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Abstract: The Woodcock-Johnson IV Tests of Cognitive Abilities (WJ IV COG) is a comprehensive
assessment battery designed to assess broad and narrow cognitive abilities, as defined by the
Cattell-Horn-Carroll (CHC) theory of intelligence. Previous studies examined the invariance of the
WJ assessments across sex and age groups using factor analytic methods. Psychometric network
modeling is an alternative methodology that can address both direct and indirect relationships
among the observed variables. In this study, we employed psychometric network modeling to
examine the invariance of the WJ IV COG across sex and age groups. Using a normative sample
(n = 4212 participants) representative of the United States population, we tested the extent to which
the factorial structure of the WJ IV COG aligned with CHC theory for the school-aged sample. Next,
we used psychometric network modeling as a data-driven method to investigate whether the network
structure of the WJ IV COG remains similar across different sex and age (age 6 to 19, inclusively)
groups. Our results showed that the WJ IV COG maintained the same network structure across all
age and sex groups, although the network structure at younger ages indicated weaker relationships
among some subtests. Overall, the results provide construct validity evidence for the WJ IV COG,
based on both theoretical and data-driven methods.

Keywords: intelligence; cognitive abilities; invariance; sex; age; psychometric network modeling

1. Introduction

Researchers and practitioners often use a standardized measure to assess an indi-
vidual’s general cognitive functioning, as well as their specific cognitive abilities. The
Woodcock-Johnson IV Tests of Cognitive Abilities (WJ IV COG; Schrank et al. 2014) is an
example of a standardized measure that is used in educational, clinical, and research set-
tings. The WJ IV COG is a comprehensive assessment battery designed to measure various
cognitive abilities, as defined by the Cattell-Horn-Carroll (CHC) theory of intelligence.
Compared with its predecessor, the WJ III COG (Woodcock et al. [2001] 2007), the WJ IV
COG provides a test battery of intelligence that is more aligned with recent research on
CHC theory, while preserving the psychometric qualities (e.g., reliability and validity) from
previous versions (Reynolds and Niileksela 2015).

The authors of the WJ IV COG provide evidence for the factor structure of the entire
battery across different age groups (Schrank et al. 2014). Additionally, the technical report
for the WJ IV COG presents the results of differential item functioning analyses across sex,
race, and ethnicity, indicating that the problematic items have been eliminated from the
test. However, the authors did not examine the invariance of the battery across sex and age
groups. A very common method for evaluating the invariance of psychological measures,
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such as the WJ IV COG, across various groups is measurement invariance testing based on
multi-group confirmatory factor analysis (CFA; Milfont and Fischer 2010). This procedure
enables researchers to fit the same CFA model across multiple groups and examine the
configural, metric, scalar, and strict invariance of the factorial structure. However, the
measurement invariance approach is known to be highly sensitive to sample size, leading
to the rejection of measurement invariance due to small disparities among the groups
(Putnick and Bornstein 2016; van Dijk et al. 2021).

In the current study, we perform psychometric network analysis using the United
States normative data of the WJ IV COG and examine the invariance of the WJ IV COG
network structure based on sex and age groups. First, we apply a hierarchical CFA model
to verify the factorial structure of the WJ IV COG based on CHC theory. Next, we perform
psychometric network modeling to delineate the network structure of the CHC cognitive
abilities measured within the WJ IV COG. Finally, we use the network model tree (NMT;
Jones et al. 2020) approach to evaluate the impact of sex and age on the network structure
of the WJ IV COG. The NMT approach recursively splits the data based on covariates (i.e.,
sex and age) to detect significant differences in the network structure. As we discuss the
implications of our findings for practitioners using the WJ IV COG, we also show how the
NMT approach can guide researchers when testing network invariance with psychological
measures.

2. Literature Review
2.1. CHC Theory

Many of the well-known and contemporary intelligence test batteries, including the
WJ IV COG, define and measure different aspects of intelligence based on CHC theory
(Keith and Reynolds 2010). Therefore, a brief review of CHC theory and its components
seems relevant to understanding the assessment of intelligence within and across various
measures of intelligence. CHC theory was created by merging aspects of Spearman’s (1904)
g, the Horn–Cattell Gf–Gc theory (Horn and Cattell 1966a; Horn and Noll 1997), Thurstone’s
(1938) broad cognitive abilities, and Carroll’s (1993) three-stratum theory (Niileksela and
Reynolds 2014). As a multi-factorial and hierarchical structure of intelligence, CHC theory
consists of more than 70 narrow abilities at the first level (i.e., stratum); approximately
10 broad abilities at the second level; and general intelligence, or g, at the third level
(Kaufman et al. 2012; Niileksela and Reynolds 2014). A comprehensive review of the CHC
framework and its role in the investigation of the structure of human intelligence can be
found in McGrew’s (2009) editorial.

Although there are ten broad abilities identified within CHC theory, seven of these
broad abilities are more commonly measured: comprehension-knowledge (Gc), fluid
reasoning (Gf), short-term memory (Gsm), processing speed (Gs), auditory processing
(Ga), visual-spatial ability (Gv), and long-term storage and retrieval (Glr). Comprehension-
knowledge (Gc) is the ability to use previous experience, knowledge, and skills, which are
valued by one’s culture, to communicate or reason in unique situations. Fluid reasoning
(Gf) is defined as the ability to control one’s attention to solve novel problems, without the
ability to rely on previous knowledge or schemas. Short-term memory (Gsm) is the ability to
encode, maintain, and manipulate information while it is in one’s immediate consciousness.
Processing speed (Gs) is the ability to execute simple and repetitive cognitive tasks rapidly
and effortlessly. Auditory processing (Ga) is the ability to identify and process meaningful,
nonverbal information in sound. Visual processing (Gv) is the ability to use simulated
mental imagery to solve problems, and long-term storage and retrieval (Glr) is the ability
to store, solidify, and then retrieve information over time (see Schneider and McGrew
(2012) for a more comprehensive explanation of CHC broad abilities).

Several well-known tests of intelligence, such as the WJ IV COG, KABC-II, and WISC-
V, are aligned closely with the hierarchical structure of the general and broad cognitive
abilities from CHC theory. More specifically, the WJ IV COG consists of 18 subtests that
measure general intellectual ability, as well as broad and narrow cognitive abilities based
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on CHC theory (Schrank et al. 2014). The Standard Battery of the WJ IV COG can be
used to compute scores for three general intelligence composites: the General Intellectual
Ability (GIA) based on the Gc, Gf, Gwm, Gs, Ga, Glr, and Gv broad abilities; the Brief
Intellectual Ability (BIA) based on the Gc, Gf, and Gwm broad abilities; and an additional
composite consisting of only Gf and Gc. The WJ IV COG also offers scores for the CHC
narrow abilities (perceptual speed, quantitative reasoning, number facility, and cognitive
efficiency) and a clinical cluster score. The psychometric properties of the WJ IV COG
standard and extended subtests can be found in the Technical Manual (Schrank et al. 2014).
Additionally, Reynolds and Niileksela (2015) provide a technical review of the WJ IV COG
for both researchers and practitioners.

2.2. Sex and Age Differences in Intelligence

To date, several studies have examined sex differences in the general intellectual
ability and broad abilities underlying well-known intelligence tests, such as the WJ III COG
(e.g., Keith et al. 2008), the Kaufman Assessment Battery for Children—Second Edition
(KABC-II; e.g., Hajovsky et al. 2018; Reynolds et al. 2008), the Wechsler Intelligence Scale for
Children—Fifth Edition (WISC-V; e.g., Chen et al. 2015; Chen et al. 2020; Dombrowski et al.
2020), and the Wechsler Adult Intelligence Scale—Fourth Edition (e.g., Pezzuti et al. 2020).
Generally, research on sex differences in general intelligence (g) has been inconsistent. Most
studies have reported that males tend to outperform females (e.g., Flores-Mendoza et al.
2013; Jackson and Rushton 2006; Lynn and Irwing 2004), whereas others have concluded
that females score higher on the g factor (e.g., Arden and Plomin 2006; Reynolds et al. 2008).

Inconsistencies regarding sex differences also occur in the context of broad cognitive
abilities. Most studies have reported that females may have an advantage in processing
speed (Gs). Using the earlier forms of the WJ assessments, Camarata and Woodcock
(2006) found that females scored significantly higher on the tests of Gs, with the largest
difference occuring in adolescent subgroups. Similar findings on female superiority in
Gs have been reported by other researchers (e.g., Burns and Nettelbeck 2005; Keith et al.
2008; van der Sluis et al. 2006). Other studies reported that males outperform females on
the broad cognitive abilities of working memory (Gwm), visual-spatial ability (Gv), and
crystallized intelligence (Gc) (Dolan et al. 2006; Keith et al. 2008; Reynolds et al. 2008). More
recent studies using the WISC-V reported no sex differences based on investigation of the
factorial invariance of the subtests (e.g., Chen et al. 2015, 2020).

Numerous studies have reported that sex differences in intelligence vary between
age groups and over time. Lynn’s (1994, 1999) developmental theory of sex differences in
intelligence states that there is an intellectual difference between males and females due to
the differing rates at which each sex matures. The progression of maturity accelerates for
females when they are around nine years of age and remains ahead of males until the age
of 14 or 15 (Colom and Lynn 2004). After that point, females begin to decelerate compared
with males, and males continue to mature and grow. Differential rates of maturation
between females and males are also expected to be influential on the growth of their
intelligence. For example, Colom and Lynn (2004) found that females performed better
at younger ages compared with males, but among the older age groups, the performance
among females declined in relation to males. Lynn et al. (2004) reported similar findings in
a study where they examined sex differences in fluid intelligence and g using a sample of
12- to 18-year-old participants. Although there are further studies indicating a significant
interaction between age and sex in intelligence (e.g., Arden and Plomin 2006; Lynn and
Kanazawa 2011), other researchers reported findings that were inconsistent with Lynn’s
developmental theory (e.g., Keith et al. 2008; Savage-McGlynn 2012).

Several studies have found that there are differences between females and males
at various ages but that generally there is not a systematic pattern to these differences.
For example, Keith et al. (2008) explored sex differences in participants aged six to fifty-
nine in the general and broad cognitive abilities underlying the WJ III COG. The authors
reported that females and males showed a consistent advantage in processing speed (Gs)
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and comprehension–knowledge (Gc), respectively. However, there were no significant sex
differences in auditory processing (Ga), short-term memory (Gwm), long-term retrieval
(Glr), and fluid reasoning (Gf). In contrast to the developmental theory suggesting a male
advantage during adulthood, significant and consistent sex differences were reported in
general ability, favoring females during both adolescence and adulthood. Keith et al. (2008)
reported that females, at all ages, demonstrated an advantage in processing speed (Gs)
and short-term memory (Gwm), while males showed an advantage in visual-spatial ability
(Gv) from ages eight and older. Some studies also reported a consistent measurement of
general and broad cognitive abilities across all ages (e.g., Reynolds et al. 2007).

2.3. Methodological Considerations

To date, most studies have employed latent variable modeling for studying sex and
age differences in the cognitive abilities underlying performance in tests of intelligence
(e.g., Chen et al. 2015; Dombrowski et al. 2020; Reynolds et al. 2007, 2008; Taub and McGrew
2004). Modeling such differences within a latent variable framework allows researchers to
test for factorial invariance across groups and detect significant differences in latent mean
levels and the variability of cognitive abilities. When testing sex and age differences with
latent variable modeling, the most widely used approach is multi-group CFA. Generally,
researchers use a multi-group CFA approach for testing measurement invariance of the
factorial structure underlying intelligence tests. This procedure involves the comparison of
hierarchically nested, multi-group CFA models for testing configural, metric, scalar, and
strict invariance (see Putnick and Bornstein (2016) for a detailed review of measurement
invariance testing and reporting).

Despite its utility in evaluating the construct equivalence of intelligence tests across
demographic groups and across time, the measurement invariance approach has some
limitations in practice. First, the sample size may moderate the sensitivity of measurement
invariance. Model comparison based on the change in chi-square (χ2) for two hierarchi-
cally nested models is known to be highly sensitive to sample size and thereby lead to
measurement non-invariance in large samples due to small differences among the groups
(French and Finch 2006; Putnick and Bornstein 2016). Second, a similar concern pertains
to the number of groups to be compared when testing measurement invariance. As the
number of groups compared in tests of measurement invariance increases, the χ2 differ-
ence test, model fit indices, and associated evaluation criteria may require adjustments to
detect the group differences accurately (Rutkowski and Svetina 2014). Thus, researchers
often examine sex differences in general and broad cognitive abilities by running tests of
measurement invariance across different age groups separately, instead of running simulta-
neous tests of measurement invariance for sex and age groups. Third, if full measurement
invariance is not supported, researchers are forced to look for partial invariance in the
model by releasing constraints on factor loadings or intercepts or both. Although there
are clear guidelines on establishing partial measurement invariance (e.g., Putnick and
Bornstein 2016; van de Schoot et al. 2012), the theoretical consequences of partial invariance
for the interpretation of group or developmental differences in cognitive abilities are still
not well understood.

In the present study, we employed psychometric network modeling to explore the
stability of dynamic coupling between cognitive abilities across sex and age groups
(van der Maas et al. 2017). Although psychometric network modeling (Epskamp et al.
2012) is often considered an exploratory tool to determine the number of factors (or clus-
ters) based on full or partial correlations, it can also be used as a confirmatory tool for the
comparison of networks and the cross-validation of networks (Kan et al. 2019). The current
paper aimed to evaluate the stability of the network of cognitive abilities extracted from
the WJ IV COG across sex and age groups. Using the United States normative sample of
children and adolescents ranging from 6 to 19 years in age, we examined whether sex and
age would lead to significant differences in the network structure of the WJ IV COG. A new
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psychometric network approach—the NMT approach—was used for evaluating network
invariance.

3. Materials and Methods
3.1. Participants

The sample of this study consisted of 4212 participants (aged 6 to 19 years old,
M = 12.3, SD = 4) who participated in the norming study of the WJ IV COG in the United
States. The sample is representative of the United States population in terms of individual
(e.g., sex, race, parent education) and community variables (e.g., census region and commu-
nity type). Table 1 presents details of the sample demographics. In this study, the sample
was split into four age groups based on the age categorization in the WJ IV technical manual
(McGrew et al. 2014): Group 6–8 (n = 954), Group 9–11 (n = 949), Group 12–14 (n = 923),
and Group 15–19 (n = 1386).

Table 1. Demographics of the participants.

Characteristics n %

Sex
Male 2075 49.3

Female 2137 50.7
Race

African American 609 14.5
American Indian 31 0.7

Asian or Pacific Islander 190 4.5
Other 93 2.2
White 3289 78.1

Hispanic Origin
Hispanic 736 17.5

Non-Hispanic 3746 82.5
Geographic Region

Northeast 716 17
Midwest 1060 25.2

South 1340 31.8
West 1096 26

Parent’s Education Level
Less than high school 450 10.7
High school graduate 1387 32.9
More than high school 2375 56.4

3.2. Measures

In this study, we selected 14 subtests from the WJ IV COG to define the following
cognitive abilities based on CHC theory: (1) Comprehension-Knowledge (Gc) from the Oral
Vocabulary and General Information subtests, (2) Fluid Reasoning (Gf) from the Number
Series and Concept Formation subtests, (3) Short-Term Working Memory (Gwm) from the
Verbal Attention and Numbers Reversed subtests, (4) Cognitive Processing Speed (Gs)
from the Letter-Pattern Matching and Pair Cancellation subtests, (5) Auditory Processing
(Ga) from the Phonological Processing and Nonword Repetition subtests, (6) Long-Term
Retrieval (Glr) from the Story Recall and Visual-Auditory Learning subtests, and (7) Visual
Processing (Gv) from the Visualization and Picture Recognition subtests. Information about
these subtests can be found in the WJ IV Technical Manual (Schrank et al. 2014). Scale
scores from the WJ IV COG subtests were used in data analysis. The WJ IV COG scale
scores follow the W scale, which is based on a direct transformation of the Rasch logit scale
with a center of 500 points.
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3.3. Data Analysis
3.3.1. Factor Analysis

Confirmatory factor analysis was performed to assess the model fit of the WJ IV
COG, assuming a hierarchical factor model based on CHC theory. This hierarchical CFA
model consisted of a higher-order latent variable representing general intellectual ability
(g), which was defined from seven broad cognitive abilities (Gc, Gf, Gwm, Gs, Ga, Glr,
and Gv). Additionally, the seven latent variables representing the broad cognitive abilities
were defined from pairs of subtests, for a total of fourteen subtests at this lower level. The
hierarchical CFA model was estimated for the entire sample and for the sex (female and
male) and age (6–8, 9–11, 12–14, and 15–19) groups separately. Model estimation was
completed using the lavaan package (Rosseel 2012) in R (R Core Team 2021). Maximum
likelihood with robust standard errors (known as MLR) was used for the model estimation.
Hu and Bentler’s (1999) guidelines (i.e., comparative fit index [CFI] and Tucker-Lewis index
[TLI] ≥ 0.95; root mean square error of approximation [RMSEA] ≤ 0.06; standardized root
mean squared residual [SRMR] ≤ 0.08) were used for evaluating model fit. Additionally,
Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) values were
included to compare the CFA models with the psychometric network models. Smaller AIC
and BIC values indicate better fit.

3.3.2. Psychometric Network Analysis

Following the hierarchical CFA model, we used psychometric network modeling
(Borsboom 2008; Borsboom and Cramer 2013) to examine the network structure of the W
scores derived from the WJ IV COG subtests. The W scale in the WJ IV COG is a direct
transformation of the Rasch logit scale (i.e., W = 9.1024 × logits + 500). Psychometric
network modeling is used for forming a network structure of observed variables (e.g.,
items, scores, or symptoms), connected with edges (i.e., correlations, causal relations). In
psychological networks, psychological variables are represented by nodes. Edge thickness
shows the strength of the relationship between the nodes (e.g., thicker edges indicate
stronger relationships). In this study, we conducted psychometric network analyses in two
stages. In the first stage, we estimated a Gaussian Graphical Model (GGM; Lauritzen 1996)
using the graphical least absolute shrinkage and selector operator (gLASSO) regularization
method, based on the partial correlation matrix of the subtest scores from the WJ IV
COG. The bootnet (Epskamp et al. 2018) and qgraph (Epskamp et al. 2012) packages
in R (R Core Team 2021) were used for estimating the GGM. This overall model helped
us examine the network structure of the WJ IV COG, without considering the effects of
sex and age. To assess the importance of nodes in the network structure, we computed
several centrality indices. These indices quantify how strongly a node is connected to
other nodes (node strength), how strongly a node is indirectly connected to other nodes
(closeness), and how important a node is in the average pathway between other pairs of
nodes (betweenness; Epskamp et al. 2018; Hevey 2018).

In the second stage, we used the NMT approach to examine the invariance of the
network structure of the WJ IV COG across sex and age groups. Following the same
approach as structural equation model trees (Brandmaier et al. 2013), the NMT approach
combines psychometric network modeling with recursive partitioning techniques to detect
significant differences in the network structure based on covariates. That is, the NMT
approach assesses how covariates are associated with heterogeneity across the network
structure (Jones et al. 2020). In this study, we used model-based recursive partitioning
(MOB; Zeileis et al. 2008) to split the network structure of the WJ IV COG subtests based
on sex and age groups. The MOB algorithm splits the network structure in a way that the
network parameters are maximally heterogeneous across the terminal (i.e., leaf) nodes in
the tree model. If sex and age groups are associated with statistically significant differences
in the network structure, then the MOB algorithm will split the network structure at least
once, or more, based on these covariates and create terminal nodes. We estimated network
model trees using the MOB algorithm in the networktree package (Jones et al. 2020). For
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the psychometric network analyses, we followed the guidelines of Epskamp et al. (2018)
and Jones et al. (2020). A sample data set and the R codes used in this study can be found
at https://osf.io/m7846/ (Bulut 2021).

4. Results
4.1. Confirmatory Factor Analysis of the WJ IV COG

Model fit indices for the confirmatory factor analyses are presented in Table 2. The
overall model refers to the hierarchical CFA model based on the entire sample where
the model parameters were constrained to be equal for all groups. Although the overall
model appeared to fit the data well, it did not follow some of the model fit guidelines
(e.g., RMSEA ≤ 0.06) suggested by Hu and Bentler (1999). Table 2 also shows the model fit
indices for the hierarchical CFA models estimated for each sex and age group. These models
estimated the variances and covariances among the observed indicators for each sex and
age group separately, without any constraints. As shown in the table, the model fit indices
for the male and female samples were similar to those from the overall model, whereas
the model fit indices for the age groups were relatively worse than the fit values obtained
from the overall model. The fit indices shown in Table 2 suggest that the hierarchical CFA
model based on CHC theory may not be entirely plausible for some age groups. Although
not shown in the table, all first- and higher-order factor loadings were reasonable for the
estimated models, supporting the grouping of WJ subtests in defining broad cognitive
abilities. Overall, the results of the hierarchical CFA models suggest that although sex may
not have a significant impact on the factorial structure of the WJ IV COG, age appears to
influence the relationships among the broad cognitive abilities and higher-order latent
variables representing the general intellectual ability.

Table 2. Model fit indices for the hierarchical confirmatory factor models of the WJ IV COG.

Models χ2 df CFI TLI RMSEA SRMR AIC BIC

Overall
Model 2657.765 * 70 0.945 0.929 0.094 0.031 478,632 478,943

Sex
Male 1282.733 * 70 0.950 0.935 0.091 0.031 235,279 235,555

Female 1483.616 * 70 0.939 0.921 0.097 0.033 242,944 243,222
Age
Groups

6–8 686.962 * 70 0.907 0.880 0.096 0.043 110,121 110,358
9–11 656.021 * 70 0.888 0.854 0.094 0.050 104,950 105,188

12–14 612.471 * 70 0.882 0.850 0.092 0.047 102,110 102,346
15–19 948.792 * 70 0.887 0.853 0.095 0.050 154,293 154,548

Note: χ2 = Model chi-square statistic. df = Degrees of freedom. CFI = Comparative fit Index. TLI = Tucker-Lewis index. RMSEA = Root
mean square error of approximation. SRMR = Standardized root mean squared residual. AIC = Akaike information criterion. BIC =
Bayesian information criterion. * p < 0.001.

4.2. Psychometric Network Analyses of the WJ IV COG

The overall psychometric network model demonstrated stronger model fit across
all model fit indices, except for the chi-square test; χ2(26) = 99.86, p < 0.001; CFI = 1.00,
TLI = 0.99, RMSEA = 0.026; AIC = 470,272; BIC = 470,861). In particular, smaller AIC and
BIC values suggest that the psychometric network model fit the WJ IV COG data better
than the hierarchical CFA model did. A graphical representation of the network structure
of WJ IV COG is given in Figure 1.

https://osf.io/m7846/
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each line (i.e., edge) connecting the nodes represents the strength of association between 
different pairs of nodes. The two subtest pairs representing the comprehension-
knowledge (Gc) and cognitive processing speed (Gs) broad abilities have strong associa-
tions within these pairs of subtests, whereas the subtests for the remaining broad abilities 
appear to be inter-correlated. Of note, the Glr and Ga pairings do not appear to have a 
strong association to each other. It should be noted that graphical spacing between the 
nodes does not necessarily indicate the magnitude of the relationship between the WJ IV 
COG subtests or which subtests are more important than the others (Jones et al. 2018). 
Therefore, we demonstrate centrality indices for the estimated network structure in Figure 
2 to interpret network structure more accurately. The x-axis of Figure 2 indicates stand-
ardized z scores in the indices for strength, closeness, and betweenness across the fourteen 
subtests of the WJ IV COG, with higher values indicating that nodes are more important 
to the network structure.  

The strength index (on the left-hand side of Figure 2) indicates how strongly each 
node is connected to the other nodes. Strength values in this study reveal that the Number 
Series subtest is the most important node for the network structure of the WJ IV COG, 
followed by Oral Vocabulary and Letter-Pattern Matching. The closeness index (in the 
middle of Figure 2) indicates each node’s relationship to all other nodes in the network 
based on the sum of indirect connections from that node (Hevey 2018). Closeness values 
obtained from the WJ IV COG network model indicate that the Number Series subtest 
plays a central role in the network, and thus scores from the Number Series subtest can 
affect the other nodes significantly. Lastly, the betweenness index (on the right-hand side 
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In Figure 1, the color of each node indicates which broad cognitive abilities are defined
by the WJ IV COG subtests, while the width (i.e., thickness) and color density of each line
(i.e., edge) connecting the nodes represents the strength of association between different
pairs of nodes. The two subtest pairs representing the comprehension-knowledge (Gc) and
cognitive processing speed (Gs) broad abilities have strong associations within these pairs of
subtests, whereas the subtests for the remaining broad abilities appear to be inter-correlated.
Of note, the Glr and Ga pairings do not appear to have a strong association to each other. It
should be noted that graphical spacing between the nodes does not necessarily indicate
the magnitude of the relationship between the WJ IV COG subtests or which subtests are
more important than the others (Jones et al. 2018). Therefore, we demonstrate centrality
indices for the estimated network structure in Figure 2 to interpret network structure more
accurately. The x-axis of Figure 2 indicates standardized z scores in the indices for strength,
closeness, and betweenness across the fourteen subtests of the WJ IV COG, with higher
values indicating that nodes are more important to the network structure.

The strength index (on the left-hand side of Figure 2) indicates how strongly each
node is connected to the other nodes. Strength values in this study reveal that the Number
Series subtest is the most important node for the network structure of the WJ IV COG,
followed by Oral Vocabulary and Letter-Pattern Matching. The closeness index (in the
middle of Figure 2) indicates each node’s relationship to all other nodes in the network
based on the sum of indirect connections from that node (Hevey 2018). Closeness values
obtained from the WJ IV COG network model indicate that the Number Series subtest
plays a central role in the network, and thus scores from the Number Series subtest can
affect the other nodes significantly. Lastly, the betweenness index (on the right-hand side
of Figure 2) indicates how important a particular node is in the average pathway between
other pairs of nodes (Hevey 2018). In the WJ IV COG network structure, Number Series,
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followed by Letter-Pattern Matching and Oral Vocabulary, have high betweenness indices.
These subtests serve as a gatekeeper (or a bridge) between the other nodes in the WJ IV
COG network structure.
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Pair Cancellation).

In the second stage of psychometric network analyses, we split the network struc-
ture of the WJ IV COG based on sex and age. The results are shown in Figure 3. The
network model tree includes a single split based on age groups. Since sex did not yield
significant differences in the network structure, it was not used to create any terminal
nodes. We performed structural change tests (Zeileis et al. 2002) to further examine the
statistical significance of age and sex in the network model. The results confirmed that
age was a statistically significant predictor (structural test statistic = 351.102, p < 0.001),
whereas sex did not lead to any splits in the network model tree (structural test statistic =
109.295, p = 0.1771). This finding suggests that the network structure of the WJ IV COG
is homogenous across the samples of female and male participants; however, age leads
to significant instabilities in the estimated network parameters. For age, the only split
occurred between the group of 6–8-year-olds and the rest of the age groups. This result
indicates that the relationship between the subtests of the WJ IV COG, as well as broad
cognitive abilities, might be different for young children aged 6 to 8. To further examine
the differences between the two network structures split by age, we used the comparetree
function in the networktree package. The most significant differences between the two
network structures are presented in Table 3.
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Table 3 shows that although there is no significant correlation between scores of the
Number Series and Picture Recognition in the group of 6–8-year-olds, there is a positive
relationship between the same subtests in the remaining age groups. Similarly, there is a
stronger relationship between the Concept Formation and Phonological Processing subtests
in the group of 6–8-year-olds, compared with the other age groups. Overall, the WJ IV
COG network structure is largely age invariant; however, the relationships among the
broad cognitive abilities for young school-aged children (age 6 to 8) appear to be different
from those among older school-aged children and adolescents (age 9 to 19).

Table 3. Significant differences between the values of the edges of the network structures.

Node 1 Node 2 Group 1 (Age 6 to 8) Group 2 (Age 9 to 19) Groups 1–2

NUMSER PICREC 0.00 0.12 −0.12
CONFRM PHNPRO 0.14 0.05 0.09
PHNPRO STYREC 0.00 0.08 0.08
GENINF ORLVOC 0.53 0.61 −0.08
PICREC VAL 0.16 0.08 0.08

Note: ORLVOC: Oral Vocabulary. NUMSER: Number Series. PHNPRO: Phonological Processing. STYREC: Story
Recall. GENINF: General Information. CONFRM: Concept Formation. VAL: Visualization. PICREC: Picture
Recognition.

5. Discussion

When the first tests of intelligence emerged in the early 20th century, test developers
at that time were mindful of age differences in the performance of students to whom these
tests were administered (Saklofske et al. 2015). Over the course of subsequent decades
and into the 21st century, researchers continued to report on age-related differences in
the development of cognitive abilities (Horn and Cattell 1966b; Horn 2014). Although it
may seem that the examination of age-related differences within and across age groups is
relatively well-established, there is an ongoing need to continue this work. For example,
researchers recognize that tasks used to assess the various aspects of intelligence included
in contemporary measures of cognitive abilities consider age differences by incorporating
developmentally appropriate content (Wahlstrom et al. 2018). Therefore, with every new
or revised measure of intelligence that is published, it is important to establish if, and to
what extent, age-based differences exist.

As stated by Taub and McGrew (2004), “establishing an instrument’s factorial invari-
ance provides the empirical foundation to compare an individual’s score across time or to
examine the pattern of correlations between variables in differentiated age groups” (p. 71).
Extensive evidence of measurement invariance exists for other measures (e.g., Dombrowski
et al. 2020; Niileksela et al. 2013), as well as the previous version of the Woodcock-Johnson
Tests of Cognitive Abilities (e.g., Benson and Taub 2013; Keith et al. 2008). Although some
studies have begun to examine the factor structure of the various CHC abilities represented
in the WJ IV (e.g., Dombrowski et al. 2018), evidence for age-based measurement invariance
in currently limited.

The WJ IV COG is a comprehensive assessment that measures different aspects of
human intelligence based on CHC theory. In this study, we examined the invariance of
the relationships among the broad cognitive abilities measured within the WJ IV COG,
based on sex and age (the 6- to 19-year age range). Unlike previous studies testing the
measurement invariance of intelligence tests based on factor analytic methods, we used
psychometric network modeling as an alternative approach to investigate how sex and
age affect the network structure of intelligence underlying the WJ IV COG. Using large-
scale data from a normative sample of school-aged children and adolescents from the
United States population, we first confirmed the hierarchical factorial structure of the WJ
IV COG based on CHC theory. We used the latent variable modeling approach that yields
a hierarchical structure of broad cognitive abilities (Gc, Gf, Gs, Gwm, Glr, Ga, and Gv) and
general intellectual ability (g) within the same model. The results from the hierarchical
CFA models indicated that the WJ IV COG is compatible with the hierarchical structure
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of intelligence with seven broad cognitive abilities (first-order factors), defined from the
individual subtests, and general intellectual ability of g (second-order factor), defined from
the broad cognitive abilities.

Next, we performed psychometric network modeling to explore the network struc-
ture of the broad cognitive abilities measured by the WJ IV COG. Previous studies have
discussed the fundamental differences between latent variable modeling and psychometric
modeling (e.g., Kan et al. 2019; Schmank et al. 2019; van der Maas et al. 2006, 2017). Unlike
latent variable modeling, psychometric network modeling yields an interconnected net-
work structure of cognitive abilities based on the Process Overlap Theory (POT; Kovacs and
Conway 2016). To date, several intelligence tests, such as the WAIS-IV and the Brief Test of
Adult Cognition by Telephone (Lachman et al. 2014), were analyzed using psychometric
network modeling. To the best of our knowledge, this is the first study exploring the
network structure underlying the WJ IV COG data. Our findings showed that the subtest
scores from the WJ IV COG are positively correlated with each other and that the subtests
of Number Series, Letter-Pattern Matching, and Oral Vocabulary play an important role in
the network structure of the WJ IV COG.

Lastly, we used the NMT approach (Jones et al. 2020) to assess whether sex and age
could be important factors when interpreting the relationships among the broad cognitive
abilities measured by the WJ IV COG subtests. The NMT approach combines psychometric
network modeling and model-based recursive partitioning for finding splits in the network
structure based on relevant covariates. In this study, we used the NMT approach to
recursively split the network structure of the WJ IV COG subtests based on sex and age.
This approach enabled us to simultaneously evaluate the impact of sex and age on the
invariance of the correlations among the WJ IV COG subtests. Our findings suggested that
sex did not lead to any significant differences in the network structure of the WJ IV COG and
thus it did not yield any splits. Unlike sex, age was a significant covariate for the network
structure of the WJ IV COG. Based on age groups, the network structure was split into two
terminal nodes: one for the youngest age group (ages 6 to 8) and another for the remaining
age groups (i.e., ages 9 to 19). It is perhaps unsurprising to see the network structure split
into two terminal nodes when considering the differences in the developmental slopes
associated with those two age ranges. Specifically, the developmental growth that occurs
across the seven CHC factor structures, as well as the Gf-Gc composite, is much more
significant between the ages of 6 and 8 than it is between the ages of 9 and 19 (p. 136,
McGrew et al. 2014). Further analysis of the network model tree, however, shows that the
WJ IV COG subtests associated with Fluid Reasoning (Gƒ) and Visual Processing (Gv) are
the primary reasons for age-based differences. Given the important role of the Number
Series subtest in the network structure (see Figure 2), it is not surprising that the age
effect for this subtest led to significant differences in the model. Previous studies showed
differential age effects related to the Number Series subtest (e.g., Cormier et al. 2017). In
addition to Number Series, this study showed that Concept Formation (Gf) and Picture
Recognition (Gv) also appear to be impacted by age.

Limitations and Future Research

Our study had a few limitations that could be addressed in future research. First, the
analyses performed in the current study were based on the United States normative data of
the WJ IV COG. Future studies should investigate the impact of sex and age on the network
structure of the WJ IV COG subtests across different cultures. Additionally, the cross-
sectional nature of the WJ IV COG data precludes the analysis of network trends across
age groups over time. Therefore, future studies involving longitudinal data collection
with the WJ IV COG are needed to better understand the trends across age groups. The
second limitation, as with all studies using psychometric network modeling, is that our
analyses followed a data-driven, exploratory approach, instead of a confirmatory approach
based on latent variable modeling. That is, we did not attempt to substantiate multi-group
comparisons of the broad cognitive abilities and general intellectual ability measured by
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the WJ IV COG. Therefore, our analyses should not be interpreted as formal tests for
measurement invariance across sex and age groups in the WJ IV COG. Future research
should examine the alignment between psychometric network analyses and traditional
measurement invariance analyses based on multi-group CFA models. Third, the findings
of our study indicated that the Number Series subtest played an important role in the
network structure of the WJ IV COG subtests. This finding is not surprising because the
Number Series subtest is associated with multiple intelligence factors: fluid reasoning (Gf),
general intellectual ability (g), and brief intellectual ability (Schrank et al. 2014). However,
the strength of the relationship between Number Series and other subtests appears to
change depending on age. Therefore, future research is needed to further elucidate why
the associations between Number Series and other subtests vary with age. Lastly, this
study only focused on sex and age differences in the network structure of the WJ IV
COG. Future studies should include other relevant covariates, such as race, ethnicity, and
socio-economic status.
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