari et al.
2019; Vehtari et al 2017; Vehtari et al. 2018) as a method for model comparison, which is closely related
to information criteria (Vehtari et al 2017). I only focus on the MCMC-H models here. Results for the
MCMC-NH models are similar (see Github for details). As shown in Table 1, 3PL and 4PL models fit
substantially better than the 1PL and 2PL models, while there was little difference between the former
two. Accordingly, in the interest of parsimony, I would tend to prefer the 3PL model if a single model
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needed to be chosen. This coincides with the conclusions of Myszkowski and Storme (Myszkowski
and Storme 2018).

Table 1. Bayesian Model comparison based on the leave-one-out cross-validation.

Model ELPD SE(ELPD) ELPD-Difference SE(ELPD-Difference)

4PL −2544.7 42.6 0.0 0.0
3PL −2547.8 42.8 −3.1 5.1
2PL −2588.7 42.9 −44.0 9.5
1PL −2655.0 43.8 −110.3 15.0

Note. ELPD, expected log posterior density; SE, standard error. Higher ELPD values indicate better model fit.
ELPD differences are in comparison to the 4PL model.
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Figure 5. Item parameters of the 4PL model. Horizontal lines indicate 95% uncertainty intervals.

We can also investigate model fit using Bayesian versions of frequentist item or person fit statistics
such as log-likelihood values (Glas and Meijer 2003). Independently of which statistic T is chosen,
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a Bayesian version of the statistic can be constructed as follows (Glas and Meijer 2003): First, the fit
statistic is computed for the observed responses y. We denote it by T(y, p), where p = p(θ, ξ) is the
model implied response probability defined in Equation (3). As p depends on the model parameters,
the posterior distribution over the parameters implies a posterior distribution over p, which in
turn implies a posterior distribution over T(y, p). Second, the fit statistic is computed for posterior
predicted responses yrep and we denote it by T(yrep, p). Since yrep reflects the (posterior distribution
of) responses that would be predicted if the model was true, T(yrep, p) provides a natural baseline for
T(y, p). Third, by comparing the posterior distributions of T(y, p) and T(yrep, p), we can detect item-
or person-specific model misfit. In Figure 6, we show item-specific log-likelihood differences between
predicted and observed responses for the 1PL model. It is clearly visible that the assumptions of the
1PL model are violated for almost half of the items. In contrast, the corresponding results for the 3PL
model look much more reasonable (see Figure 7).

9 10 11 12

5 6 7 8

1 2 3 4

−25 0 25 50 −75 −50 −25 0 25 −25 0 25 50 −30 0 30 60

−100−75−50−25 0 25 −75 −50 −25 0 25 −40 0 40 −50 −25 0 25

0 40 80 −40 0 40 −40 0 40 −100 −50 0

Log−likelihood difference between predicted and observed responses.

Figure 6. Item-specific posterior distributions of log-likelihood differences between predicted and
observed responses for the 1PL model estimated via MCMC-H. If the majority of the posterior
distribution is above zero, this indicates model misfit for the given item.
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Log−likelihood difference between predicted and observed responses.

Figure 7. Item-specific posterior distributions of log-likelihood differences between predicted and
observed responses for the 3PL model estimated via MCMC-H. If the majority of the posterior
distribution is above zero, this indicates model misfit for the given item.

We can use the same logic to investigate person-specific model fit to find participants for whom the
models do not make good predictions. In Figure 8, we show the predicted vs. observed log-likelihood
differences of the 192nd person with response pattern (0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1). None of the models
performs particularly well as this person did not answer some of the easiest items correctly (i.e., Items 2,
4, and 5) but was correct on some of the most difficult items (i.e., Items 8, 9, and 12). It is unclear what
was driving such a response pattern. However, one could hypothesize that training effects over the
course of the test played a role, which are not accounted for by all models presented here. To circumvent
this in future test administrations, one could add more unevaluated practice items at the beginning of
the test so that participants have the opportunity to become more familiar with the response format.
Independently of the difference in model fit, person parameter estimates correlated quite strongly
between different models and estimation approaches, with pairwise correlations exceeding r = 0.97 in
all cases (see Figure 9 for an illustration).

1PL model 2PL model 3PL model 4PL model

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
Log−likelihood difference between predicted and observed responses.

Figure 8. Person-specific posterior distributions of log-likelihood differences between predicted and
observed responses for the 192nd person and different models estimated via MCMC-H. If the majority
of the posterior distribution is above zero, this indicates model misfit for the given person.



J. Intell. 2020, 8, 5 14 of 18

The time required for estimation of the Bayesian models with brms via MCMC ranged from
a couple of minutes for the 1PL model to roughly half an hour for the 4PL model (exact timings vary
according to several factors, for instance, the number of iterations and chains, applied computing
machines, or the amount of parallelization). In contrast, the corresponding optimization methods
(ML and MAP) required only a few seconds for estimation in mirt. This speed difference of
multiple orders of magnitude is typical for comparisons between MCMC and optimization methods
(e.g., Bürkner 2017). Clearly, if speed is an issue for the given application, full Bayesian estimation
methods via MCMC should be applied carefully.
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Figure 9. Scatter plots, bivariate correlations, and marginal densities of person parameters from
MCMC-NH and ML models.

4. Discussion

In the present paper, I reanalyze data to validate a short version of Standard Progressive Matrices
(SPM-LS; Myszkowski and Storme 2018) using Bayesian IRT models. By comparing out-of-sample
predictive performance, I found evidence that the 3PL model with estimated guessing parameters
outperformed simpler models and performed similarly well as the 4PL model, which additionally
estimated lapse parameters. As specifying and fitting the 4PL model is substantially more involved
than the 3PL model without apparent gains in out-of-sample predictive performance, I argue that
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the 3PL model should probably be the model of choice within the scope of all models considered
here. That is, I come to a similar conclusion as Myszkowski and Storme (Myszkowski and Storme
2018) in their original analysis despite using different frameworks for model specification and
estimation (Bayesian vs. frequentist) as well as predictive performance (approximate leave-one-out
cross-validation (Vehtari et al 2017) vs. corrected AIC and χ2-based measures (Maydeu-Olivares 2013).

Even though I reach the same conclusions as Myszkowski and Storme (Myszkowski and Storme
2018) reached with conventional frequentist methods, I would still like to point out some advantages
of applying Bayesian methods that we have seen in this application. With regard to item parameters,
Bayesian and frequentist estimates showed several important differences for the most complex 3PL
and 4PL IRT models. First, point estimates of items with particularly high difficulty or slope were
more extreme in the frequentist maximum likelihood estimation. One central reason is the use weakly
informative priors in the Bayesian models which effectively shrunk extremes a little towards the mean
thus providing more conservative and robust estimates (Gelman et al. 2013). Specifically, for the
4PL model, the model structure was also too complex to allow for reasonable maximum likelihood
estimation in the absence of any additional regularization to stabilize inference. The latter point
also becomes apparent because no standard errors of the ML estimated items parameters in the
4PL model could be computed due to singularity of the information matrix. Even when formally
computable, uncertainty estimates provided by the frequentist IRT models were not always meaningful.
For instance, in the 3PL model, the confidence intervals of guessing parameters estimated to be close
to zero were ranging the whole definition space between zero and one. This is clearly an artifact
as maximum likelihood theory does not apply at the boundary of the parameter space and hence
computation of standard errors is likely to fail. As such, these uncertainty estimates should not be
trusted. Robust alternatives to computing approximate standard errors via maximum likelihood theory
are bootstrapping or other general purpose data resampling methods (e.g., Freedman 1981; Junker and
Sijtsma 2001; Mooney et al. 1993). These resampling methods come with additional computational
costs as the model has to be repeatedly fitted to different datasets but can be used even in problematic
cases where standard uncertainty estimators fail.

In contrast, due to the use of weakly informative priors, the Bayesian models provided sensible
uncertainty estimates for all item parameters of every considered IRT model. MCMC and MAP
estimates provided quite similar results for the item parameters in the context of the SPM-LS data and
applied binary IRT models. However, there is no guarantee that this will be generally the case and
thus it is usually safer to apply MCMC methods when computationally feasible. In addition, for the
propagation of uncertainty to new quantities, for instance, posterior predictions, MCMC or other
sampling-based methods are required. In the case study, I demonstrated this feature in the context of
item and person fit statistics, which revealed important insides into the assumptions of the applied
IRT models.

With regard to point estimates of person parameters, I found little differences between all
considered Bayesian and frequentist IRT models. Pairwise correlations between point estimates of two
different models were all exceeding r = 0.97 and often even larger than r = 0.99. This should
not imply, however, that the model choice does not matter in the context of person parameter
estimation (Loken and Rulison 2010). Although point estimates were highly similar, uncertainty
estimates of person parameters varied substantially across model classes. Thus, it is still important
to choose an appropriately complex model for the data (i.e., the 3PL model in our case) in order to
get sensible uncertainty estimates. The latter are not only relevant for individual diagnostic purposes,
which is undoubtedly a major application of intelligence tests, but also when using person parameters
as predictors in other models while taking their estimation uncertainty into account. In addition,
uncertainty estimates of Bayesian and frequentist models varied substantially even within the same
model class, in particular for 3PL and 4PL models. Without a known ground truth, we have no direct
evidence which of the uncertainty estimates are more accurate (with respect to some Bayesian and/or
frequentist criteria), but I would argue in favor of the Bayesian results as they should have benefited
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from the application of weakly informative priors and overall more robust inference procedures for
the considered classes of models. Overall, it is unsurprising that Bayesian methods have an easier
time estimating uncertainty as it is more natural to do so in a Bayesian framework. We have also
seen the important advantage of Bayesian methods that is their ability to more easily accommodate
more complex models. However, we have also seen that, for simpler models, Bayesian and frequentist
methods provide very similar results, which really speaks in favor of both methods and should
highlight for the reader that both choices are valid options in this case and neither should be attacked.
Developing this understanding seems necessary with the increased application of Bayesian methods
and the accompanying arguments of whether this is a valid option.

The analysis presented here could be extended in various directions. First, one could fit
polytomous IRT models that take into account potential differences between distractors and thus
use more information than binary IRT models. Such polytomous IRT models were also fitted by
Myszkowski and Storme (Myszkowski and Storme 2018) and demonstrated some information gain as
compared to their binary counterparts. Fitting these polytomous IRT models in a Bayesian framework
is possible as well, but currently not supported by brms in the here required form. Instead, one would
have to use Stan directly, or another probabilistic programming language, whose introduction is out
of scope of the present paper. Second, one could consider multiple person traits/latent variables
to investigate the unidimensionality of the SPM-LS test. Currently, this cannot be done in brms in
an elegant manner but will be possible in the future once formal measurement models have been
implemented. For the time being, one has to fall back to full probabilistic programming languages
such as Stan or more specialized IRT software that supports multidimensional Bayesian IRT models.
According to Myszkowski and Storme (Myszkowski and Storme 2018), the SPM-LS test is sufficiently
unidimensional to justify the application of unidimensional IRT models. Accordingly, the lack of
multidimensional models does not constitute a major limitation for the present analysis.

In summary, I was able to replicate several key findings of Myszkowski and Storme (Myszkowski
and Storme 2018). Additionally, I demonstrated that Bayesian IRT models have some important
advantages over their frequentist counterparts when it comes to reliably fitting more complex response
processes and providing sensible uncertainty estimates for all model parameters and other quantities
of interest.
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