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Abstract: This article introduces the concept of the carrying capacity of data (CCD), defined as an integrated, evaluative judgment 
of the credibility of specific data-based inferences, informed by quantitative and qualitative analyses, leavened by experience. The 
sequential process of evaluating the CCD is represented schematically by a framework that can guide data analysis and statistical 
inference, as well as pedagogy. Aspects of each phase are illustrated with examples. A key initial activity in empirical work is data 
scrutiny, comprising consideration of data provenance and characteristics, as well as data limitations in light of the context and 
purpose of the study.  Relevant auxiliary information can contribute to evaluating the CCD, as can sensitivity analyses conducted at 
the modeling stage. It is argued that early courses in statistical methods, and the textbooks they rely on, typically give little emphasis 
to, or omit entirely, discussion of the importance of data scrutiny in scientific research. This inattention and lack of guided, practical 
experience leaves students unprepared for the real world of empirical studies. Instructors should both cultivate in their students a 
true respect for data and engage them in authentic empirical research involving real data, rather than the context-free data to which 
they are usually exposed.   
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Introduction 

Empirical research, including data inspection and exploration, modeling, analysis and interpretation, plays a critical role 
in the educational and social sciences. It complements research of a more theoretical or conceptual nature by providing 
evidence to support or refute hypotheses and predictions. It can also generate surprises that spur new insights and 
models. Accordingly, graduate study in these domains generally includes courses in methodology comprising different 
combinations of quantitative, qualitative and mixed methods approaches. In the former, the emphasis typically is on 
developing families of statistical models (e.g., general linear models, multi-level regression models) with procedural 
recommendations, guides to the interpretation of the results and, occasionally, caveats and limitations. Qualitative 
methods courses describe different conceptual frameworks for the research, the procedures associated with each 
framework, along with guidelines for the conduct of the research (Shavelson & Towne, 2002). 

Looking back on more than 45 years of theoretical and applied research, as well as many years of teaching, it strikes me 
as very problematic that even today there remains a deep disjuncture between actual practice and what is presented in 
most textbooks. In well-done, real world projects, investigators spend considerable time in scrutinizing, cleaning, and 
organizing the data. When the data have been collected as part of a project, data scrutiny includes a review of the data 
collection design, evaluation of fidelity of implementation of the design, various data checks, and documentation of any 
problems (e.g., departures from the implementation protocols, extent and patterns of missing data). Typically, the raw 
data is then transformed and organized into an analytic database – a process that may involve some combination of data 

exclusion, trimming, imputation and summarization.† When the project involves secondary analysis of data, similar 
scrutiny is conducted to the extent that the relevant information is available. The results are, or should be, foundational 
both to the conduct of the study and to the proper interpretation of the results. 
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† This is a form of preprocessing that has implications for later inferential procedures (Blocker & Meng, 2013). This can be more problematic for 
secondary analysts who may not have access to the procedures employed. Data preprocessing also plays a role in considerations of data life cycles as 
discussed by Borgman (2019). 
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And yet … few first and second courses that I am aware of address this key aspect of applied research in any depth, so 
that researchers-in-training are given little background and few opportunities to practice the systematic inspection and 
evaluation of data. Furthermore, there is scant attention to how the implications for inference of this evaluation depend 
considerably on the context and purpose(s) of the study, as well as what relevant auxiliary information may be available. 
I characterize this neglect as a failure to cultivate in our students a proper respect for data. There are many culprits for 
this state of affairs: These issues and related procedures are rarely, if ever, addressed in textbooks while, at the same 
time, instructors are under pressure to cover an extensive and ever-expanding curriculum. Moreover, providing the 
necessary background and accompanying materials can be both burdensome and time-consuming.  

This article offers an approach to addressing this disjuncture through the elucidation of the concept of the carrying 
capacity of a data set. In rough analogy with the notion from ecology of the carrying capacity of an environment, the 
carrying capacity of a data set (CCD) is defined as the inferential burden that can be supported by the data set. Note that 
when the carrying capacity of the environment is exceeded, then negative consequences often result (e.g., some degree 
of destabilization in the balance among species and/or environmental degradation). Similarly, when the CCD is exceeded 
the inferential chain from data to conclusions is weakened, thereby threatening (and even undermining) the credibility 
of those conclusions.  

The CCD was introduced in a report (Braun, 1990), but remained largely dormant until the opportunity offered by an 
award prompted a return to and extension of the concept. By definition, understanding the CCD is crucial to the proper 
interpretation of the results of the analyses carried out on the data. Consequently, evaluating the CCD becomes an 
essential goal of any empirical research effort. But how is such an evaluation to be carried out? The article presents a CCD 
evaluation framework that comprises four distinct, ordered phases. A framework is simply a useful way of organizing 
and communicating a complex construct or a multi-step process. The framework offered here arose inductively as a 
distillation of hard-won experiences in a range of empirical investigations – experiences that too often included 
overlooked data problems, missteps in analysis and overly optimistic interpretations. Figure 1 displays a visual 
representation of the framework. 

An important theme in CCD evaluation is the need to infuse data scrutiny and data-related considerations into the 
conduct of empirical studies. In recent years, the research literature has become more attentive to aspects of this issue, 
motivated perhaps by the rise of “Big Data”. On the one hand, some authors have probed more deeply into the nature of 
data from a philosophical point of view (Leonelli, 2019). On the other, some have proposed frameworks to try to capture 
key stages of empirical research (Donoho, 2017; Keller et al., 2020). The CCD evaluation framework is complementary to 
the one offered by Keller et al. (2020). In particular, both frameworks make it clear that the concept of data quality does 
not have fixed meaning for a particular data set; rather, it depends on a number of factors including the intended use and 

the auxiliary information available.‡ The contingent nature of data quality is perfectly analogous to the contingent nature 
of the validity of an assessment instrument: In the latter setting, validity is not regarded as an inherent property of the 
instrument itself but, rather, is dependent on purpose, context and use.  

As described below, exploring and evaluating the CCD is a systematic way of revealing data quality in a particular setting. 
Donoho (2017, pp. 755-756) proposes a Greater Data Science (GDS) framework comprising six phases or divisions. 
Although there are a number of connections between CCD and some of the GDS phases, it is not the intent of this paper 
to explicate them. Suffice it to say that the GDS has greater scope, while CCD offers more detail on the careful examination 
of data and the implications for inference.  

As will become clear, taking CCD seriously calls for adopting a more critical stance towards both standard data 
evaluations and conventional statistical analyses. Over the years, many statisticians have warned of the dangers of 
routine model building and the blithe acceptance of potentially problematic assumptions that has characterized much of 

empirical research.§ Perhaps the most renowned was John Tukey. Remarkably, only 20 years after his introduction to 
statistics at the beginning of World War II, he already warned that statisticians were in danger of becoming increasingly 

irrelevant by ignoring the real problems of statistical practice.** In a seminal article Tukey (1962) argued: 

Large parts of data analysis are inferential in the sample-to-population sense, but these are only parts, not the whole. 
Large parts of data analysis are incisive, laying bare indications which we could not perceive by simple and direct 
examination of the raw data… Some parts of data analysis … are allocation, in the sense that they guide us in the 
distribution of effort … in observation, experimentation, or analysis. Data analysis is a larger and more varied field than 
inference, or incisive procedures, or allocation (p. 3). 

 
‡ Both frameworks are consistent with the ‘relational’ perspective on data discussed by Leonelli (2019). 

§ By routine model building I mean the choice of a modelling strategy that involves little or no consideration of the relationship between theory and 
the variables included in the model, of data quality, and of the appropriateness of the strategy to both the data and the research questions posed. 

** Donoho (2017) provides further examples of Tukey’s prescience, both in his critique of academic (mathematical) statistics and in anticipating the 
utility of taking a more data-centric view of statistical practice.  
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The future of data analysis can involve great progress…Will it? That remains to us, to our willingness to take up the rocky 
road of real problems in preference to the smooth road of unreal assumptions, arbitrary criteria and abstract results 
without real attachments (p. 65). 

Another was David Freedman who, in many articles and reports, cast a critical eye on many commonly used statistical 
models and the tenability of the assumptions that underlie their proper application (Freedman, 2010). His 
recommendation that practitioners expend some “shoe-leather” in thoroughly investigating the substantive context of 
the problem before embarking on model-based analyses is certainly consistent with the investigation of the CCD. In his 
landmark article on statistics and data science, Donoho (2017) calls out John Chambers, Jeff Wu, and Bill Cleveland as 
early proponents of a greater emphasis on (what we now refer to as) data analysis and less attention to classical statistical 
modeling and inference. With regard to conventional statistical modeling, Stark and Saltelli (2018) use the term cargo-
cult statistics to refer to (and to deplore) “the ritualistic miming of statistics rather than conscientious practice” (p. 40).  

Methodology 

Carrying Capacity of Data 

The carrying capacity of data (CCD) is an integrated, evaluative judgment of the credibility of specific data-based 
inferences, informed by quantitative and qualitative analyses, leavened by experience. The CCD is not a fixed quantity 
inherent in a dataset, as it depends crucially on the context and purpose of the analysis. Moreover, the CCD cannot be 
simply determined by inspection; rather, it emerges through an orderly series of investigations with due consideration 
of the patterns in the data that are revealed, as well as the nature of the intended inferences. By combining quantitative 
and qualitative considerations, the result is a nuanced evaluation of the utility – and limitations -- of the data at hand with 
respect to the substantive question(s) posed. 

Figure 1 displays a schematic representation of the process by which the carrying capacity of a dataset can be evaluated. 
For convenience, this is denoted below as the CCD framework. 

 

Figure 1. The Evaluation of the Carrying Capacity of Data: Schematic Framework 
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As depicted in Figure 1, the CCD framework comprises four phases that are briefly described in this section. In the next 
section, certain aspects of each phase will be illustrated with a number of examples. As the CCD can appear rather 
amorphous, that section also describes efforts to quantify the CCD in certain settings. 

Phase 1 

Purpose is framed within a particular substantive context and is often the result of a negotiation among stakeholders. In 
this phase the emphasis is on examining the available data in light of the problem context and the purposes of the analysis. 
(It bears mentioning that the CCD framework described here does not include considerations of alternative data 
collection designs). Given the design and the data at hand, questions are raised regarding  

• the source(s) of the raw data,  
• how that data was collected, reported, organized and (possibly) transformed,  
• the grain size of the data, 
• the treatment of missing data,  
• how the analytic database was constructed,  
• the likely power of conventional analyses. 

Interrogating the source of the data can be revealing. For example, Wolf et al. (2020) show that estimates of the 
effectiveness of an intervention are systematically larger when the studies are done or commissioned by the developers 
than when they are done by independent investigators. As the responses to the questions above are collected and 
reviewed, concerns may arise and, in some cases, the purpose may have to be modified to address those concerns. 
Occasionally, analysis can indicate that the data are wholly inadequate to the purpose. For example, Bond and Lang 
(2019) show that survey data on individuals’ levels of happiness (reported in ordered intervals) cannot reasonably be 
used to estimate two groups’ relative average happiness – the usual estimand in such studies. 

Finally, in preparation for the next phase, various descriptive statistics are produced so that relevant characteristics are 
available for study. These can include marginal and joint distributions, identification of outliers, along with data patterns 
that are evident from various graphical displays. Findings from this phase should be documented and reported 
appropriately. 

With the emergence of “Big Data,” raw data may undergo several stages of pre-processing before release to the analyst.†† 

Some stages may be motivated by the need to summarize gigabytes of data, others to protect individual privacy (Leonelli, 
2019). As an example, with the advent of computer-based testing, it is possible to record process data at the level of the 
individual keystroke or mouse movement. The enormous volume of data generated in a single testing session 
necessitates the construction of summary statistics (e.g., the number of keystrokes in each 20 second interval). These 
statistics can be used to monitor the testing process, complement existing item-level metadata, or identify anomalous 
respondent behavior. Deciding what summary statistics will prove most useful is an area of current research (Provasniak, 
2021). Note that in the course of pre-processing, certain features of the data may be lost, or at least obscured, with 
implications for comprehensive data scrutiny. 

Phase 2 

Here the assumptions underlying different analysis strategies/models are evaluated based on the findings of Phase 1, as 
well as any auxiliary information that is available. Auxiliary information may introduce boundary conditions or otherwise 
cast doubt on the credibility of one or more of the assumptions. Alternatively, it may support the credibility of some 
assumptions. Ioannidis (2005) offers another example of the use of auxiliary information. He demonstrates that knowing 
that many independent studies are investigating the same phenomenon reduces the inferential value of any one study as 
a result of the problem of multiplicity. Ignoring multiplicity leads to too many false ‘discoveries’. 

Thoughtful use of displays, especially dynamic visualization, can enhance the CCD as anyone who has seen the You Tube 

videos of Hans Rosling can attest. ‡‡  Though this does not constitute auxiliary information in the usual sense, it is 
consistent with tenets of exploratory data analysis as developed by Tukey (1976). 

In the era of Big Data, machine learning may be employed, either as a precursor or as an alternative, to classical statistical 
modeling. With machine learning, the emphasis is typically on discovering algorithms that produce useful predictions 

(according to a pre-determined metric), with less interest in being able to specify the pathway from input to output.§§    

 
†† These issues are by no means confined to the social and behavioral sciences. They may be even more problematic in “hard science” fields such as 
particle physics and helioseismology (P.B. Stark, personal communication, 6-21-2020). Combining quantitative and qualitative measures of uncertainty 
in environmental science under the NUSAP system is addressed in van der Sluijs et al. (2005). Similar issues in the world of business are discussed in 
Kennet and Redman (2019). 

‡‡ https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen 
§§ Donoho (2017) points out this divergence in modeling strategies was already highlighted by Breiman (2001). 
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At the conclusion of this phase, a second determination of the CCD is made. It can signal potential trouble spots or 
weaknesses in the analysis strategy that may lead to supplementary analyses in the following phase. 

Phase 3 

In this phase, the main analyses are carried out, accompanied by various sensitivity analyses applied to both the 
assumptions and the methods. For example, when quasi-experimental designs are employed to estimate causal effects, 
analyses to evaluate sensitivity to hidden bias are called for (Rosenbaum, 2002). More generally, sensitivity analysis may 
involve applying different models, testing or weakening some assumptions, and so on. Typical assumptions to be 
examined are (i) the use of a particular parametric model for the objects of study, including error distributions; (ii) the 
mechanisms generating missing, truncated, or censored data; and (iii) the choice of prior distributions in a Bayesian 
analysis. 

It is not uncommon for sensitivity analyses to suggest alternative approaches to be pursued. In any case, the outcome of 
this phase is not only a set of results related to purpose, but also a body of evidence regarding the CCD that comprises 
both quantitative and qualitative components. Ideally, this phase helps in generating more realistic estimates of the 
uncertainty to be attached to the results. 

It is important to recognize that when data scrutiny (and/or data mining) leads to the choice of models to be investigated, 
then the usual interpretations of statistical output such as p-values may be seriously in error. Although strategies for 
dealing with post-selection inference appear in the literature (e.g., Berk et al., 2013; Tibshirani et al., 2016), unfortunately 
they are not much used in practice. As Berk et al. (2013) point out, the problem can be transformed into one related to 
simultaneous inference and, consequently, methods like control of the False Discovery Rate (Benjamini et al., 2009) may 
be particularly useful. Benjamini et al. (2019) provide further developments in this vein. For a more expansive and liberal 
view of the problem of selection, see Mayo and Cox (2010). 

Phase 4 

The final phase involves a review of the entire sequence of analyses, leading to an overall set of conclusions specific to 
the purpose of the study. In some cases, full or partial, answers are available, along with appropriate measures of 
uncertainty, as well as any limitations on the interpretation of the findings. In more extreme cases, the conclusion may 
be that the data at hand are insufficient to yield meaningful answers – but perhaps with some guidance as to the design 
of future studies. 

Carrying out an analysis without seriously considering the CCD does not necessarily render the resulting interpretations 
and conclusions incorrect. On the other hand, it almost certainly means that the stated levels of uncertainty with respect 
to the conclusions underestimate the true uncertainty – often substantially so. More problematic, perhaps, is that the 

incorrect propagation of uncertainty can result in biased estimates, thereby increasing the overall mean squared error.*** 

Such a problem arises in the area of international large-scale assessments such as TIMSS and PISA because of the sparse 
data designs employed. Successfully addressing the problem requires complex, statistical machinery that generates the 
so-called plausible values that underly the survey reports (von Davier & Sinharay, 2014). 

In carrying out an evaluation of the CCD, the analyst should keep three critical points in mind. First, as indicated in Figure 
1, the determination of the CCD evolves through the course of the investigation. In particular, it can change when new 
information becomes available or new analytic methods are brought to bear. Second, analysis of the CCD can help to 
pinpoint weak links in the inferential chain from data to conclusions - and even suggest alternative data analysis 
strategies, such as focusing initially on better-behaved subsets of the data. Finally, the determination of the CCD involves 
professional judgment – it cannot be reduced to the application of a set of algorithms. 

The examples to be presented below, along with the accompanying discussion, strongly support the idea that students 
be alerted to the importance of what may be labeled forensic data analysis. Although the term has typically been applied 
to the detection of academic fraud, I suggest extending it to the conduct of all studies. Questions regarding the provenance 
of the data (where do they come from – and from whom), as well as the characteristics and deficiencies of the data, should 
be staples of any empirical study.  

Indeed, broadly speaking, successive stages of a study can be represented as: forensic data analysis (FDA), exploratory 
data analysis (EDA), and confirmatory data analysis (CDA). FDA has been described just above. EDA represents an 
intermediate stage comprising the open-ended search for patterns and structure in the data, with heavy reliance on 
various visualization techniques. CDA is the inferential component of data analysis and the one that is emphasized in 
most standard courses on statistics. It comprises combinations of model estimation, hypothesis testing and (sometimes) 
sensitivity analyses. Of course, actual practice is rarely strictly linear, with multiple feedback loops the norm. 

 
*** I thank X-L Meng for making this point. 
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At this point, it may be useful to call out three examples that represent different levels of CCD. These – and others -- will 
be revisited in the next section. 

• Low CCD. The ‘Wall Charts’ produced by the U.S. Department of Education during the 1980s was meant to provide 
states with comparative data that would help to inform policy decisions.  

• Moderate CCD. The Tennessee STAR study was a randomized control trial intended to estimate the impact of smaller 
class sizes on student achievement  

• High CCD. A comprehensive demographic survey in Malaysia was used to estimate the advantage of breastfeeding 
over bottle feeding on infant survival.  

Findings 
Scrutinizing the Data 

The first step in evaluating the CCD is careful scrutiny of the data. As noted earlier, this is a key initial activity in any 
study not much dealt with in textbooks. Five examples should suffice to make the point. 

(A)  Organizations responsible for constructing and maintaining administrative and official databases expend 
considerable effort in achieving high levels of accuracy – due in part to their recognition of the extended life 
cycles of such data (Borgman, 2019). This can be particularly challenging when the data are obtained through 
multiple sources characterized by different levels of reliability and credibility.††† For example in a study of novice 
graduates of teacher preparation programs in one state, Braun et al. (2017) drew on multiple state 
administrative files to identify middle school teachers who had three or fewer years of classroom experience as 
the teacher of record. However, in a later phase of the study, a web survey of a subset of those teachers revealed 
that many were not in fact novice teachers according to the study’s definition. The divergence between the 
information in the state databases and respondents’ self-report added a degree of uncertainty beyond that 
provided by the conventional, model-based measures of variance.  

(B) In other settings, there may be concerns regarding the accuracy of individuals’ responses to surveys or other 
probes – particularly when the responses relate to sensitive issues such as salary, family circumstances, sexual 
orientation and the like. Goldhaber et al. (2019) offer a cautionary example involving teacher salaries in 
Washington State, with two databases yielding very different patterns. The authors highlight a conundrum:  

When data are not critical to any administrative process, documentation and reporting requirements are 
more likely to be lax, and the accuracy of such data should not be taken for granted. Where data are 
important to administrative processes … researchers should understand where there may be an incentive 
to misreport (p. 179).  

(C) International large-scale assessments (ILSA) aggregate data from multiple jurisdictions, with each jurisdiction 
responsible for collecting data, either through governmental mechanisms or through third parties. Assuring data 
quality in this setting is very challenging. The Programme in International Assessment of Adult Competencies 
(PIAAC) is a case in point (Organisation for Economic Co-operation and Development [OECD], 2013). PIAAC is a 
household survey of adults ages 16-65 that conducts assessments of foundational skills and obtains rich 
background information.  Data collected by trained staff is obtained through one-on-one interviews conducted 
with the aid of tablets.  Data from the tablets is uploaded periodically to a central facility in the jurisdiction and 
then to the lead contractors. The auxiliary information available from the uploaded records facilitates checking 
some aspects of data quality. For example, a review of this information from the first round of data collection 
that took place in 2012 revealed that in the Moscow region of the Russian Federation some interviewers 
recorded impossibly large numbers of households visited and the data reported appeared to have been 
fabricated. Ultimately all data from the Moscow region was deleted from the official database. 

(D)  Meta-analysis is one area of research where there is an intense focus on data quality and relevance. The goal of 
meta-analysis is to summarize the results of multiple studies of the same phenomenon in order to determine if 
it is possible to reach a consensus regarding the nature of that phenomenon (Borenstein et al., 2009). In this 
context, each study is a datum. An initial scan of the literature may yield hundreds of studies. However, careful 
review of each study may result in only a small fraction retained for analysis. Although some studies are rejected 
because they are deemed not relevant, most are rejected because of deficiencies in the raw data, the 
documentation provided, the methodology employed or the reporting format. The credibility and utility of the 
meta-analysis depends crucially on the underlying assumptions, the exclusion rules employed, and the care with 
which the review process is conducted.‡‡‡  

 
††† Many articles in a typical issue of the Journal of Official Statistics deal with examining and enhancing data quality – especially critical because these 
data often serve as input to secondary analyses with important policy implications. Statistics Canada and the US Census Bureau have been leaders in 
“data cleaning” and “data editing”. 
‡‡‡ It is possible that overly rigorous rejection of “deficient” studies could result in a final study set that yields a too-optimistic estimate of the effect. 
Berk and Freedman (2003) argue that most conventional meta-analyses are seriously flawed as they rely on assumptions that are not likely to be 
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(E)  Although this article is concerned with quantitative data analysis, it bears mentioning that many aspects of CCD 
apply, mutatis mutandis, to qualitative data analysis as well. Most such studies collect evidence from a variety of 
sources such as one-on-one interviews, focus groups, administrative data and documents, and reports of various 
kinds. Before constructing a coherent narrative and reaching defensible conclusions, each datum should be 
evaluated with respect to both relevance and trustworthiness. This is done by careful consideration of the links 
of the datum to the research question(s), as well as by judgments about the credibility of the sources and 
triangulation among the different data. Reviews of the draft report by those who participated in the interviews 
or provided the data add assurance to the quality of the data and its interpretations.§§§  

Data: Quality in Context 

As noted earlier, the CCD must be evaluated in light of the purpose of the study. The CCD of the data may be quite adequate 
for one purpose but not for another, even if the FDA phase reveals no essential difficulties. Some examples illustrate the 
point. 

(A) Retrospective ascertainment data arise when the time of occurrence of an event is not known until a second event 
occurs. A classic example is infection with HIV due to transfusion with blood containing the virus. The point of 
infection is not recorded until the individual develops AIDS and it is subsequently determined, with reasonable 
certainty, that the cause was the transfusion. One question is whether this sort of data can be used to estimate the 
AIDS incubation time. This was addressed by Kalbfleisch and Lawless (1989) and they were able to determine the 
limitations of the data in answering the question. A similar analysis was undertaken by Braun (1989) employing 
data on bid-rigging convictions to estimate the probability that such crimes would be uncovered and the 
perpetrators convicted. It was found that such estimates could be obtained but were very sensitive to model 
assumptions – assumptions that could not be independently evaluated. 

(B)  In 1984, the U.S. Department of Education released the “Wall Chart,” a compendium of information organized by 
state. The chart comprised three panels: the first panel contained various performance indicators, the second 
resource inputs, and the third population characteristics. As noted by Ginsberg et al. (1988), this was the first time 
that extensive state-level data, including performance data, were available in a format that facilitated comparisons 
among states. Indeed, the stated intent was to encourage such comparisons so that state leaders and other 
stakeholders could identify “what works” and make appropriate policy adjustments.  

(C) Although Ginsberg et al. (1988) were quite supportive of the effort, there was considerable skepticism that such 
data, however analyzed, could yield useful policy evidence as to which states had the more effective education 
systems (Wainer, 1986a). For example, a key performance indicator in the Wall Chart was related to a state’s 
average score on one of two national, college admissions tests (ACT or SAT).**** States were ranked on the basis of 
the changes in average test scores (on the ACT or the SAT) over a ten-year period. It had long been recognized that 
states’ average scores on these tests were correlated with the percentages of students in the high school cohort 
taking the test and there had been different attempts to adjust these scores for differential selection bias (e.g., 
Steelman & Powell, 1985). Others argued, however, that such adjustments depended on assumptions that could 
not be empirically verified and, unsurprisingly, the results were rather sensitive to the method employed (Holland 
& Wainer, 1990; Wainer, 1986b). Notably, Holland and Wainer (1990) drew on auxiliary information to cast doubt 
on a key assumption of the adjustment methods. Among other things, this example illustrates how there can be 
honest debates regarding the CCD, especially with respect to informing policy decisions. 

(D)  In a study of the feasibility of evaluating the quality of teacher preparation programs using novice teacher value-
added scores, Braun et al. (2017) argued that the data available were inadequate to the task; that is, the CCD was 
not sufficient for the purpose. Among the concerns cited were: (i) the small number of graduates in different 
programs (e.g., middle school mathematics); (ii) novice teacher efficacy is associated with the extent and quality 
of the induction/mentoring program at the school-of-placement, but the information on such programs was not 
readily available; (iii) the proportions of graduates that obtain employment in the state’s regular public and 
charter schools (and so are included in the state’s administrative databases) varies substantially across programs. 
Further, in more selective programs many stronger graduates take jobs out of state and/or choose to work in 
private or parochial schools, while students in less selective programs are more likely to work in-state or fail to 
find jobs; (iv) 95% confidence intervals for program-level mean value-added scores employing model-based 
estimates of variance were so broad that even programs widely separated in rank had overlapping intervals. Braun 
et al. (2017) concluded that the combination of high variance, substantial bias and questionable data quality 
rendered this approach to program evaluation unworkable. 

 
satisfied in practice and, moreover, their conclusions are very sensitive to those assumptions. In our terms, the CCD can be rather weak. For a more 
flexible approach to meta-analysis utilizing Empirical Bayes models, see Hedges (1988). 
§§§ For an extended example, see Hargreaves and Braun (2012). 
**** States were divided into two groups, depending on whether their students were more likely to take the ACT or the SAT. 
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(E)  Data from ILSA are used for many different purposes. Table 1 is adapted from a report on two workshops carried 
out under the auspices of the U.S. National Academy of Education (Singer et al., 2018). The figure displays seven 
such purposes along with the editors’ judgment of the general suitability of ILSA data for each purpose. In effect, 
these are judgments of the CCD of ILSA data for these purposes, ranging from providing relevant information about 
jurisdictions’ education systems to supporting causal inferences regarding specific education or social policies.  

These examples illustrate how conducting a thorough analysis of the adequacy of the data for the purpose of the study 
can help to set appropriate limits on the kinds of conclusions that can be drawn, as well as the credibility to be attached 
to those conclusions.  Such analyses typically involve technical matters and disagreements among experts are not 
unusual. Indeed, a lack of consensus should sound a note of caution.  

Table 1. The Seven Major Uses of ILSAs—How Well Can ILSAs Achieve These Goals? 

  Uses 
How well can ILSAs achieve 
this goal? 

1 To be transparent about the condition of a nation’s education system  Outstanding 
2 To disturb complacency and spur education reforms. Outstanding 

3 
To describe and compare student achievement and contextual factors (e.g., 
policies, student characteristics) across nations. 

Yes, with some caveats 

4 
To track changes over time in student achievement, contextual factors, and 
their mutual relationships, within and across nations. 

Yes, with some caveats 

5 
To create de facto international benchmarking, by identifying top-
performing nations and jurisdictions, or those making unusually large gains, 
and learning from their practices. 

Challenging, with many 
caveats 

6 
To evaluate the effectiveness of curricula, instructional strategies, and 
education policies. 

Only with extreme caution 

7 
To explore causal relationships between contextual factors (demographic, 
social, economic and educational variables) and student achievement. 

Generally impossible 

Auxiliary Information 

Judgments of CCD can be influenced by relevant auxiliary information. Such information may be obtained from related 
studies, other databases or from individuals with knowledge of the data or the context. Of course, the impact can be 
either positive or negative. 

(A) The Tennessee STAR experiment (Nye et al., 2001) was a field RCT undertaken to examine the impact of both class 
size and class staffing on children’s academic progress as measured by standardized test scores. For the most part, 
analyses indicated that smaller class sizes led to improved test scores, especially for more disadvantaged students. 
Since the initial reports appeared, questions were raised about how well the original design had been realized: for 
various reasons, randomized field trials are never perfectly executed. Chetty et al. (2011) used data from tax 
records linked to students’ families to support the assumption of equivalence of treatment groups. They found no 
systematic differences in the family incomes of the children in the various treatment groups. Accordingly, 
judgment of the CCD of the data for inferences about treatment effects was enhanced. 

(B) The U.S. National Assessment of Educational Progress (NAEP) is a large-scale assessment survey that collects 
nationally representative achievement data on fourth and eighth graders in reading and mathematics.†††† The 
results are used primarily to make comparisons of performance distributions among states and among sub-
populations defined by combinations of individual characteristics such as gender and race/ethnicity. Important 
outcomes are estimates of achievement gaps between (say) White students and Black or Hispanic students – 
nationally or by state. The sampling of schools and students within schools is conducted with high fidelity so that 
generalizability should be high. On the other hand, there are no stakes for students, leaving persistent questions 
regarding their motivation. Obviously, differential motivation and effort expended across states and/or sub-
populations can lead to biased results. Previous small-scale studies yielded conflicting results. Braun et al. (2011) 
conducted an RCT with nearly 9000 students drawn from a broad range of schools in seven states. The focus was 
the NAEP 8th grade reading assessment. Students were administered a “NAEP-like” form under conditions that 
mimicked those of the formal assessment. The experiment comprised three treatment arms: a control, a fixed 
incentive and a contingent incentive. Pairwise comparisons of score distributions between treatment arms for 
many subpopulations yielded differences that were statistically significant and substantively meaningful – 
especially between the control and the contingent incentives, with lower performance in the control condition. 
One conclusion was that current estimates of achievement gaps are likely underestimating the true achievement 
gaps, thereby lowering confidence in the CCD of NAEP for such inferences. 

 
†††† NAEP tests 12th graders on a quadrennial cycle. It also tests other subjects in different grades as budgets permit. 
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There is evidently great value in bringing auxiliary information to bear though it often takes some imagination to identify 
potential sources. At the same time, the evaluation of the quality and relevance of such information should be carried out 
with the same rigor as for the original data. When the issue is sufficiently important and the degree of uncertainty too 
great, special studies can be conducted to produce additional, relevant information. 

Sensitivity Analysis 

In evaluating the CCD, sensitivity analysis denotes a range of strategies for ascertaining how robust are the intended 
inferences to the assumptions and models from which the inferences are derived. If the inferences appear strongly 
dependent on specific assumptions and models, then a judgment regarding the CCD is markedly diminished. In classical 
statistics, non-parametric methods were introduced for just this reason: Properties of non-parametric estimates (say, of 
location) or of non-parametric test statistics were at most weakly dependent on the underlying distribution of the data. 
The trade-off was lower relative efficiency for a given distribution in comparison to parametric methods chosen to 
optimize performance for that distribution.  This, in turn, led to the development of robust-efficient methods that 
maintained high levels of relative efficiency for a broad range of distributions. Estimates of location and estimates of 
regression models are perhaps the best-known examples (Maronna, 2018). In the present context, we can say that these 
methodological developments enhanced the CCD of the data for certain types of inferences. 

Of course, there are many different approaches to sensitivity analysis, too many to address in the present paper.‡‡‡‡ 

Three examples follow. 

(A) A randomized control trial in Tennessee of a pre-K intervention found effects at the end of the school year, but 
that overall the advantage had dissipated by the third grade. Pearman II et al. (2020) investigated whether there 
were combinations of factors that resulted in sustaining the early advantage. Of the original student sample of 
1240, more than a third (434) were missing one or more data components. The authors chose to work with the 
complete data sample and to conduct sensitivity analyses to determined how robust the results were to that 
choice, as well as other decisions made during the course of the analysis. With respect to the latter, a number of 
alternative strategies were implemented. The results displayed only minor deviations from those derived in the 
original analysis. To assess the sensitivity to using only the complete data sample, they carried out imputations 
of the baseline covariates and repeated the analysis for the full sample. Again, only minor deviations were 
observed, hence enhancing the CCD for the study. Ideally, different imputation models would be implemented 
to more fully examine the robustness of the results. In cases where substantively meaningful differences are 
found through sensitivity analysis, it is an open question on how to report the uncertainty in the results. 
Resorting to Bayesian modeling may be called for. 

(B) Another important area of application is the analysis of data from quasi-experimental designs (QED), where 
hidden bias is an ever-present concern. The question is whether the observed covariates used to control for self-
selection, (e.g., through regression-based adjustment, propensity score weighting, etc.) have fully removed the 
bias induced by self-selection and other factors (Dearing & Zachrisson, 2019; Rosenbaum, 2002).  

Conventional analysis employs measured covariates to take account of pre-treatment differences in the 
treatment and control groups. However, interpreting the coefficient of the treatment indicator as an 
(approximately) unbiased estimate of the true treatment effect depends on the assumption that the regression-
based adjustment has accounted for essentially all the selection bias. An approach to sensitivity analysis 
proposed by Rosenbaum and Rubin (1983) is to embed the current best model in a richer model that includes 
an unobserved, individual-level variable (denoted U) that is posited to capture the remaining hidden bias. One 
then makes a series of assumptions about the relationship of U to the probability of selection into the treatment 
or control groups, and to the outcome variable. For each pair of assumptions about U, a new estimate of the 
treatment effect is obtained.§§§§ The assumptions are directional in the sense that they are intended to produce 
lower estimates of the treatment effect.  

As the assumptions are varied systematically, they generate a response surface of estimated treatment effects. 

Figure 2 displays two such response surfaces.***** Figure 2a illustrates the situation in which the conventional 
estimate is very sensitive to departures from the (naïve) assumption that there is no hidden bias; that is, the 
estimated treatment effects decline precipitously with relatively small deviations from that assumption. By 
contrast, Figure 2b illustrates the situation in which the conventional estimate is relatively robust and declines 
rather slowly as the assumptions about U become more extreme. Note that deciding whether the response 

 
‡‡‡‡ For a somewhat different perspective, employing global sensitivity analysis, see Becker et al. (2014). Another approach, employing the coefficient 
of proportionality has been proposed by Oster (2019).  

§§§§ These estimates are also adjusted for the observed covariates. 

***** These figures are taken from Diaconu (2012). 
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surface more resembles Figure 2a or Figure 2b is often a matter of judgment and will depend on the context, the 
data available and the magnitudes of the estimated coefficients in the base model.  

 
               Figure 2a. Example of a steep response surface                        Figure 2b. Example of a shallow surface 

Figure 2. Response Surfaces for Sensitivity Analyses  

Many different variations and extensions of this approach can be found in the literature (Carnegie et al., 2016; 
Rosenbaum, 1989, 2002). An et al. (2018) carried out a sensitivity analysis for an elementary school intervention 
that focuses on addressing non-academic barriers to learning (Walsh et al., 2014). The outcomes of interest were 
the students’ performances on state-level, middle-school assessments of mathematics and English/Language 
arts. A conventional analysis employing both propensity score matching and regression adjustment yielded 
estimates of the treatment effects that were positive and statistically significant. Effect sizes were modest to 
moderate.  

The sensitivity analyses indicated that the estimated effects and effect sizes were reasonably robust to 
substantial hidden bias. Indeed, the derived estimated effects fell within the one-sided 90% confidence intervals 
from the standard model. The authors noted, however, that sensitivity analysis addresses only one of the six 
main threats to the validity of causal estimates of treatment effects from observational studies (Reardon & 
Raudenbush, 2009). For example, one threat is “no interference between units”; that is, the outcome for each 
unit is independent of the outcomes of the other units. That assumption is rather problematic when the units 
are students nested within classrooms nested within schools. Unfortunately, estimating the impact of 
departures from this assumption is a non-trivial exercise. This underscores the importance, if not the necessity, 
of drawing on auxiliary information in evaluating CCD. 

(C) Sensitivity analysis can sometimes take advantage of auxiliary information. A case in point is the Stanford 
Education Data Archive, an ambitious project to link average test scores in English/Language arts and 
mathematics for grades 3 through 8 across all school districts in the U.S.  Through a complex sequence of 
transformations, state test score scales were linked to the (common) NAEP scale. The construction of such a 
national reporting scale rests on a number of non-trivial assumptions. In addition to testing some of the 
assumptions directly through a form of cross-validation, Reardon et al. (2021) describe a complementary 
approach that employs test score data generated by a private test score vendor for about twenty percent of the 
school districts in the country. District-level, precision-adjusted correlations between the linked test score 
averages and the vendor test score averages ranged from 0.85 to 0.95, averaging 0.93. These and other findings 
indicated that the assumptions collectively did not induce unacceptable levels of bias, lending credibility to the 
linked scale. For further discussion of these issues, including some criticisms, see McCaffrey and Culpepper 
(2021). 

Quantifying the CCD 

To this point, the discussion has focused on raising concerns about how failure to carefully scrutinize the data and to 
consider the plausibility of model assumptions in light of both data limitations and contextual constraints can lead to 
unwarranted confidence in the results. A natural question is whether it is possible to provide sharper guidance in form 
of quantitative bounds. The answer is yes but, as one might expect, much depends on the particular context. Some 
examples follow. 

(A)  Over the last fifteen years there has been much interest in using longitudinal student test score records to estimate 
a teacher’s relative contribution to student growth. One family of models, termed Value-added Models (VAM), 
were formally introduced by Sanders et al. (1997). Rather complex calculations yielded a value-added “score” for 
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each teacher/classroom or grade or school. †††††  Because VAM incorporate test scores from prior years as 
predictors, they are generally only computed for teachers of English/Language arts or Mathematics in grades four 
to eight. Although there has been much criticism of the appropriateness of employing VAM scores for teacher 
evaluations (Darling-Hammond et al., 2012), value-added analyses remain a popular research tool. One technical 
concern focuses on the random effects model for VAM favored by statisticians. The issue is related to the possibility 
of a non-trivial correlation between teacher random effects and the random error component, resulting in biased 
estimates. As noted earlier, bias is particularly problematic not only because it is hard to quantify, but also because 
it can affect both accuracy and measures of uncertainty.  For a particular family of VAM models, Lockwood and 
McCaffrey (2007) derived an exact expression for the bias and showed that the bias tended to zero quite rapidly 
as the number of prior test scores employed in the model increased.  

(B)  Another source of bias in VAM is the non-random sorting of students and teachers. Using data from North Carolina, 
Rothstein (2009) estimated the bias in teacher estimates for various model specifications, with varying 
assumptions about how selection depends on both observables and non-observables. In many cases the estimated 
bias was large enough to raise serious concerns about the use of the estimates in teacher evaluation.‡‡‡‡‡ 

(C) The problem of estimation bias in QED is ever-present. Montgomery et al. (1986) analyzed data from a 
demographic survey conducted in Malaysia. Interest centered on estimating differential infant survival depending 
on whether the child was breastfed or bottle-fed. The database contained extensive background information on 
the mother-child dyad. For the child it recorded year of birth, birthweight (dichotomous: low or high), ethnicity, 
breastfeeding history, and whether the child had survived to one month and then to one year. Conventional logistic 
regression analyses yielded a very substantial advantage to breastfeeding for one month survival and a smaller, 
but still substantively and statistically significant, advantage for one year survival conditional on one month 
survival. Montgomery et al. (1986) then carried out a sensitivity analysis for each time point using an extension of 
the method proposed by Rosenbaum and Rubin (1983). They found that the conventional estimates were robust 
to hidden bias. Finally, taking advantage of the longitudinal aspect of the data, they were able to obtain specific 
estimates of the treatment effects (at one month and at one year) from a logistic multiple regression model that 
incorporated a variable representing unobserved, individual-level heterogeneity.§§§§§ 

(D) It is rare that a designed experiment—a randomized control trial—is conducted on a set of units that have been 
randomly sampled from the target population. One consequence is that although treatment effect estimates may 
have high internal validity, their external validity, or generalizability, is in doubt. Over the years, there have been 
a number of attempts to quantify the degree of generalizability. They rely on some measure of the quality of the 
match on various relevant characteristics between the set of experimental units and the target population. This 
literature is reviewed by Tipton and Olsen (2018). Tipton (2014) developed a generalizability index that 
constitutes a useful, quantitative guide to how likely the obtained experimental estimate, after post-stratification, 
would be close to an estimate based on a random sample from the population. The index is the product of three 
factors and ranges from 0 to 1, with values near 0 indicating low generalizability and values near 1 indicating high 
generalizability. 

(E) In his study of inference problems with Big Data, Meng (2018) considers, among other issues, the bias in estimating 
the population mean from a sample mean, where the sample is not necessarily a probability sample. 
Coincidentally, he derives a formula that is also the product of three factors, representing data quality, data 
quantity, and problem difficulty. Using the bias estimate, he is able to quantitatively compare the utilities of 
different sampling procedures – in other words, their CCD for a particular inferential problem. Meng emphasizes 
that data quality (and utility) is contingent on the context and purpose of the analysis. 

Discussion 

One theme of this article is that in order to arrive at defensible inferences accompanied by appropriate estimates of 
uncertainty, an essential first step is the careful and thorough investigation of the characteristics of the data. This should 
include considerations in the pre-processing of data, an activity that is increasingly popular in this era of Big Data. More 
broadly, the CCD framework offers a general roadmap for how to implement the stages of forensic, exploratory and 
confirmatory data analysis. Equally important, the framework is sufficiently rich to support various pedagogical 
strategies to expose students early on to the real world of applied statistics and data science.  

The issue of pedagogy is certainly not new. Nearly 60 years ago Tukey (1962) expressed concern that students of 
statistics were not being given sufficient exposure to real data and the opportunity to apprentice with working data 
analysts. Singer and Willett (1990) decried the near ubiquitous use of artificial data in statistics courses and offered 

 
††††† Since then, many other models have been proposed to estimate teachers’ contributions to student learning (Braun & Wainer, 2007). 

‡‡‡‡‡  Although it is beyond the scope of this paper, there are important questions regarding the relationship between data limitations, model 
misspecification and the use of the results for various purposes (Braun, 2015; Harris, 2009). 

§§§§§ To obtain these estimates, it was necessary to assume that certain higher-order interactions were time-invariant. Those assumptions deserve 
further examination. 
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suggestions on how to bring real data into the classroom in order to afford students more authentic experiences with 
scientific work.  With the growth of internet-based resources comprising both data sets and instructional modules, the 
situation has certainly improved over the last three decades.  

Nonetheless, most students remain woefully underprepared for the real world of data analysis and, in particular, they 
lack an understanding of the essential role of data forensics, broadly defined. To this point, Donoho (2017) asserted that 
“Data Gathering, Preparation and Exploration” (the first phase of his GDS framework) was not only more important than 
“Data Modeling” (phase five of his framework), but typically consumed more effort and resources. 

What is to be done? In individual courses, instructors can help students recognize the importance of conducting a 
thorough scrutiny of the data before plunging into modeling and confirmatory analysis – and how the results, along with 
findings from sensitivity analyses, can yield a refined estimate of the CCD. Instructors should be cultivating in their 
students an appreciation for the utility of thoroughly evaluating the CCD, as well as a healthy skepticism towards 
conventional interpretations of model-based inferences.  

An initial step in that direction would be replacing or supplementing “toy data sets” with carefully curated examples that 
can be employed to illustrate both forensic and exploratory data analysis. Ideally, some of the examples would be culled 
from the instructor’s own work so that relevant contextual information could be provided. A complementary strategy is 
to have students pose a problem that requires them to collect some data either directly or indirectly by extraction from 
an existing database. It is regrettable that the empirical examples found in most textbooks (or in their online 
supplements) present data that are either fabricated or “real,” but with no or limited background information. Rarely are 
data presented with sufficient detail to permit meaningful scrutiny and consideration of the implications for inference. 
When large data sets are employed for pedagogical purposes, it is usually to illustrate the application of a software 
module, with the emphasis on procedures and straightforward interpretations of output. There is neither discussion of 
the relationship of the characteristics of the data to the credibility of the desired inferences nor of the sensitivity of those 
inferences to assumptions about the data or those underlying the statistical models employed.  

An important benefit of authentic, data-centered instruction is that it provides a solid basis for developing students’ 
understanding of common pitfalls, ranging from data collection problems and coding errors to a failure to appreciate the 
inherent limitations of the data for the problem at hand. Experience with real data and the inevitable vicissitudes of actual 
data analysis and modeling can make courses in quantitative analysis and data science both more engaging and more 
memorable! In this regard, the CCD framework can guide the design of a sequence of modules that would help prepare 
students for successful professional practice. The modules could be embedded in different courses with the goal of 
introducing students over the course of a program of study (masters or doctoral) to the importance of early investments 
in ascertaining data quality, along with increasingly sophisticated approaches to evaluating the CCD in a range of settings. 
This would be analogous to the Tuning Project, which involves the redesign of undergraduate programs, with the goal of 
strengthening curricular coherence in the majors in order to enhance student learning (Jankowski & Marshall, 2017).****** 

Conclusions 

This article introduced the concept of the carrying capacity of a data set (CCD) and presented a rationale and framework 
for the thorough evaluation of the CCD as an integral part of any empirical study. Clearly, having CCD evaluation as 
standard practice remains very much aspirational. Although most studies do carry out a number of the evaluation 
components, few conduct them all. Aside from investigators not recognizing the need for some components, there are 
often constraints related to time and cost that mitigate against a complete CCD evaluation.  It is not uncommon for 
investigators to fail to commit sufficient time or funds for a thorough forensic data analysis.  

More problematic is the fact that even when limitations to the CCD are known, they are exceeded due to external forces. 
These include incentives to generate ‘statistically significant’ findings and the pressure to use extant data to answer 
questions for which the data are not appropriate. One manifestation is that known defects in the data are ignored when 
deriving measures of uncertainty for estimated parameters (e.g., ignoring bias) and, subsequently, when interpreting the 
results. To paraphrase one colleague’s comment, in the current climate, exceeding the CCD of one’s data may be the only 
way to thrive – if not survive. 

Similarly, there are obstacles to incorporating aspects of CCD evaluation into courses. Devoting more time to data 
forensics, for example, would necessitate making difficult choices on allocating less time to more standard content. It 
would also require instructors to invest resources in identifying appropriate data sets and devising the accompanying 
instructional modules. In most tertiary institutions, especially those with a focus on research, the rewards for major 
modifications to existing courses are meager at best. 

With these considerations in mind, I argue that we must change the circumstances under which we teach and publish. 
With respect to the former, we could begin by building an open source archive of curated data sets that include sufficient 
background information for at least a modest exercise in data forensics. If the data sets are sufficiently rich, other aspects 

 
****** For a related proposal on training of specialists in educational measurement, see Russell et al. (2019). 
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of CCD evaluation could be carried out (e.g., sensitivity analyses). Over time, the archive would grow to support 
methodological instruction with different substantive foci and, as a result, reduce the time required to integrate the 
material into a course.    

With respect to the latter, journals must set more demanding standards for the publication of empirical analyses. There 
are precedents for such changes. In clinical research, in comparison to the standards in place thirty years ago, journals 
now require more sophisticated statistical analyses, as well as more thorough discussion of both the rationale for the 
choice of models and the limitations of the analyses presented. The ongoing controversy regarding the overuse/misuse 
of p-values has prompted changes in the publication guidelines for some journals. Although, such changes do not occur 
overnight, a five- to ten-year horizon is not impractical. 

Limitations 

In the evaluation of the CCD, the focus in this article has been on quantitative methods and the types of data to which 
they are typically applied. It was noted in passing that many of the considerations apply to qualitative methods of 
analysis. However, that branch of empirical analysis is much less familiar to the author, who was therefore reluctant to 
venture along that branch. Surely, it would be very useful for others to extend the CCD framework to accommodate such 
methods and, ultimately, to mixed methods as well. Of course, the evaluative judgments rendered at each stage of an 
investigation, although informed by quantitative analyses, are essentially (and necessarily) qualitative in character.  

Another obvious limitation is that this article presents a personal view of a general strategy for statistical analysis and 
inference, along with its implications for both practice and pedagogy. Undoubtedly, others expert in these areas would 
offer somewhat different perspectives and emphases. Nonetheless, the hope is that the article will at the least stimulate 
a healthy debate on how to improve the quality of empirical research and related pedagogy in the educational and social 
sciences, both now and in the future. 
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