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Abstract: Previous research proved that teaching spreadsheeting from a programming perspective
is much more effective than the widely accepted tool-centered surface approach methods. Spread-
sheeting as an introductory programming approach allows students to build up schemata leading
to contextualized, concept-based problem-solving. Furthermore, it provides tools for real-world
problem-solving in other disciplines, and supports knowledge-transfer to database management and
“serious” programming. The present study provides the details of a nationwide testing of Grades 7–10
students on how they evaluate their spreadsheet knowledge, which classroom activities form their
self-assessment values, and the results of three spreadsheet tasks evaluated by the SOLO categories of
understanding. The comparison reveals that most students’ spreadsheet knowledge is pre-structural.
On the other hand, they assess themselves much higher, which is primarily based on the number of
activities carried out in classes. Traces of conscious problem-solving and knowledge-transfer within
the scope of spreadsheeting are hardly detectable, while knowledge brought from mathematics is
recognizable. In general, we found proof that the pieces of knowledge remain unconnected, not
allowing students to reach the relational level of understanding and build up long-lasting knowledge.

Keywords: spreadsheet; self-assessment; knowledge-transfer; computer problem-solving;
programming

1. Introduction
1.1. Should We Teach Students to Program?

Hungary is one of the countries in the world where informatics as a school subject
was introduced as early as the mid-‘90s [1–3] in the first National Base Curriculum [4].
Various names and numbers of classes (from 2009) have been assigned to the subject in the
meantime (Table 1) [4–7], with only minor changes in the content, detailed in the frame
curricula. A thorough analysis of the 2013 issues [8,9] revealed, on the one hand, that the
same material should be taught regardless of the name of the school subject, while on the
other hand, that the same amount of material should be taught regardless of the number
of classes [10–14] assigned to the subject. The research also revealed that the content of
the frame curricula [8,9] is (1) oversized, even in the case of the largest number of classes,
(2) loaded with a high number of ambiguous terms, (3) tool-centered, and (4) strictly
divided into distinct subthemes. Furthermore, the research found that problem-solving is
restricted to programming.

One consequence of the low number of lessons along with the overestimated, over-
planned content is that informatics education has become a rather tool-oriented, boring,
good-for-nothing subject which [15–18] does not support the development of computa-
tional thinking as a fundamental skill [19]. The widely accepted and popular low mathabil-
ity [20,21] teaching approaches commit all of the errors which were outlined as early as
1993 in Soloway’s paper [22]. The author and his fellow researchers claimed that schools
are inefficient in terms of teaching programming and developing students’ algorithmic
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skills, which is one of the ultimate goals of teaching informatics. As a result of this, they
determined that:

• Schools have made programming isolated and disconnected.
• Schools should adopt a “whole programming” approach.

Table 1. The number of lessons assigned to the subject of informatics per week according to the
national base curricula since 1995 [4–7].

Grades

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Sum

1995 no classes are given, only intervals compared to other subjects

2009 0.5 1 0.5 1 1 1 1.5 1 1.5 1 10

2012 – – – – – 1 1 1 1 1 – – 5

2020 – – 1 1 1 1 1 1 2 1 2 – 11

Furthermore, they presented their ideas on how programming can be integrated into
education. It was stated that programming is ubiquitous, and thus should be:

• expanded to end-user computing;
• socially sanctioned for intellectual advances for everyone; and
• embedded in a rich cognitive context.

They went further by claiming that creating a computational medium requires:

• making programming easier to learn and do; and
• expressiveness and usefulness.

Back then, in 1993, these statements were based on the researchers’ experiment; how-
ever, these findings have been proven multiple times since then [23–30]. The focus should
be on the development of computational thinking [19,31–37], including the development
of algorithmic and computational problem-solving skills [38–42], extended to end-user
computing. Teaching and testing spreadsheeting from a programming point of view is in
complete accordance with Soloway’s ideas.

Furthermore, the vision of teaching programming—nonetheless informatics—to ev-
eryone, and giving meaning to this subject is in complete accordance with the concept of
Technological Pedagogical Content Knowledge (TPCK) [43,44], and also with the Meaning
System Model (MSM) [26], which have been proven to be effective over time. The TPCK
claims that all three aspects of the model should be present in the teaching-learning pro-
cess, regardless of the subject. The MSM goes one step further and declares that beyond
the built-up knowledge pieces, the belief in the incremental nature of sciences (e.g., dy-
namic contextual knowledge) also plays a crucial role in the process. These findings are in
complete accordance with the research results of Hattie [40,45], who makes a distinction
between experienced and expert teachers. The experts of Hattie are teachers with high
teaching self-efficacy and a strong belief in the incremental nature of sciences. Being aware
of the recently published results, to carry out the vision of Soloway, teaching approaches
must be revolutionized.

1.2. Problems We Are Faced with

In spite of the relatively early introduction of the school subject, Hungary is faced with
the low efficiency of teaching-learning informatics. The country—both in education policy
and in teachers of informatics—does not realize that teaching informatics is a lot more than
using digital tools meaninglessly. The first warning came in 2009 in the form of the PISA
2009: Students On Line (Figure 1) [46]. The competence test revealed that in Hungary, there
is an extremely negative correlations between the use of computers in school and computer
problem-solving achievements.
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Figure 1. The results of PISA 2009: Students On Line. The red rectangle highlights the results of
Hungarian students.

Another warning sign is the trend observable in the number of participating schools
and students in the Nemes Tihamér programming [47] and application [48] contests [1].
This programming contest started as early as 1985, and the numbers of schools and students
participating in 2018 were about the same as in 1990. In the application contest, which
started in 2004, apart from the first two years, the lowest number of schools and students
participated in 2018. In a similar way, low-level academic knowledge was found by testing
first-year students of informatics at starting their tertiary studies [40,49].

These independent measurements of students’ academic abilities reveal that the solu-
tion does not lie exclusively on the introduction and the development of tools, including
both hardware and software, but rather on the applied teaching approaches and meth-
ods [26,40,50,51]. This finding is in complete accordance with Soloway’s suggestion from
1993 [22]. It has also been proven that Prensky’s idea of the digital natives [52] is only a
myth [53,54], and its fast wide-spreading results in more harm than good. We had also
found proof that the intensive use of mobile devices has a rather negative effect on the
development of students’ algorithmic skills [51].

One further reason for the low efficiency of teaching informatics in Hungary is the
popularity of folk-pedagogy [50]. In the mid-1980s, universities—totally unprepared,
especially in terms of didactics—started a teacher of informatics education program. In
these circumstances, low effective teaching methods were presented, practiced, and stated
as examples—whether consciously or not. Preservice and post-graduate teachers left
universities with a diploma and with the burden of being taught how to behave and act like
a folk-teacher. Furthermore, after leaving the shelter of their universities, these teachers
were left alone. The most ambitious of them started developing their own approaches and
methods, while the others were satisfied with not knowing and not wanting to know that
students do nothing but play during classes [55].

The comparison of folk-medicine and folk-pedagogy in the influential paper of Lister
reveals the negative and questionable effects of this approach [50], which include that
folk-pedagogy:
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• is a category of informal knowledge distinct from “scientific medicine [pedagogy]”;
• is usually unwritten and transmitted orally;
• is not necessarily integrated into a coherent system, and may be contradictory;
• is sometimes associated with quackery;
• [but] . . . it may also preserve important knowledge and cultural tradition from

the past.

The most distinguishing phrases of folk-teachers, according to Lister, are:

• “I’ve been teaching for N years, and . . . ”
• “When I was a student . . . ”

In general, teachers apply methods that they find satisfying for all of the participants
of the teaching-learning process—students, teachers, schools, parents, education policy,
ECDL, etc.—without relying on any proof of effectiveness of these methods.

2. Mini Competence Tests

Being aware of the problems of informatics education in Hungary and the test results
of first-year students of informatics [42,56–59], mini competence tests were designed to
measure primary and high school students’ academic abilities in informatics. The specialty
of our mini competence tests is that they present tasks and questions with short descriptions
accompanied with figures. The idea behind these short and visualized tasks is to lessen
the cognitive load of reading, because high-demanding texts would distort the outcome of
the tests. The latest PISA tests (2015, 2018) [60,61] reveal that in all three subjects—reading,
mathematics, and sciences—the results of Hungarian students are below the OECD average,
and the share of low achievers in all three subjects are significantly higher than the average.
Furthermore, the PISA 2009: Students On Line assessment presents similar results, with an
additional negative correlation between the results and the use of a computer in school.
Considering these published results, we wanted to lessen (1) the cognitive load of reading,
and (2) the negative effect of the tool-centered teaching approaches in the informatics
subject [62]. To achieve our goals, the complexity of the tasks are cut back, the texts of the
tasks are shortened—compared to the PISA tasks—and all of the tasks are supported with
informative pictures.

The purpose of the test is to investigate the effectiveness of informatics education,
to identify the specific pieces of knowledge, and to measure the activation of knowledge
transfer elements.

In general, our mini competence tests [12] are usually divided into three main parts:

• general questions;
• spreadsheet functions; and
• mini problems to solve.

2.1. General Section

The first section of the competence test poses questions on general information, in-
cluding questions on how students evaluate their knowledge in the following topics:

• file management;
• text management;
• spreadsheet management;
• database management;
• algorithms and programming; and
• resource (citation) management.

To fill in the form, a 0–5 Likert scale is offered. In connection with their self-assessment,
students are also asked whether they study/studied these subjects in school or not. In the
present paper, the focus is on the students’ spreadsheet knowledge. Consequently, their
spreadsheet self-assessment values will be taken into consideration.

Self-assessment and achievement in the tasks can be significantly influenced by
the activities carried out in an informatics class. Consequently, the students are asked
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to select items from a predefined list of activities that characterize their informatics
lessons. The following list presents those activities, which have a direct connection to
teaching-learning spreadsheeting:

• solving ECDL tests (ECDL);
• solving maturation exam tests (maturation);
• formulating algorithms (algorithm1);
• writing and drawing algorithms (algorithm2);
• creating multilevel functions (multilevel functions);
• working alone, based on a list of tasks (alone);
• programming;
• typing spreadsheet tables (typing);
• checking the correctness of outputs (output); and
• playing.

The general section also poses questions on the students’ computer and mobile phone
use, both in schools and in general. The time spent on using these devices were asked by
selecting from a list with seven options. Four questions were set up considering the time
spent on computers (desktop computer and laptop) and mobile devices (tablet, phone, and
e-book reader) in classes other than informatics during a week (<1, 1, 2, 3, 4, 5, >5 h) and
for daily personal use (<2, 2, 4, 6, 8, 10, >10 h).

Furthermore, questions were presented regarding the number of informatics lessons
per week in Grades 1–12, the programming language(s) learned in school, the course and
exercise books they use, and the frequency of using them.

2.2. Spreadsheet Functions

In the second part of the test, students were asked to list fifteen spreadsheet functions
which they consider to be the most important ones. The names of functions must be
provided without ranking them. One aim of this task is to see whether students can
remember all of the functions presented in class, in course and exercise books, and/or
in spreadsheet applications [62]. In the official coursebook of the time of the test [63],
there are 41 spreadsheet functions listed, with hardly any problems to solve with them
(Figures 2 and 3). Primarily, similar to these examples, decontextualized, meaningless tasks
are presented in the coursebook [63], leaving the principles of TPCK [43,44] completely
unattended. Furthermore, one must call attention to the fact that students should be
familiar with these operators and functions from their previous spreadsheet studies in
primary school [8,9,62].

Figure 2. Boring and useless tasks from the official course book of informatics [63] to teach mathe-
matical operators.

Figure 3. Boring and useless tasks from the official course book of informatics [63] to teach spread-
sheet functions.

The other aims of the task listing the fifteen most important functions are to see
whether schools:
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• make students learn functions; and
• teach these functions at all or just let students navigate on the user interface.

From the results of this task, we can conclude how conscious the tested students are,
and how fast thinking [64] can be applied in routine problem-solving activities.

2.3. Spreadsheet Problems and Their SOLO Categories

In part three, students solved real spreadsheet problems on paper without using a com-
puter. Each section of the test contained multiple-choice and/or short-answer tasks. Most
of these tasks could be completed by either activating knowledge transfer elements from
other sciences, or basic knowledge in spreadsheeting. As it is mentioned above, according
to the principles of the mini competence test, the instructions were short, accompanied
with figures to make them concise and easy to understand.

The items of the problems were calculated recognizable pieces of the answers, which
are detailed in the Chapters “Spreadsheet problems and their SOLO categories” and
“Spreadsheet problems presented in the test”. Furthermore, the items were converted into
the SOLO (Structure of the Observed Learning Outcome) categories of understanding,
which are widely accepted in teaching programming [49,50,65,66]. The usability of the
SOLO categories on functional programming language problems has already been proven
in previous studies [49,56–59]. Consequently, it was reasonable to apply the same method
in these tasks. The modified SOLO categories of understanding have the following four
levels [42], where the highest SOLO category—extended abstract—is not considered, due
to the structure of the presented tasks.

• The task is ignored or the answer has no relation either to the task or the correct
answer (pre-structural, P).

• One of the items is recognizable (uni-structural, U).
• Several items are correct, but the connection(s) between these items are not formulated

(multi-structural, M).
• Both the items and the connection between them are clearly formulated (relational, R).

3. Spreadsheet Problems Presented in the Test
3.1. Formula Completion

In this task, students were asked to complete a given string into two syntactically
correct spreadsheet formulae (Figure 4). Two samples were presented to provide places
for two solutions—providing the range, i.e., A2:A20 (from A2 to A20) or two separate
arguments, i.e., A2, A20 (A2 and A20). Furthermore, the last part of the task was to explain
(name), via natural language, the domain to which the completed formulae refer. The
English version of the task is shown in Figure 4, and the solutions are shown in Figure 5.
In both solutions, the opening equal sign, the closing parenthesis, the reference operator,
and the explanation of the domain are considered as separate items, adding up to a total of
eight items.
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Table 2 presents the SOLO categories of understanding assigned to the items of the
formula completion task.

Table 2. SOLO categories assigned to the items of the formula completion task.

Score SOLO Category

8 relational

7 relational

6 multi-structural

5 uni-structural

4 uni-structural

3, if there is one reference operator, one closing parenthesis,
and one explanation (only the equal sign is missing from one

of the formulae)
uni-structural

4, if only two equal signs and two closing parentheses are
given pre-structural

3 pre-structural

2 pre-structural

1 pre-structural

0 pre-structural

3.2. Order of Execution

To test how knowledge transfer elements brought from mathematics can be activated in
informatics, students were asked to provide the order of the execution of the given formula.
In addition to the formula, a table of five rows was added, which the students had to fill in
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with the steps (Figure 6). The purpose of the extra row was to see whether students recognize
that there are only four steps, or if they feel obligated to fill in all of the rows.

Figure 6. Task for deciding on the execution order of the expression.

The solution to the execution order problem (Figure 6) is shown in Table 3. Using the
SOLO categories, the scores are distributed as follows:

• Calculating the average is the first step, one item.
• Calculating the average, one item.
• Calculating the average is followed by the subtraction, one item.
• The subtraction is followed by the yes/no question, one item.
• The question is followed by calling the IF() function, one item.
• Calling the IF() function is the last step, one item.

Table 3. The solution of the sequence/order task.

Step 1 Calculating the Average or Calling the AVERAGE() Function

Step 2 subtracting 50 from the average or subtracting

Step 3 asking a yes/no question: the difference is less than 50? or asking a question

Step 4 calling the IF() function

Thus, a total of six items were scored.
Table 4 presents the SOLO categories of understanding assigned to the items of the

execution order task.

Table 4. The SOLO categories assigned to the items of the order of execution task.

Score SOLO Category

6 relational

5, if the first or the last item is listed as first or last (the
placement of the first or the last step is not correct) relational

5 multi-structural

4 uni-structural

3 uni-structural

2, if these two items arrive from steps (items 2–4) uni-structural

2 pre-structural

1 pre-structural

0 pre-structural
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3.3. Array Formula Task

In the third task of the test, a sample table and a multi-level formula were presented
(Figure 7). The table is created from the Social Blade webtable [67] with the WDC (webtable
to datatable conversion) method [68,69]. The specialty of the table is that, despite the fact
that the language of the webtable is set to Hungarian, based on the selected country, the
separator characters are not changed according to the syntactical rules of the language.
As a result, the English thousand separator characters are transformed into a decimal
comma (cells B6, B7, C3:C9, C248:C251) or a comma character (cells C2, D2:D9, D248:D251),
depending on the number of commas. The consequences of this data conversion are
analyzed in the paper of Nagy [70].

Figure 7. A sample table and an array formula are presented to answer the “What does the formula do?” question. The
formula in Hungarian is {=SZUM(HA(BAL(A2:A251)=“L”;1))}.

The aim of this task is to see how students explain what the given formula does, or
what output it produces. In this task, the students’ previous knowledge in mathematics
(concept of functions), spreadsheeting (especially recognizing functions, their arguments,
and their output), and the ability to connect this task to the previous ones are tested.

The solution to the problem is “The number of usernames starting with the character
L.” natural language sentence, or any other expression with the same meaning. In the
answer, both the lowercase and the capital letter L are accepted.

The spreadsheet SOLO categories were assigned to the task, similar to the previous
tasks (Table 5).

Table 5. The answers to the array formula task with the points and the SOLO categories assigned to
the answers.

Statement Score SOLO Category

the number of usernames starting with the
character L (or l) 4 relational

counts 3 multi-structural
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Table 5. Cont.

Statement Score SOLO Category

calculates a sum with L 3 multi-structural

calculates a sum 2 uni-structural

starting with L (or l) 1 uni-structural

1 character from left 1 pre-structural

description of a loop 1 pre-structural

tried to solve it but the solution is
pre-structural 0 pre-structural

claiming the formula is incorrect 0 pre-structural

4. The Sample

The test was carried out at the end of the pre-COVID academic year of 2017/2018,
where the use of the digital tools was not affected by online teaching and testing. A total
of 8880 pupils from 93 schools across Hungary participated in the measurement. Among
them, 8517 are from Grades 7–10, forming the sample of this study. According to the self-
assessment values, 6886 students claimed that they studied (Group Studied) spreadsheet
management in school, 919 claimed that they did not (Group DidNotStudy), and 712 left
the question unanswered (Group NoAnswer). Table 6 presents the number of students in
Grades 7–10 participating in the test.

Table 6. The number of students who studied spreadsheet management in school (Studied), did not
study spreadsheet management in school (DidNotStudy), or did not answer the question (NoAnswer).

Grade

7 8 9 10 Total

Studied 981 1439 2423 2043 6886

DidNotStudy 444 72 277 126 919

NoAnswer 136 128 265 183 712

1561 1639 2965 2352 8517

5. Hypotheses

The hypotheses of the present paper are set up according to the structure of the test, the
current national base curriculum and frame curricula, and the coursebooks based on these
official documents. The aims of our research are to reveal connections and/or missing links
between the aims and the requirements of the official documents and the performance of
students. Furthermore, previously published research results are taken into consideration,
which shed light on the misconceptions and the negative effects of stereotypes considering
teaching-learning informatics in general, especially in spreadsheeting.

Previously conducted research has proven that teaching spreadsheeting from a pro-
gramming point of view and using functional languages as introductory programming
languages is significantly more effective than either the interface-centered or the imperative
or object-oriented “classical” methods [27,28,71–77]. Being aware of these results and that
school grade levels are often not good indicators of where students are in their cognitive
development, the students’ self-assessment values are compared to their results in the test.

Hypothesis 1 (H1). There is no significant difference between the self-assessment values and the
students’ results in the test.

Hypothesis 2 (H2). There is a strong correlation between classroom activities and the students’
self-assessment.
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Hypothesis 3 (H3). There is a relationship between the learned functions, the students’ self-
assessment values, and the results in the test.

Hypothesis 4 (H4). Students can apply knowledge from mathematics in solving programming-
oriented spreadsheet problems.

Hypothesis 5 (H5). There is no difference between the boys’ and the girls’ self-assessment and
results in the tasks.

6. Results
6.1. Students’ Results in the Spreadsheet Tasks

From Grades 7–10, 8517 students completed the test (Table 6). Table 7 presents the
average results in the three spreadsheet tasks. The averages of the scores are 1.32 (17%),
0.86 (14%), and 0.18 (5%) in the formula completion, the execution order, and array formula
tasks, respectively. The frequency of students who scored zero items is 5226 (61%), 6464
(76%), and 7918 (93%) in the three tasks. The frequency of students who scored the
maximum items is 118 (1%), 629 (7%), and 118 (1%). Both the modus and the median are
zero in all three tasks. According to the PISA evaluation system, 78% of students are able
to perform tasks at Level 2, and 99.3% of students are able to perform tasks at Level 1b [61].
In the spreadsheet tasks of the test, the students’ performance is much lower, which is a
shocking result and cannot be ignored. It is devastating that an extremely high percentage
of students scored zero, even in the simplest task.

The mean ranks of the three tasks calculated by the Friedman Test are 2.02, 2.08, and
1.90 in the formula completion, execution order, and array formula tasks, respectively.
Furthermore, it is found that there is a significant difference between the averages of the
results of the three tasks (p < 0.001).

In the comparison of the three tasks (Spearman correlation), it is found that there
is a strong correlation between the formula completion and the execution order tasks
(R = 0.453). A weak correlation is found between the array formula and the other two tasks
(R = 0.206 and R = 0.263 in the formula completion and execution order, respectively).

Table 7. Students’ results in the three spreadsheet tasks in Grades 7–10.

Grades

Task 7 8 9 10 Average Max

formula completion 0.75 1.28 1.28 1.79 1.32 8

execution order 0.54 0.89 0.74 1.21 0.86 6

array formula 0.08 0.14 0.15 0.29 0.18 4

The Chi-square crosstables reveal the details of the correlations between the pairs of
the tasks. If the students’ knowledge is pre-structural in the formula completion task, then
there is a 91% probability that the execution order is also pre-structural. As the level of
understanding increases in the formula completion task, the level of understanding is either
pre-structural or relational in the execution order task. We can conclude, on the one hand,
that syntactical awareness does not help the recognition of the execution order. On the
other hand, better performance in the formula completion task allows knowledge-transfer
activation, through which the execution order of expressions is deduced from mathematics.
These mathematical knowledge pieces seem to be much more firmly solidified than the
students’ spreadsheet knowledge.

The knowledge that parentheses always work in pairs—which also comes from
mathematics—should be applied in the formula completion task. The comparison of
the opening and closing parentheses in the two formulae reveals that there are 3106, 1985,
and 1949 students who completed the first formula, the second formula, and both formulae
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with the closing parenthesis, respectively. A strong correlation can be found between
closing parentheses in the first and the second formulas (R = 0.707). On the contrary, in the
other pairs of the items—except for the first closing parenthesis and the first reference oper-
ator (R = 0.82)—medium or weak correlations are detectable (Table 8). One can conclude
that the two strongest pieces of knowledge are transferred from a schema and mathematics.
However, one must note here that the schema—SUM(A2:A21) or SUM(A2,A21)— is not
accompanied with the semantics of the expressions (R = 0.323 or R = 0.324), and neither
with the reference operator of the other solution (R = 0.462, not in the table).

Table 8. In the formula completion task, the relationship between the closing parentheses of the
formulas—1st) and 2nd)—and the other items: equal sign, reference operator, and reference.

2nd) 1st = 1st ref. op. 1st reference

1st) 0.707 0.451 0.820 0.323

1st) 2nd = 2nd ref. op. 2nd reference

2nd) 0.707 0.508 0.549 0.324

In the comparison of the two tasks vs. the array formula task, it is found that the
increase in the SOLO categories in the first two tasks—even reaching relational level—
students only reach the multi-structural level in the array formula task. These results show
that both the syntactical and the mathematical knowledge pieces remain unconnected,
which leads to students not being able to cross the border of the multi-structural and the
relational categories [78].

These findings partially prove Hypothesis H4. Knowledge-transfer activation from
mathematics allows students to apply basic mathematical knowledge (parentheses), or
to solve implicit math problems (execution order). However, when the mathematical
background is only explicitly present, students are not able to apply it.

6.2. Gender Issue

In the comparison of the gender of students, a significant difference is revealed
between boys and girls in the formula completion and the execution order tasks (p < 0.001
and p = 0.006)—where girls’ results are higher—while there is no difference between the
two groups in the array formula task (p = 0.655) (Figure 8). This result is in complete
accordance with previously published papers considering boys’ and girls’ programming
skills [79–81], where the “informatics and computer sciences fit boys better than girls”
statement is proven to be a misconception.

Figure 8. Cont.
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Figure 8. The comparison of the results of girls and boys in Grades 7–10. (a) Formula completion; (b) execution order; and
(c) array formula.

The means of the SOLO values in Grades 7−10 are presented in Figure 8. The effect of
the given grade is different in the three tasks. In the graphs, the lines for the girls and the
boys are not parallel. The statistical analysis reveals the following differences between the
genders (Table 9):

• In Grade Seven, there is no significant difference in any of the tasks (p = 0.632,
p = 0.069, and p = 0.704, respectively).

• In Grade Eight, there is no difference in the formula completion and the array formula
task (p = 0.948 and p = 0.355). However, in the execution order task, the difference is
significant (p = 0.01).

• In Grade Nine, there is a significant difference in all three tasks (p < 0.001, p < 0,001,
and p = 0.014, respectively).

• In Grade Ten, there is a significant difference in the formula completion task
(p = 0.005), while there is no difference in the other two tasks (p = 0.406 and
p = 0.224).

Table 9. Boys’ and girls’ results in the three tasks.

Boys Girls All

formula completion 1.23 1.43 1.32

execution order 0.81 0.92 0.86

array formula 0.17 0.18 0.18

Beyond considering the differences between the results of boys and girls, we cannot
leave unnoticed that there is significant difference between the self-assessment of the two
gender groups (p = 0.022). Boys evaluated their knowledge higher than girls did, which is
in complete accordance with previously published results [27,28,73].

Hypothesis H5 must be rejected, because we have found differences between the two
gender groups in both the self-assessment and the results. Considering the self-assessment,
boys rated their knowledge higher than girls, while on the contrary, the results of the girls
are higher than the boys.

6.3. Studied vs. Results

In the next analysis, the results of Groups Studied, DidNotStudy, and NoAnswer are
compared and analyzed. As mentioned in the Chapter “The Sample”, the groups are
formed on the self-assessment section of the test. Even though the averages are extremely
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low (Table 9), the question was whether there is any difference between Groups Studied
and DidNotStudy (Tables 10 and 11). In the array formula task, the number of students
whose results are greater than zero is so low that we could not separate them into two
groups. Consequently, the task is left out from this analysis.

Table 10. Students’ results in the formula completion tasks in Grades 7–10.

Total 7 8 9 10

All 1.32 0.75 1.28 1.28 1.79

Studied 1.52 1.06 1.37 1.42 1.96

DidNotStudy 0.27 0.16 0.44 0.32 0.44

NoAnswer 0.82 0.40 0.79 1.02 0.87

Table 11. Students’ results in the execution order tasks in Grades 7–10.

Total 7 8 9 10

All 0.86 0.54 0.89 0.74 1.21

Studied 0.99 0.78 0.95 0.82 1.33

DidNotStudy 0.14 0.09 0.26 0.17 0.17

NoAnswer 0.56 0.29 0.58 0.62 0.66

The analysis reveals that 43.9% vs. 10.2% (formula completion) and 27.6% vs. 5.2%
(execution order) of the students in Group Studied and DidNotStudy scored at least one
item, respectively. The averages of the students of the different groups are presented in
Tables 10 and 11.

In spite of the low averages, a significant difference is revealed between Groups
Studied and DidNotStudy. Considering all of the different groups—Total (Grades 7–10
altogether), Grade Seven, Grade Eight, Grade Nine, and Grade Ten—the results of Group
Studied are higher on both tasks than in DidNotStudy. Group NoAnswer scored between the
two groups.

The percentage of students in Groups Studied and DidNotStudy scoring items 0–8 and 0−6
in the formula completion and the execution order tasks are presented in Figures 9 and 10.

Figure 9. The results of the formula completion task in Groups Studied and DidNotStudy.
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Figure 10. The results of the execution order task in Groups Studied and DidNotStudy.

In the formula completion task, leaving out those students who scored zero, the two
most frequent items are three and two (872 and 855 students, respectively, from 3291
students). This means that most students’ knowledge is pre-structural. The two most
frequent items do not depend on whether the students studied spreadsheeting in school or
not (813 and 780, 24 and 27, from 3023, and 94 students in Groups Studied and DidNotStudy,
respectively) (Figure 11).

Figure 11. The results of those students who scored at least one item in the formula completion task.

In the execution order task, the two most frequent scores are six and one (629 and
450 students, respectively, from 2050 students). This means that most of the students—
considering only those who scored at least one item—either recognized only one step or all
of them in the correct order (Figure 10). In this task, the two most frequent items depend
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on whether the students studied spreadsheeting in school or not. In Group Studied, the
two most frequent items are six and one (584 and 422 from 1901 students), while in Group
DidNotStudy, the two most frequent items are two and one (16 and 15 from 48 students)
(Figure 12).

Figure 12. The results of those students who scored at least one item in the execution order task.

6.4. Self-Assessment

The self-assessment values on spreadsheet management and the responses to the
studied/did not study in school questions were taken into consideration at this stage of
the analysis. Similar to the evaluation of the students’ results, the 0–5 self-assessment
values were converted into SOLO categories (Table 12). These categories are in complete
accordance with the levels of science proficiency in PISA 2018, where Level 2 stands for the
minimum [61]. We must note here that 516 students did not answer this question.

Table 12. The SOLO categories of the self-assessment values compared to the levels of proficiency in
PISA 2018 [61].

Score SOLO Category Levels of Science Proficiency in PISA 2018

5 relational or extended abstract explain unfamiliar and more complex
phenomena

4 multi-structural two or more independent variables

3 uni-structural moderately complex content knowledge

2 uni-structural everyday content knowledge and basic
procedural knowledge

1 pre-structural low achievers

0 pre-structural

These categories of understanding are in accordance with the European Qualifications
Framework (EQF) [82] and, based on this document, the proficiency levels of DigComp
2.1 [83]. Due to the administration process of the test, the first level of EQF and DigComp
cannot be tested, where work or study is carried out under direct supervision in a structured
context. In a similar way, Levels 7 and 8 cannot be identified due to the limits of the
testing procedure.
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According to the frame curricula [8,9], teaching-learning spreadsheet management
is obligatory from Grades Seven to Ten (sample size: 8517). The question arises, then,
regarding why 10.79% (919 students) of the tested students claimed that they did not study
spreadsheeting in school—either because they did not study it or because they did not
realize that they studied it (Table 6)—and further, 8.36% (712) did not answer the question.

The comparison of Groups Studied and DidNotStudy revealed that students who
studied spreadsheet management in school evaluated their knowledge higher than those
who did not. Moreover, 65.1%, 19.7%, and 29.8% evaluated their knowledge at a four or
five, in Groups Studied, DidNotStudy, and NoAnswer, respectively (Figure 13). According to
the SOLO categories, their knowledge is multi-structural or relational. In Group Studied, 5%
(310 from 6888 students) claimed that in spite of studying spreadsheeting in school, their
knowledge is non-existent, and is only the lowest, pre-structural level of understanding. In
the other two groups, 56% (519 from 919 students) and 40% (287 from 712 students) claimed
that their knowledge is pre-structural (Groups DidNotStudy and NoAnswer, respectively).

Figure 13. Self-assessment in relation to studying spreadsheet management in school.

Altogether, 4.5% of the students of Group Studied have pre-structural knowledge (zero
or one), or 2.5% and 2%, respectively. In contrast, 49.8% of Group DidNotStudy rated their
knowledge as zero, 6.6% evaluated their knowledge with one. This means that 56.4% of the
students of Group DidNotStudy have a pre-structural level of understanding (Figure 13).
Considering all students, 9.73% of them rated their spreadsheet knowledge pre-structural,
27.16% uni-structural, 24.62% multi-structural, 20.75% relational or extended abstract, and
17.74% did not answer (Figures 14 and 15).



Educ. Sci. 2021, 11, 590 18 of 29

Figure 14. The SOLO categories in Grades 7–10 assigned to the self-assessment values.

Evaluation of the self-assessment values revealed that there is a significant difference
between the grades (p = 0.024). In Grade Seven, the SOLO categories are almost equally
distributed, while in Grade Eight, the multi-structural and the relational levels dominate,
and in Grades Nine and Ten, the uni- and multi-structural levels dominate. Grade Eight stu-
dents are the most confident, which is in complete accordance with their behavior as senior
students (Figure 14) [42,49]. Figure 15 presents the cumulative SOLO categories assigned
to the self-assessment values. Based on the categories, a firm spreadsheet knowledge can
be expected.

Figure 15. The cumulative SOLO categories assigned to the self-assessment values.
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6.5. Spreadsheet Functions

As mentioned in the Chapter “Spreadsheet functions”, in the second section of the
test, students were asked to list the most important spreadsheet functions, and fifteen cells
were offered to fill in. This is much less than the number of functions listed in the official
coursebook for Grades 9–10 [63].

Students wrote various strings which they considered as function names. Along
with the correct functions, primarily misspelled functions, operators, and fictive names
were presented. Table 13 provides the number of students from Grades 7–10 listing
0–15 correct functions. Here, we must mention the responsibility of the translators. In
Hungarian, in several cases, the translators did not follow the original naming conventions.
Furthermore, the names can be changed occasionally from version to version. Among these
nonconventional naming practices, one of the most distracting features is a period character
inserted into the middle of the function name. One can never anticipate whether the dot is
part of a name or not, and it seems to appear arbitrarily. Consequently, the translation does
not fulfill its original role of helping with the memorization of these function names.

Table 13. The number of students writing 0–15 correct functions.

Grades

7 8 9 10 Total

N
um

be
r

of
fu

nc
ti

on
s

0 43 49 102 95 289

1 71 92 65 49 277

2 116 99 84 56 355

3 57 150 105 103 415

4 95 162 138 168 563

5 33 194 168 131 526

6 11 72 104 149 336

7 16 45 100 128 289

8 11 28 94 96 229

9 4 25 90 82 201

10 4 16 51 64 135

11 1 14 24 64 103

12 0 10 26 40 76

13 1 3 18 37 59

14 0 2 29 33 64

15 0 7 57 120 184

We cannot leave unnoticed that on average, students listed 3.2 strings, among which
2.8 were found correct. The modus and the median of the number of correct functions
are zero, due to the high number of students (4477) who could not name a single correct
function. One of the reasons for the high number of zero functions is that students did
not recall any function name. In other cases, they only wrote incorrect names. It is found
that among those students who wrote at least one string, 45% of them named only correct
(existing) functions. Among the incorrect strings, the most common errors were, as men-
tioned above, mathematical operators—addition, subtraction, division, and multiplication
operators, incorrectly named or drawn—and misspelled functions (Figure 16).
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Figure 16. The number of students from those who listed at least one string, writing 0–15
correct functions.

In Figure 17, the students of Groups Studied and DidNotStudy are separated. The
graph shows the percentage of those students who wrote at least one function in Groups
Studied and DidNotStudy. It is found that, leaving out those students who did not write
anything, the modus of the number of correct functions is four and two in Groups Studied
and DidNotStudy, respectively. Furthermore, 54% of Group Studied and 13% of Group
DidNotStudy named only correct functions. Another difference between the two groups is
the number of students listing more than seven functions. In Group DidNotStudy, there
are hardly any students who wrote that number of functions. These results show that
studying spreadsheeting in school would train more conscious end-users than self-studies
(Figure 17).

Figure 17. The number of students from those who listed at least one string, writing 0–15 correct
functions in Groups Studied and DidNotStudy.
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One might argue that there is no need for remembering the function names since
wizards, tips, helps, etc. would guide end-users in finding the correct function(s). How-
ever, this is not so, because browsing the interfaces and looking for ideas requires slow
thinking [64], whose processes are proved erroneous, leading to serious spreadsheet er-
rors [39,80,84,85]. Instead, with a reasonable cognitive load [29,30,76], the names, the
arguments, and the semantics of the functions must be memorized to allow end-users to
activate fast thinking, which would lessen spreadsheet errors. Schema construction and
applying the built schemata in solving novel problems is widely accepted and applied in
teaching mathematics [86].

“Each problem that I solved became a rule which served afterwards to solve other
problems” [87], declared Descartes. This idea plays a crucial role in Pólya’s concept-
based problem-solving approach [86]. Unfortunately, cognitive load [88], schema construc-
tion [88,89], fast and slow thinking [40,64,90], and concept-based problem-solving [86]
are not well-known in informatics, which might be explained by the distractor role of the
digital devices, both hardware and software, the dominance of folk-pedagogy [50], and the
lack of expert teachers [45] in this novel science.

6.6. SOLO Categories: The Level of Understanding

Beyond calculating the score of the students, the results are converted into the spread-
sheet SOLO categories [49]. Based on the categorization, the frequency and the relative
frequency of the students are calculated. The analysis reveals that the most frequent SOLO
category is pre-structural (P) in all three tasks (Figure 18).

Figure 18. The students’ results in the three tasks, evaluated by the spreadsheet SOLO categories of
understanding.

Furthermore, based on the SOLO categories of the three tasks, a cumulative SOLO
category is assigned to the result of each student. Considering all of the possible outcomes
(64), the number of triads forming the cumulative SOLO categories is presented in Table 14.
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Table 14. The number of SOLO triads assigned to the cumulative SOLO categories.

Cumulative SOLO Category Number of SOLO Triads

P 5

U 22

M 33

R 4

The cumulative SOLO categories reveal the same results as the unique SOLO cate-
gories: the students’ level of understanding is primarily pre-structural (Figure 19).

Figure 19. The students’ results evaluated by the cumulative SOLO categories.

The comparison of the SOLO categories of the students’ self-assessment (Figure 15)
and their results (Figure 19) reveals that the self-assessment values are much higher than
the students’ real knowledge. Table 15 presents the number of students in the comparison
of the self-assessment (A-P, A-U, A-M, A-R) and the results (R-P, R-U, R-M, R-R). The
following can be revealed:

• Diagonal of the matrix: the number of those students who gave a proper
self-assessment value.

• Upper triangle of the matrix: the number of those students who overestimated
their knowledge.

• Lower triangle of the matrix: the number of those students who underestimated
their knowledge.

Table 15. The SOLO categories of the self-assessment values compared to the results of the students.

A-P A-U A-M A-R

R-P 586 2235 2199 1700
R-U 9 190 320 270
R-M 5 93 161 192
R-R 0 8 18 15
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In general, 12% of the students (952) were able to estimate their spreadsheet knowledge
correctly (Table 15, diagonal, white cells with bold font style), 86% of them (6916) gave
higher self-assessment values than their actual knowledge (Table 15, upper triangle, white
cells with normal style), and 2% (133) underestimated their knowledge (Table 15, lower
triangle, gray cells).

In the comparison of the students’ results and their self-assessment values, we found
that there is no relationship between the achievement and self-assessment values. Thus,
our Hypothesis H1 is rejected.

7. Relationships beyond the Results
7.1. Self-Assessment vs. Classroom Activities

Among the listed classroom activities, we examined what might influence self-assessment
and the proficiency level of students’ knowledge. In general, we were looking for activities
that might have a direct influence on the students’ awareness of the processes of studying
and doing spreadsheet management. Linear regression revealed that there is a weak re-
lationship between the classroom activities and the self-assessment values (R < 0.2). We
can conclude that no activities can be found, which alone has a significant effect on the
students’ self-assessment values. Furthermore, one must note here that the strongest relation
is found between the activity of typing spreadsheet tables and the self-assessment values
(R = 0.207). This finding is in complete accordance with previous results from analyzing the
spreadsheet chapters of official coursebooks [10–12,62,70]. Coursebooks do not provide sam-
ple files with real-world data, but require students to type fictitious sample data in spreadsheet
workbooks [63].

In a further examination, a cluster analysis formulated two distinct groups with a
low and high number of activities. Those who marked higher number of activities are
more self-confident, and their results are also higher compared to the cluster with the low
number of activities. We can conclude that the students’ self-assessment values are based
on the number of different activities, and not on the effectiveness of teaching.

Based on these findings, we cannot confirm Hypothesis H2.

7.2. Number of Functions vs. Self-Assessment

We investigated the relationship between the number of listed and correct functions
and the self-evaluation values. A weak relationship is found between the examined
parameters (R = 0.232 and R = 0.217, respectively).

Consequently, we cannot prove that the number of learned functions has any effect on
the self-evaluation values. This finding is further supported by the frequency of correct
functions in the groups of the self-assessment values (Figure 20). The three most frequent
groups are where the self-assessment values are 4, 3, and 5, and the number of the correct
function is 0. Students are rather confident considering their spreadsheet knowledge, but
could not name any function.

Figure 20. The frequency of correct functions in the groups based on the self-assessment values (0–5).
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7.3. Number of Functions vs. Results

Based on the correct functions written by the students, a frequency list was created. In
the three tasks the SUM(), AVERAGE(), IF(), and LEFT() functions are mentioned. Their
positions in the list are 1, 2, 5, and 20, respectively.

A medium relation is revealed between the formula completion and the execution
order tasks vs. the number of functions (Table 16). This can be explained by the high
position of the functions in the frequency list, where the knowledge might arrive from the
classroom activities mentioned in the Chapter “General section”.

On the contrary, a weak relation is revealed between the array formula task and the
number of listed and correct functions (Table 16). This finding is in complete accordance
with the results detailed in the Chapter ”Students’ results in the spreadsheet tasks”. Those
results revealed that pieces of knowledge are recognizable, but students are not able
to synthesize their knowledge. Consequently, they cannot reach the relational level of
understanding. In this case, students are familiar with the names of the functions, at least
with the SUM() and the IF(), but cannot understand the relation between them accompanied
with the LEFT() function (Table 16).

Table 16. Relationship between the results and the number of correct and listed functions.

Task
Relationship

Correct Functions Listed Functions

formula completion 0.436 0.427

execution order 0.423 0.415

array formula 0.223 0.223

Considering Hypothesis H3, it can be partially confirmed. On the one hand, a medium
correlation is found between the results of the formula completion and the execution order
tasks vs. the learned functions. On the other hand, a weak correlation is found between the
array formula task vs. the learned functions.

8. Conclusions

Previous research proved that teaching spreadsheeting from a programming as-
pect [27,28,73,74] is much more effective [71,75–77] than the widely accepted tool-centered
low-mathability methods. The surface approach methods—focusing on the teaching of how
the user interface works, typing spreadsheet tables, browsing wizards and help, course-
books introducing as many functions as possible, and softwares offering newer and newer
functions and features—do not support schema construction. Without schemata built up
in the long-term memory, fast and slow thinking [64] cannot be applied effectively [81],
which leads to erroneous spreadsheet documents [81,84], and ultimately to serious financial
losses, both in human and machine resources [85].

The present study provides the details of the spreadsheet section of a nationwide test-
ing of Grades 7–10 students in Hungary. The test focuses on the students’ problem-solving
skills, how knowledge-transfer elements are activated, and which classroom activities form
the students’ self-assessment values. The results of three spreadsheet tasks are evaluated
by the SOLO categories of understanding, which is a widely accepted method in teaching
programming. In accordance with the programming nature of the tasks presented in the
test, four levels of both spreadsheeting and self-assessment SOLO categories are set up.

The self-assessment values provided by the students reveal a strong confidence
in their spreadsheet knowledge, especially with those students who studied spread-
sheeting in school. On the contrary, most of the students’ results based on the three
tasks of the test are pre-structural (84.7%), which means that no recognizable pieces of
knowledge are present. The students’ results demonstrate that the decontextualized,
tool-centered, low-mathability approaches that characterize computer science education
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are inadequate for developing students’ problem-solving and computational thinking
skills [28,41,42,59,62,73–78]. Furthermore, in complete accordance with the Dunning–
Kruger effect [91], the pre-structural level of understanding (missing the point) prevents
students from seeing what they do not know. It is also found that students form their
self-assessment values based on the number of different activities carried out in classes,
among which typing spreadsheet tables is the most frequent.

Considering the activation of knowledge-transfer items, the results reveal that some
pieces from mathematics allow students to reach the relational level of understanding in the
specific task. However, hardly any traces of spreadsheet knowledge-transfer are evident,
which prevents students from transforming pieces of knowledge from one task to another,
or, in other words, from classroom activities to problem-solving, and from knowing the
names of functions to applying them at the relational level of understanding.

The results of the test proved that girls performed better than boys did in the
programming-oriented spreadsheet problems. This finding, along with previously pub-
lished similar results, call attention to the negative effect of gender stereotypes, namely
that tertiary informatics education suits boys better than girls. The high number of over-
confident male students might explain the extremely high attrition rate in informatics
education [42]. Based on these findings, the lack of informaticians in the labor market might
be improved by encouraging girls to study informatics, as it is expressed in Soloway’s [22]
and Ben-Ari’s [24] papers.

At present, studying spreadsheeting seems to be only for the sake of learning how
the user interface works, without any meaningful further aims. We can conclude from
the results of the test that spreadsheet education at this stage does not support the devel-
opment of students’ computational thinking and algorithmic skills. As a result, students
cannot reach the relational level of understanding, not to mention the extended abstract
category, which is one level above relational. One must also note that—contrary to Pren-
sky’s unproven claims considering digital generations [52,53]—even digital children are
in great need of educational support. To provide this support, we must have expert
teachers [26,40,45] who can break away from the widely accepted tool-centered, low-
mathability teaching and testing approaches, and switch to high-mathability problem-
solving approaches [29,30,57,58,75,76].
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Alkalmazásáról; Korona Kiadó: Budapest, Hungary, 1995; ISBN 963 8153 87 3.

5. National Base Curriculum 2009. In Hungarian: 202/2007. (VII. 31.) Korm. Rendelete a Nemzeti Alaptanterv Kiadásáról, Beveze-téséről és
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Alkalmazásáról. Available online: http://ofi.hu/sites/default/files/attachments/mk_nat_20121.pdf (accessed on 12 June 2021).

7. National Base Curriculum 2020. In Hungarian: 5/2020. (I. 31.) Korm. Rendelete a Nemzeti Alaptanterv Kiadásáról, Bevezetéséről
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