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Abstract: The development and evaluation of valid assessments of scientific reasoning are an integral
part of research in science education. In the present study, we used the linear logistic test model
(LLTM) to analyze how item features related to text complexity and the presence of visual represen-
tations influence the overall item difficulty of an established, multiple-choice, scientific reasoning
competencies assessment instrument. This study used data from n = 243 pre-service science teachers
from Australia, Canada, and the UK. The findings revealed that text complexity and the presence of
visual representations increased item difficulty and, in total, contributed to 32% of the variance in
item difficulty. These findings suggest that the multiple-choice items contain the following cognitive
demands: encoding, processing, and combining of textually presented information from different
parts of the items and encoding, processing, and combining information that is presented in both
the text and images. The present study adds to our knowledge of which cognitive demands are
imposed upon by multiple-choice assessment instruments and whether these demands are relevant
for the construct under investigation—in this case, scientific reasoning competencies. The findings
are discussed and related to the relevant science education literature.
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1. Introduction

An understanding of science and its procedures, capabilities, and limitations is crucial
for a society facing complex problems. This significance was recently highlighted during
the COVID-19 crisis, where misinformation through traditional and social forms of media
appeared to be highly influential in shaping peoples’ opinions and actions about the cri-
sis [1]. Science education can respond to these issues in part by supporting the development
of scientific reasoning competencies (SRC) among students of science. Additionally, science
teachers would benefit from strong SRC themselves to model and promote SRC among
their students [2–4]. SRC are defined as the dispositions to be able to solve a scientific
problem in a certain situation by applying a set of scientific skills and knowledge, and
by reflecting on the process of scientific problem-solving at a meta-level [5–8]. SRC are
also seen as a core element of 21st-century skills in science curricula, as they are assumed
to help enable civic participation in socio-scientific issues facing societies and have been
said to be indicative of a society’s future economic power [9,10]. Hence, SRC, such as
developing scientific questions and hypotheses, modeling, generating evidence through
experimentation, and evaluating claims, are addressed in science education policy papers
and curriculum documents as a key outcome of science education in various countries
around the world (e.g., [11–13]). SRC are also emphasized as part of science teachers’
professional competencies that should be developed during initial teacher education [14].
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Existing studies suggest that pre-service science teachers typically have basic SRC,
with pre-service secondary teachers outperforming pre-service primary or early childhood
teachers [5]. For the specific skill of scientific modeling, it was shown that pre-service
science teachers apply strategies and experience challenges similar to secondary school
students [15]. Furthermore, longitudinal studies revealed that SRC slightly develop during
science teacher education at university [16] and that specific teacher education programs
can contribute to competence development in this field [17].

The development and evaluation of assessments that are capable of providing valid
measures of respondents’ SRC have become an integral part of research in science educa-
tion [8,18]; however, several authors have recently questioned the quality of many existing
instruments to assess SRC. For example, Ding et al. [19] identified poor definitions of the
underlying constructs to be measured and criticized that most scientific reasoning instru-
ments, “[A]re in fact intended to target a broader construct of scientific literacy” (p. 623)
rather than specific competencies needed for reasoning in science. In a review study, it was
found that the psychometric quality of most published instruments to assess SRC was
not evaluated satisfactorily [18]. Furthermore, Osborne [8] criticized a general lack of
validity evidence for these available instruments and referred to the valid assessment of
SRC, as, “[T]he 21st century challenge for science education.”

Arguably, an exception to these criticisms regarding the quality of instruments to as-
sess SRC is a German multiple-choice instrument that has recently been developed to assess
pre-service science teachers’ SRC during their course of studies at university [16,20]. English
and Spanish adaptations of this instrument have also been developed and evaluated [5,21].
For the original German instrument, comprehensive sources of validity evidence have
been considered following the recommendations in the Standards for Educational and
Psychological Testing [22]. For example, the instrument has been developed based on a
clear theoretical framework, distinguishing between two sub-competencies of scientific
reasoning—conducting scientific investigations and using scientific models—and seven related
skills of formulating research questions, generating hypotheses, planning investigations, analyzing
data and drawing conclusions, judging the purpose of models, testing models, and changing models.
Furthermore, standardized construction guidelines for item development were used based
on this framework [23], and the whole process of item development was guided by a
critical examination of various sources of validity evidence (e.g., [23,24]), as summarized
in [16]. In this process, one validation study [24] analyzed the influence of item features
on item difficulty. The authors found that item length (word count) and the use of visual
images, tables, formulas, abstract concepts, and specialized terms in the items significantly
contributed to item difficulty. Taken together, these features contributed to 32% of the
variance in item difficulty. The authors argued that these findings still provide evidence for
the valid interpretation of the test scores as measures of SRC because the identified effects
of item features on item difficulty were in accordance with the theoretical background of
item development, and they showed a plausible pattern of cognitive demands [24].

In general, the analysis of item features and their influence on item difficulty is a
common approach to research in psychological and educational assessment [25–28]. The
basic assumption in this context is that assessments should represent the construct under
investigation and test items should stimulate cognitive processes that constitute the target
construct (construct validity or construct representation, respectively, [29,30]). For example,
items that are intended to assess the competencies of “analyzing evidence” might provide
an experimental design and corresponding findings and ask students to interpret the
evidence appropriately [28]. The development of test items has to account for item features
and underlying cognitive processes so that the instrument allows for valid interpretations of
obtained test scores [27]. Related to this, legitimate and illegitimate sources of item difficulty
have been distinguished [24]. While legitimate sources of item difficulty are those that are
intentionally implemented to assess skills or knowledge representative of the respective
competency, illegitimate sources of item difficulty are not directly related to the target
construct, such as reading capabilities in science or mathematics tests, and can negatively
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impact valid test score interpretation [24]. Identifying threats to validity, such as construct-
irrelevant sources of item difficulty, however, has the potential to inform item development
and thus improve the validity of assessments. Furthermore, construct-relevant sources
of item difficulty can guide item development [27,31]. Nonetheless, “[W]hat constitutes
construct-irrelevant variance is a tricky and contentious issue” [30] (p. 743) and depends
on the definition of the respective construct. As a result, exploratory studies investigating
the influence of item features on item difficulty of an existing assessment instrument can
contribute to a better understanding of the cognitive demands of the instrument [26,28].

This study adds to this body of research by investigating the influence of item fea-
tures on item difficulty of the above-mentioned German multiple-choice instrument. This
study contributes to construct validation of this internationally employed testing instru-
ment [16,21]. Furthermore, and independent from the specific instrument, this study
provides insights about the influence of item features on item difficulty, and as a result,
might be used by scholars to provide direction for systematically developing testing in-
struments that account for such features [27]. The focus of this study is on formal item
features related to text complexity and the presence of external visual representations.
There are already some studies that investigated the influence of formal item features
on item difficulty in science education. For example, text length has been identified as a
feature that tends to increase item difficulty [24,32]. In contrast to internal (i.e., mental)
representations, external representations are defined as externalizations or materializations
of more or less abstract thoughts in the form of gestures, objects, pictures and signs [33].
Taxonomies of (external) representations distinguish between descriptions and depictions,
with descriptions including text, mathematical expressions, and formulas and depictions
including photographs, maps, and diagrams [34]. Many representations are also combina-
tions of different forms. For example, diagrams include textual (descriptive) and graphical
(depictive) elements [35]. Formal item features, such as text length or task format, have
been described as being part of the surface structure of test items; that is, such item features
are often not directly related to the construct to be assessed [32,36]. On the other hand,
the existence of formal item features is an inevitable part of item development, and hence,
knowledge about how such features influence item difficulty is of significance for scholars
interested in developing testing instruments.

2. Aims of the Study and Hypotheses

This study investigates the effect of item features on item difficulty for the English
adaptation of the multiple-choice SRC assessment instrument described above. Item
features related to text complexity and the presence of visual representations will be tested
for their influence on item difficulty. This study complements existing evaluation studies
on the English adaptation of the instrument that have not yet analyzed item features [5,21].
Furthermore, the present study also significantly adds to our knowledge of which cognitive
demands appear to be imposed upon by multiple-choice assessment instruments and
whether these demands are relevant for the construct under investigation—in this case,
SRC [24,28,31].

The following assumptions undergird the study: (1) item difficulty is increased with
an increase in the complexity of text included in the item because the complex text makes
it more difficult to encode and process information relevant to identify the attractor (or the
correct answer option) [24,32]; (2) item difficulty is increased for items that contain visual
representations next to textual information because this addition requires respondents to
simultaneously encode and process information that is presented in text and image, which,
in turn, increases cognitive load [37].

3. Materials and Methods
3.1. Sample and Data Collection

Data of N = 243 pre-service science teachers from Australia (n = 103; mean age= 28),
Canada (n = 112; mean age= 27), and the UK (n = 26; mean age= 31) were analyzed in this
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study. Some data partly originate from existing studies [2,3,5,21] and were secondarily
analyzed for the purpose of this study. The UK sub-sample contains new data that have
neither been analyzed nor published. Hence, this study made use of some available data
sets in order to test the above hypotheses. Having an international sample with participants
from three countries allowed the hypotheses to be tested independently from the specific
context and, thus, potentially provide more generalizable findings. SRC are an important
goal of science teacher education in all three countries [2,3].

In each case, participating pre-service science teachers voluntarily agreed to partici-
pate in this study and anonymously completed the instrument, which is why the sample
sizes are relatively small (e.g., n = 26 from the UK). The study information was shared
with participants digitally (i.e., via email) or in person, in science methods courses of the
respective pre-service teacher education programs. Completing the instrument, however,
occurred outside of courses and was not an obligatory part of the pre-service science teach-
ers’ curriculum. Ethics approval was also obtained from local ethics approval committees.
To ensure equivalence of testing conditions, the same standardized test instruction was
used in all three subsamples—namely, background information about the study and the
assessed competencies, and voluntary participation.

In all three subsamples, the above-mentioned English adaptation of the German SRC
assessment instrument was administered. As described in [5,21], the English adaptation
was systematically translated and evaluated based on the German original instrument [16].
For each of the seven skills of formulating research questions, generating hypotheses, planning
investigations, analyzing data and drawing conclusions, judging the purpose of models, testing
models, and changing models, the English instrument includes three multiple-choice items
(i.e., 21 items in total). Each item is contextualized within an authentic scientific context,
and the respondents have to apply their procedural and epistemic knowledge within this
context to identify the attractor. (For sample items, see [21]; the full instrument is available
upon request to the first author).

3.2. Item Analysis

The aim of this study was to analyze the influence of item features related to text
complexity and the presence of visual representations on item difficulty. For this purpose,
21 items were analyzed by a trained student assistant and the first author to obtain infor-
mation about text complexity and the presence of visual representations (i.e., figures or
diagrams) in each item. The latter was scored with yes (=1) or no (=0) as this scoring was
also conducted in earlier studies (e.g., [24,32]). For text complexity, three different readabil-
ity measures were calculated, as described in [38]: the 4. Wiener Sachtextformel (WSTF),
local substantival textual cohesion (LSTC), and global substantival textual cohesion (GSTC).
These readability measures provide a sound statistical estimation of text complexity in
science education [38].

The 4. Wiener Sachtextformel (WSTF) calculates a readability measure based on the
percentage of words with more than two syllables (SYLL) and the average length (i.e., word
count) of sentences (SENT) as follows [39]:

WSTF = 0.2656·SENT + 0.2744·SYLL− 1.693. (1)

Substantival textual cohesion indicates text coherence based on substantives, either
locally (i.e., in consecutive sentences) or globally (i.e., in the whole text) [40]. Global
substantival textual cohesion (GSTC) is calculated by dividing the number of substantives
that appear more than once in a text (SUB2) by the number of substantives that appear
only once (SUB). Local substantival textual cohesion (LSTC) is calculated by dividing the
number of substantially connected sentences (LSCS, i.e., consecutive sentences with the
same substantive) by the total number of sentences (S) as follows:

GSTC =
SUB2

SUB
·100%, (2)
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LSTC =
LSCS

S
·100%. (3)

Higher numbers of WSTF and lower numbers of LSTC and GSTC indicate more
complex texts; 5.4 < WSTF < 8.4, 0.41 < LSTC < 0.65, and 0.70 < GSTC < 0.89 have been
suggested as indicating appropriately understandable texts for science education [38].

3.3. Data Analysis: Linear Logistic Test Model

To estimate the influence of the different item features on an item’s difficulty, the
linear logistic test model (LLTM) was applied [41,42] as this model was applied in several
similar studies analyzing item features (e.g., [28,43]). The LLTM belongs to Rasch models,
a family of established psychometric models utilized in psychological and educational
research [44]. The family of Rasch models includes descriptive and explanatory psychome-
tric models [45,46]. For example, the one-parameter logistic model (1PLM) is a descriptive
psychometric model that allows for the estimation of individual person ability (θs) and
item difficulty (βi) parameters. In 1PLM, it is assumed that the probability of a correct item
response depends only on θs and βi [44].

P(Xis) =
exp(θs − βi)

1 + exp(θs − βi)
(4)

In contrast to descriptive models such as 1PLM, explanatory models consider item
or person features to further explain the item difficulty or person ability parameters,
respectively [46]. The LLTM is an item explanatory model because it assumes that item
difficulty is a linear (additive) combination of basic parameters αk [43]. Formally, the βi
parameter of 1PLM is replaced with a linear combination of these basic parameters [41]
as follows:

β′i =
N

∑
k=1

(αkχik) (5)

where αk as the regression coefficient for k (i.e., the estimated difficulty of the item feature
k), and Xik as the given weight of item feature k on item i (i.e., the extent to which the
respective item feature applies to item i). Hence, αk illustrates the contribution of item
feature k to item difficulty [43]. If an LLTM can be shown to fit the given data, the estimated
parameters αk provide measures for the item features’ contribution to item difficulty. More
specifically, it is assumed that item difficulty can be sufficiently and totally explained with
the specified parameters in the LLTM [42]. Therefore, the LLTM can be considered more
restrictive and more parsimonious than the 1PLM [47].

To evaluate the model fit of an LLTM, a two-step procedure is proposed: first, 1PLM
has to fit “at least approximately” [42] (p. 509) to the data. For testing the fit of a Rasch
model to the given data, fit indices such as the sum of squared standardized residuals
(MNSQs) are proposed. MNSQs provide a measure of the discrepancy between the as-
sumptions of the Rasch model and the observed data [48]. Second, the decomposition
of βi (Formula 5) needs to be checked for empirical validity. For this reason, the item
difficulty parameters estimated in 1PLM, and the corresponding LLTM can be compared
(e.g., graphically or by calculating Pearson correlation coefficient, [25]). High associations
between both parameters indicate that the decomposition of βi might be valid [42]. Fur-
thermore, information criteria, such as the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC), and the log-likelihood difference test can be applied
to compare the fit of both models and different LLTMs [42]. In the present study, the R
package eRm [49] was used for model specification and parameter estimation.

3.4. Model Specification

In this study, two LLTMs with the following variables were specified to estimate
parameters αk. In the first LLTM–called LLTMbaseline–it was coded to which of the seven
skills each item belongs (i.e., dummy coding). This procedure mirrors the assumption that
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there are specific cognitive demands to solve the items associated with each skill [23,50].
Hence, the assignment to the respective skills is assumed to sufficiently and totally explain
the item difficulty in the LLTMbaseline.

The second LLTM—called LLTMextended—additionally included parameters for the
readability measures WSTF, LSTC, and GSTC, and the presence of visual representations
described above. Hence, the LLTMextended assumes that next to the scientific reasoning
skills, the readability of text and the presence of visual representations also impose specific
cognitive demands to process and encode information provided in the items, and to answer
correctly [24,32,37,38].

4. Results

The Results Section is subdivided into three subsections: Basic Statistics, Descrip-
tive Modeling, and Explanatory Modeling. The latter two sections refer to the two-step
procedure of LLTM model evaluation, as described in Section 3.3.

4.1. Basic Statistics

Table 1 provides basic descriptive statistics and Pearson correlations for item difficulty
and the variables considered in this study. Item difficulty was calculated as the proportion
of correct responses (i.e., 1.0 = 100% correct responses). It is evident that the multiple-
choice items had appropriate difficulty for the present sample, as about 47% of them were
answered correctly (MItemDiff = 0.47). About 43% of the items contain a visual representation.
Based on the WSTF and LSTC, the items would be considered rather easy to read. The LSTC
is even higher than expected, indicating a very high local substantival textual cohesion.
Only the average GSTC (MGSTC = 0.63) indicates low global substantival textual cohesion of
the items. Statistically significant correlations (i.e., p < 0.05) were only found between LSTC
and GSTC (r = 0.48; medium effect size). Due to the medium effect size of this correlation,
no serious problem of multicollinearity for further analysis occurs. Notably, no statistically
significant correlations were found between item difficulty (ItemDiff) and the variables
WSTF, LSTC, GSTC, and VisRep.

Table 1. Mean score (M), standard deviation (SD), and Pearson correlation coefficient (r) with related
p-value for the respective variables. Expectance = values indicating appropriately understandable
texts as suggested in [38]. ItemDiff = item difficulty; WSTF = 4. Wiener Sachtextformel; LSTC = local
substantival textual cohesion; GSTC = global substantival textual cohesion; VisRep = item contains a
visual representation (0 = no; 1 = yes).

Expectance M ± SD WSTF LSTC GSTC VisRep

ItemDiff — 0.47 ± 0.15
R −0.28 −0.31 0.32 −0.20
P 0.220 0.176 0.151 0.389

WSTF 5.4–8.4 6.43 ± 1.54
R −0.15 −0.26 0.17
P 0.502 0.251 0.468

LSTC 0.41–0.65 0.83 ± 0.38
R 0.48 0.34
P 0.030 0.136

GSTC 0.70–0.89 0.63 ± 0.11
R 0.28
P 0.221

VisRep — 0.43 ± 0.51

For further illustration, sample items can be found in Appendix A. These items represent
the median score of WSTF (M = 6.51), LSTC (M = 0.85), and GSTC (M = 0.61), respectively.

Figure 1 below illustrates how the variables shown in Table 1 differ between the
tasks for the seven skills of scientific reasoning. Kruskal–Wallis tests indicate significant
differences between the skills for the variables GSTC (H = 13.19, p = 0.040) and VisRep
(H = 12.22, p = 0.045). For GSTC, items related to the skills planning investigations (M = 0.73)
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and analyzing data and drawing conclusions (M = 0.78) show rather high values, compared
to lower values for the skills formulating research questions (M = 0.53), generating hypotheses
(M = 0.55), judging the purpose of models (M = 0.66), testing models (M = 0.54), and changing
models (M = 0.64). These five skills are below the suggested range of 0.70 < GSTC < 0.89,
unlike the others, indicating appropriately understandable texts in science education [39].
For VisRep, it is evident that items related to formulating research questions, generating
hypotheses, and planning investigations do not contain visual representations, while most
items related to the other skills do.
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4.2. Descriptive Rasch Modeling: One-Parameter Logistic Model (1PLM)

The fit between data and 1PLM has been evaluated and documented in previous
studies in detail [2,5,16,21]. Here, MNSQs are reported, which indicates the discrepancy be-
tween the assumptions of the Rasch model and the data. MNSQ values are always positive
because statistically, they are chi-square statistics divided by their degrees of freedom [51].
MNSQ values should lie in the range of 0.5–1.5 (“productive for measurement”) or 1.5–2.0
(“unproductive for construction of measurement but not degrading”), respectively, but not
be >2.0 (“distorts or degrades the measurement system”) [48]. MNSQs can be calculated
in two different versions—the outfit and the infit MNSQ. As the outfit MNSQ is more
sensitive to outliers than the infit MNSQ, both statistics should be considered [51].

The MNSQ values in this study range between 0.7 and 1.2 (outfit MNSQ), and between
0.9 and 1.1 (infit MNSQ), respectively. Furthermore, the Andersen likelihood ratio test
with the external split criterion “country” (i.e., Australia, Canada, UK) is not significant
(LR(40) = 46.22, p = 0.23), thus indicating item homogeneity [49]. Person separation relia-
bility is rel. = 0.52 and similar to previous reliability estimates for this instrument (e.g., [5]:
EAP/PV reliability = 0.55; [16]: Cronbach’s Alpha = 0.60).

4.3. Explanatory Rasch Modeling: Linear Logistic Test Model (LLTM)

MNSQ values for both LLTMs indicate a reasonable fit between data and model
(LLTMbaseline: 0.7 < outfit MNSQ < 1.6; 0.7 < infit MNSQ < 1.5; LLTMextended: 0.5 < outfit
MNSQ < 1.7; 0.7 < infit MNSQ < 1.6). Person separation reliability is rel. = 0.46 and
0.50, respectively. Pearson correlations between the item parameters estimated in the
LLTMs and the 1PLM are large for both the LLTMbaseline (r = 0.65, p = 0.002; i.e., R2 = 0.42)
and the LLTMextended (r = 0.86, p < 0.001; i.e., R2 = 0.75). The graphical model tests of
the LLTMs and the 1PLM show that the item parameters scatter around the 45◦ line
rather well for the LLTMextended, while less so for the LLTMbaseline (Figure 2). This is also
indicated by the empirical regression line (blue lines in Figure 2), which is closer to the 45◦

diagonal when comparing item difficulty parameters of the 1PLM and the LLTMextended
than when comparing these parameters of the 1PLM and the LLTMbaseline. In sum, the
findings indicate that the item parameters estimated in the LLTMextended were closer to the
estimated parameters from the 1PLM, than those estimated in the LLTMbaseline.
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comparing item difficulty parameters of the 1PLM and the LLTMextended than when com-
paring these parameters of the 1PLM and the LLTMbaseline. In sum, the findings indicate 
that the item parameters estimated in the LLTMextended were closer to the estimated param-
eters from the 1PLM, than those estimated in the LLTMbaseline. 
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Table 2 provides the information criteria AIC and BIC and the log-likelihood difference
test for model comparison between the 1PLM and the two LLTMs. AIC and BIC assess the
relative model fit, with smaller values indicating the better fitting model. These values,
therefore, indicate that the 1PLM fits better with the data than both LLTMs. The log-
likelihood difference test also proposes a significantly better fit of the 1PL, compared to
both LLTMs. Comparing both LLTMs, AIC and BIC indicate that the LLTMextended fits
better to the data than the LLTMbaseline.

Table 2. Model comparison between the 1PLM and both LLTMs (LogLik: marginal log-likelihood;
AIC: Akaike information criterion; BIC: Bayesian information criterion; LD test: p-value of the
log-likelihood difference test comparing the respective LLTM with the 1PLM).

Model Parameter LogLik AIC BIC LD Test

1PLM 20 −3018 6076 6145 —

LLTMbaseline 6 −3282 6577 6597 p < 0.001

LLTMextended 10 −3139 6299 6334 p < 0.001

Table 3 provides the αk parameters as estimated in the two LLTMs. Positive αk
parameters indicate that the respective variable decreases item difficulty, while negative
αk parameters illustrate an increase in item difficulty. For the dummy coded variables
representing the seven skills of scientific reasoning, planning investigations was chosen as the
baseline because the related items ended up being rather easy (Figure 1). As the confidence
intervals of most parameters in Table 3 do not include zero, they can be assumed to be
significantly different from zero at the 5% level. Exceptions are WSTF, Pur, Test, and Cha in
the LLTMextended. Comparing the parameters in both LLTMs, it is evident the additional
consideration of the variables WSTF, LSTC, GSTC, and VisRep reduces the effect of most of
the dummy coded skills.
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Table 3. Parameters estimated in the two LLTMs (SE = standard error; 95% CI = 95% confidence
interval); lines with 95% CI including zero are formatted in grey.

Variable αk SE 95% CI

LLTMbaseline

Que −1.52 0.12 −1.75 −1.30

Hyp −1.76 0.12 −2.00 −1.53

Ana −0.56 0.11 −0.79 −0.34

Pur −1.32 0.11 −1.54 −1.09

Tes −1.16 0.11 −1.39 −0.94

Cha −0.89 0.11 −1.11 −0.67

LLTMextended

WSTF −0.04 0.03 −0.09 0.02

LSTC −1.89 0.15 −2.17 −1.61

GSTC 5.61 0.78 4.09 7.14

VisRep −0.79 0.11 −0.99 −0.58

Que −0.53 0.19 −0.92 −0.15

Hyp −1.57 0.16 −1.88 −1.26

Ana −0.52 0.17 −0.85 −0.19

Pur 0.19 0.20 −0.20 0.58

Tes 0.28 0.20 −0.12 0.67

Cha 0.09 0.16 −0.22 0.41

In the LLTMextended, the existence of visual representations (αk = −0.79) makes items
harder to solve. Similarly, items related to the skills formulating research questions, generating
hypotheses, and analyzing data and drawing conclusions are harder to solve than items related
to the skill planning investigations (i.e., the baseline); this is also evident in Figure 1. As lower
numbers of LSTC and GSTC are indicative of more complex texts, the αk parameters of
GSTC are in line with what was expected: the lower the GSTC is, the more difficult are the
items to solve. Unlike expected, lower LSTC values decreased item difficulty (αk = −1.89).

As described above (Formula (5)), each item’s difficulty is calculated in an LLTM as
a linear (additive) combination of the item features’ difficulty, with αk as the estimated
difficulty of item feature k. Based on the αk values in Table 3, this means for the LLTMextended
that, for example, GSTC impacts item difficulty about seven times stronger than VisRep
(5.61/0.79 = 7.1). It is important to note that αk values are unstandardized and do not take
the different scales of item features into account (e.g., binary variable VisRep vs. continuous
variable GSTC).

5. Discussion

The purpose of this study was to investigate the effect of item features on item difficulty
for a multiple-choice SRC assessment instrument established in science education [5,16,21].
More specifically, item features related to text complexity (4. Wiener Sachtextformel: WSTF;
local and global substantival textual cohesion: LSTC and GSTC) and the presence of visual
representations as figures or diagrams (i.e., VisRep) were investigated for their influence on
item difficulty. The findings revealed that LSTC and GSTC, as well as VisRep, significantly
impacted item difficulty in the multiple-choice assessment instrument, while WSTF did
not. These findings are discussed below while acknowledging the limitations of this study.

In this study, the item features considered in the LLTMextended explain about 75% of
the variance in item difficulty estimated in the 1PLM—well above the limit of a large effect
(R2 ≥ 0.26; [27]) and also higher than what has been found in similar studies (e.g., [28]:
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R2 = 0.43; [24]: R2 = 0.32). Conversely, a variance explanation of 75% means that 25% of
the variance in item difficulty estimated in 1PLM cannot be explained with the parameters
specified in the LLTMextended and might be attributable to individual differences. For
example, general cognitive abilities such as verbal intelligence and problem-solving skills
have been shown to significantly predict students’ SRC [52].

The difference in variance explanation between the two LLTMs specified in this study
suggests that 33% of the variance in item difficulty can be explained with the additional
parameters related to text complexity and the existence of visual representations included
in the LLTMextended, that is, WSTF, LSTC, GSTC, and VisRep. The resulting amount of 33%
is very similar to the result of an earlier study that found 32% [24] on item features affecting
item difficulty in the German version of the instrument. This similarity in the effect of
item features on item difficulty in both language versions of the instrument (English and
German) is another indicator of test equivalence between the two versions [21].

A comparison of the parameters estimated in the LLTMbaseline and the LLTMextended
(Table 3) reveals that with the additional consideration of parameters related to text com-
plexity and the presence of visual representations, the significant effect of judging the purpose
of models (PUR), testing models (TES), and changing models (CHA), which were found in the
LLTMbaseline, disappeared. This finding indicates that the significant effects of PUR, TES,
and CHA, identified in the LLTMbaseline, might be artifacts caused by the effect of item
features not considered in the LLTMbaseline and confounded with PUR, TES, and CHA.
For example, all items related to PUR contain visual representations (Figure 1), while, on
average, this applies to only 43% of the items (Table 1). Hence, the effect of PUR, identified
in the LLTMbaseline, might have been caused by the presence of visual representations as
figures or diagrams in the items related to PUR.

While the correlation analysis (Table 1) revealed no significant association between
item difficulty and the item parameters of WSTF, LSTC, GSTC, and VisRep, these asso-
ciations were found for most of the parameters in the LLTMextended. This difference in
findings is most likely caused by the fact that the correlation analysis was carried out based
on the items (i.e., N = 21), a relatively small number to detect associations on a statistically
significant level [26]. In contrast, the parameter estimation in the LLTM was performed
based on a larger sample of individuals, or an N = 243 in this study.

Examining the individual parameters estimated in the LLTMextended (Table 3), items
containing visual representations tended to be harder to solve. This finding was also
reported in [24] and described as unexpected, and potentially caused by the fact that visual
representations in the items, “were often used to show complex scientific models and, hence,
may increase the difficulty” (p. 8). Another explanation might be that the simultaneous
encoding and processing of information provided in text and image can increase cognitive
load and, hence, item difficulty [37]. As expected, lower global substantival textual cohesion
increased item difficulty, with GSTC calculated as the proportion of substantives that appear
more than once in a text (Formula (2)); however, unexpectedly, lower local substantival
textual cohesion decreased item difficulty, with LSTC as the proportion of sentences with
the same substantive as the preceding or subsequent sentence (Formula (3)). Both GSTC
and LSTC measures are established indicators for text complexity and readability, with
lower values indicating more difficult text [38]. The effect of GSTC on item difficulty most
likely indicates that solving the items requires the encoding and processing of complex
textual information provided in the item text globally, a task that is even more difficult
with text that is challenging to read [24,32]. For the present multiple-choice items, this
processing might involve respondents having to encode, process, and combine information
that is textually presented in different parts of the item, such as the item stem and the
answering options [50]. Hence, if information in the item stem and the answering options
are more coherently presented (in terms of substantives), an item becomes easier to solve.
For example, signal words, occurring both in the item stem and the attractor, can ease item
difficulty [28]. The unexpected findings related to the effect of LSTC on item difficulty
should be investigated further, for example, qualitatively, using cognitive interviews. One
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plausible reason for the unexpected finding related to LSTC is that both GSTC and LSTC
are typically used to analyze the readability of longer texts than what is included in the
items of the present multiple-choice instrument [38]. Finally, the significant effects of
some of the dummy coded skills (i.e., QUE, HYP, ANA; Table 3) illustrate that the items
developed to assess the different skills of scientific reasoning require the application of
specific procedural and epistemic knowledge to be solved [23].

The multiple-choice instrument under consideration in this study is already employed
by scholars internationally in three language versions [2,16,21]. The findings of the present
study shed light on specific cognitive demands that are necessary to correctly answering
the items. These findings should be considered by scholars when interpreting test scores.
Independent from the specific instrument, the study provides important insights about
the influence of item features on item difficulty. These insights can inform the systematic
development of a testing instrument that accounts for such features [27].

Naturally, this study has some limitations. The LLTM is well established for the
analysis of item features and their influence on item difficulty within the approach of
evaluating construct representation (e.g., [25,26]). Nevertheless, the assumption of an
additive combination of the single features’ difficulty, as described in Formula (5), is also
criticized [43]. For example, a multiplicative combination of each item feature’s influence
on item difficulty might also be possible. Furthermore, in this study, only main effects were
considered in LLTMs, but no interaction effects were considered between the specified
variables. The variables considered in this study were also analyzed post hoc and were
not systematically considered during item development; hence, the item features were
not equally distributed across the items for the seven skills of SRC (e.g., items related
to formulating research questions, generating hypotheses, and planning investigations do not
contain visual representations at all; Figure 1). Finally, LLTMs assume that the specified
item features completely (i.e., 100%) explain item difficulty [42], which was not the case
in the present study. Despite a good explanation of item difficulty in the LLTMextended,
there is a significantly better model fit for the 1PLM (Table 2). The comparatively poor
model fit of an LLTM is a common finding (e.g., [25,43]), which is explained with the strict
assumption of a complete explanation of item difficulty by the specified item features [41].
The model comparison based on the information criteria, on the other hand, does not allow
any statement about the absolute fit of the models considered [53]. Since a relatively worse
model fit does not necessarily indicate an absolutely bad model fit, a check of the difficulty
parameters estimated in the LLTM in the sense of a prognostic validation by replication
studies is proposed [27,41]. This approach could be employed in the present context by
developing additional items with systematically varied item features, followed by testing
these features’ influence on item difficulty again. Notwithstanding this issue of model fit,
the comparison of the item difficulty parameters estimated in the 1PLM and both LLTMs
allowed for an estimation of the amount of variance in item difficulty explained by the
item features specified in the respective LLTM.

6. Conclusions

In this study, we investigated the effect of the item features WSTF, LSTC, GSTC, and
VisRep on the difficulty of the items of a multiple-choice instrument to assess SRC in science
education [5,21]. This analysis was based on the assumptions that the readability of text
and the presence of visual representations impose specific cognitive demands to process
and encode information provided in the items [24,32,37,38]. Furthermore, dummy-coded
variables representing the specific skills of scientific reasoning were also considered in the
analysis, assuming that specific cognitive demands (i.e., application of specific procedural
and epistemic knowledge) are associated with each skill [23,50]. The findings illustrate that
these variables, in sum, explain about 75% of the variance in item difficulty.

From a validity perspective, the similarity between the present findings and the
previous study on the German version of the multiple-choice instrument [24] provides
further evidence for test equivalence of both language versions [21]. From a cognitive point
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of view [25], the findings of the present study suggest that specific cognitive demands are
imposed by the readability of text and the presence of visual representations in multiple-
choice assessment instruments. Specifically, the multiple-choice items analyzed in the
present study appear to demand the encoding, processing, and combining of textually
presented information from different parts of the items—such as item stem and answering
options—while simultaneously encoding and processing information that is presented
in both the text and visual representations. It has been shown that to solve the multiple-
choice items used in this study, the application of procedural and epistemic knowledge
is required [23,50]. The findings of this study illustrate that multiple-choice items on this
assessment impose additional cognitive demands due to the necessity of processing text
and visual representations.
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Appendix A

The below items represent the median score of WSTF (M = 6.51), LSTC (M = 0.85), and
GSTC (M = 0.61), respectively. Note that the items are presented in a tabular format for
better reading and not in the same way as they appeared in the testing instrument. The
attractor of each item is highlighted in italics.

Item “testing models 03” (MWSTF = 6.51)

Item stem
Fraud with organic grocery bags?
Under the influence of oxygen, bacteria and fungi transform organic material mainly into carbon dioxide and water. This process of
transformation is called composting. A part of the resulting substances is transformed into humus (dead organic soil matter).
The following report was published in a newspaper: “The Deutsche Umwelthilfe (German Environmental Relief) launch
accusations against two supermarket chains: The allegedly 100 % compostable grocery bags are not biodegradable at all; therefore
they are just as ecologically harmful as common plastic bags.”
A team of experts has been asked to conduct a scientific investigation into how compostable are these organic grocery bags really?
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Answering options
Which scientific question might underlie this investigation?
Tick one of the boxes below.

• What impact do the biological decomposition products from organic grocery bags have on the environment?
• What biological decomposition products are formed in the process of composting organic grocery bags?
• What materials comprise organic grocery bags?
• Are there any substances formed in the process of composting organic grocery bags that cannot further be decomposed?

Item “changing models 03” (MLSTC = 0.85)

Item stem
Language Acquisition
In physical reality, there is a variety of continuous transitions between different sounds, such as [ra] and [la]. While infants are
aurally capable of perceiving all of these different transitions of sound, an imprint toward a specific language can be observed after
the first year of life. Vocal expressions within different languages are then no longer perceived in their entirety but rather through a
specific filter.
For this phenomenon of language acquisition, the following model was developed:
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Figure. Model of language acquisition by sound perception.
The model predicts that Australians and Japanese acquire their language in different ways and the subjective perception of sounds
develops differently.

Answering options
What reason would make it necessary to change the model?
Tick one of the boxes below.
The model has to be changed . . .

• . . . if the process of the subjective perception of [ra] and [la] in the language acquisition of English and Japanese is not
explained.

• . . . if there are Japanese adults who learned English as a second language and have a distinct subjective perception of [ra] and [la].
• . . . if the subjective perception of [ra] and [la] cannot be applied to languages other than English and Japanese.
• . . . if there are Australian adults who do not have a distinct subjective perception of [ra] and [la].

Item “generating hypotheses 02” (MGSTC = 0.61)

Item stem
In Outer Space
After many years of space missions, we know that existing conditions in space, such as zero gravity and cosmic radiation, harm the
human body in the long run.
Previous stays in outer space were limited to a few months, whereas the scheduled flights to Mars will span many months—a
considerably longer duration.
In a study, the health impacts of such long-lasting stays in outer space are to be investigated.
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Answering options
Which scientific hypothesis might underlie this investigation?
Tick one of the boxes below.

• The human body needs additional protection against cosmic radiation during flights to outer space.
• The human body shows little permanent damage from a short stay in outer space.
• The human body shows severe injuries when permanently being exposed to cosmic radiation.
• The existing conditions of zero gravity and radiation play a role in flights to Mars.
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