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Abstract: We used computer-based automatic expression analysis to investigate the impact of im-
itation on facial emotion recognition with a baseline-intervention-retest design. The participants:
55 young adults with varying degrees of autistic traits, completed an emotion recognition task with
images of faces displaying one of six basic emotional expressions. This task was then repeated with
instructions to imitate the expressions. During the experiment, a camera captured the participants’
faces for an automatic evaluation of their imitation performance. The instruction to imitate enhanced
imitation performance as well as emotion recognition. Of relevance, emotion recognition improve-
ments in the imitation block were larger in people with higher levels of autistic traits, whereas
imitation enhancements were independent of autistic traits. The finding that an imitation instruc-
tion improves emotion recognition, and that imitation is a positive within-participant predictor of
recognition accuracy in the imitation block supports the idea of a link between motor expression and
perception in the processing of emotions, which might be mediated by the mirror neuron system.
However, because there was no evidence that people with higher autistic traits differ in their imitative
behavior per se, their disproportional emotion recognition benefits could have arisen from indirect
effects of imitation instructions

Keywords: emotion recognition; face; imitation; mimicry; autism; embodied cognition; facial feed-
back; automatic expression analysis

1. Introduction

Humans perceive the meaning of another’s message beyond the spoken word through
a range of multimodal cues, such as facial expressions, postures and gestures, and prosody.
As such, emotion recognition is one important skill for successful social interactions
(Koolagudi and Rao 2012). Although the expression and recognition of emotions are sub-
ject to individual and cultural variations, basic facial expressions can be recognized across
cultures above chance level (cf. the meta-analysis by Elfenbein and Ambady 2002).

1.1. Role of Imitation

Imitation of facial expressions can already be observed in newborns (Meltzoff and
Moore 1977). Beginning with the facial feedback hypothesis by Darwin ([1872] 1965), a
lot of research has been conducted on the role of mimicry, or automatic imitation (Char-
trand and Lakin 2013), in facial emotion recognition. It has been proposed that, through
mimicking an observed emotional expression, the corresponding emotion is generated
in the observer, such that the observed person’s emotional state can be inferred from the
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observer’s own feelings. The idea behind this fits into more recently developed theories
of embodied cognition, which assume that action recognition and performing the same
action share common neuronal substrates and therefore promote each other (Decety and
Sommerville 2003; Foglia and Wilson 2013). Early evidence for this kind of automatic feed-
back process comes from Dimberg (1982), who found that looking at happy vs. angry faces
resulted in differential automatic electromyographic (EMG) responses in the observers
that corresponded to the activation of the observed emotional expressions. Furthermore,
Wallbott (1991) found that participants could identify the emotions of an emotion recog-
nition task solely by watching their own facial reactions from a video recording of the
initial experiment. More recent EMG evidence for the role of facial muscular activity in
emotion perception at the level of individual differences was provided by Künecke et al.
(2014), who found a correlation between emotion-related EMG responses (of corrugator
supercilii) and emotion perception ability. Specifically, participants with higher congruent
EMG activity achieved better emotion recognition performance.

In a different experimental approach, Strack et al. (1988) studied the influence of artifi-
cial facial motor activation on participants’ emotionality. Participants were simultaneously
watching cartoons and having a pencil in their mouth in a way that either intensified or
inhibited a smiling expression. Strack et al. (1988) found that participants reported to feel
more amused by the cartoons under smile-facilitating than under smile-inhibiting condi-
tions. Oberman et al. (2007) utilized a similar design to explore the effect of artificial facial
motor activation on emotion recognition. They found a selectively inferior classification of
those emotions that could not be imitated, while the recognition of imitable emotions re-
mained unaffected. Consequently, this selective influence on emotion recognition through
interference with motor activity strongly suggests an important role of facial imitation in
emotion recognition.

1.2. Autism Spectrum Conditions

Autism Spectrum Disorders or Autism Spectrum Conditions (ASC) are a group of be-
haviorally defined neurodevelopmental conditions that are specified by impaired reciprocal
social communication and restricted repetitive patterns of behavior or activities (American
Psychiatric Association 2013). Among the special communicational features, people with
ASC stand out by their divergent emotional expressions. Individuals with ASC were found
to have fewer facial expressions (Kasari et al. 1990) or an atypical and idiosyncratic way of
expressing emotions through their faces (Brewer et al. 2016). Although also a diagnostic
criterion, the evidence about emotion recognition ability in individuals with ASC is mixed
(Harms et al. 2010). In a formal meta-analysis for facial emotion recognition, (Uljarevic
and Hamilton 2013) found a medium overall effect size of −0.41, 95% CI [−0.646, −0.182]
based on a random-effects analysis with 50 comparisons of emotion recognition between
each a group with ASC and a healthy control group, corrected for the possible impact of
publication bias (Duval and Tweedie’s trim-and-fill method).

Many studies on ASC focused on emotion perception, whereas less is known about the
social and communicational aspects of imitation and its influence on emotion recognition.
Smith and Bryson (1994) reviewed studies on the imitation ability of children with ASC.
They concluded that there are imitative impairments in ASC, which can be linked to lower-
level attentional and perceptual deviations. Since the discovery of “mirror neurons” (MNs;
see Rizzolatti et al. 1996; Rizzolatti and Craighero 2004), the causal role of the mirror neuron
system (MNS) in imitation deficits in ASC, and even in ASC itself, has been proposed (e.g.,
the “Broken Mirror Hypothesis” by Williams et al. 2001).

Considering imitation of emotions, McIntosh et al. (2006) found that automatic imita-
tion of facial emotional expressions was reduced while the ability to imitate the expressions
voluntarily on demand remained intact in adults with ASC. A facial feedback study on
children and adolescents with ASC by Stel et al. (2008) came to the same conclusions with
the additional result, that imitating emotions only elicited the corresponding emotion in the
control group but not in the ASC group. (Oberman et al. 2009) obtained slightly different
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results, showing a delayed but otherwise normal automatic imitation in adults with ASC.
In the same study, the ASC group did not differ from the control group regarding their
voluntary imitation performance.

Combining imitation ability with emotion recognition, Lewis and Dunn (2017) re-
ported an intriguing study in which they aimed at testing the thesis whether inducing
voluntary imitation of facial expression promotes emotion recognition in people with high
vs. low autistic traits. A promising outcome was that the instruction to mimic led to better
emotion recognition results, especially in the participants with higher levels of autistic
traits. An important constraint of their study was that the extent to which participants
actually imitated the displayed emotions was not recorded objectively, and participants
were only asked about their opinion on their imitation ability.

1.3. Assessment of Imitation and Scope of the Study

Many of the discussed studies relied on two major techniques to quantify emotional
expressions and imitation. One of them is facial EMG, in which the electric activity of
certain facial muscles is assessed. These activations can be clearly related to certain facial
expressions (e.g., zygomatic region for happy and corrugator region for angry in Dimberg
1982). While the advantage is a high temporal resolution, the spatial resolution is limited
by the placement of electrodes. Moreover, recording electrodes may cause irritation and
direct the participants’ attention to, and interfere with, their own facial actions. The other
frequently used method is the Facial Action Coding System (Ekman and Friesen 1978) that
is applied by trained human raters based on video recordings of participants throughout
the experiment. This offers a better spatial resolution, but the procedure is also very time
consuming and needs trained raters. As a more recent approach, computer-based facial
expression analysis toolkits have evolved rapidly throughout the last two decades, and
provide high accuracy in laboratory settings (for general review see (Fasel and Luettin
2003); for review on recent developments and challenges see (Samadiani et al. 2019))
and correlate with EMG results, even outperforming EMG in some emotional expressions
(Kulke et al. 2020). The facial behavior analysis toolkit OpenFace 2.0 (Baltrušaitis et al. 2015,
2018) provides data on a wide range of features (in particular, Action Units, but also head
pose or gaze direction). These can be used for automatic facial emotion recognition (e.g.,
Pham et al. 2019) but also for assessing similarity between facial behaviors, which made
it a valuable toolkit for our study. Computer vision approaches have also been applied
to the detection of autistic traits and behaviors (see review Kowallik and Schweinberger
2019). For example, computer vision-based applications enabled checking expression
production skills of basic emotions in children with ASC and providing automatic feedback
(Leo et al. 2018).

While the present study follows up on the paper by Lewis and Dunn (2017), specifically
their second experiment in terms of stimuli and trial structure, one of our key objectives
was to quantify the degree of facial imitation in an objective and interference-free manner
by using computer-based facial behavior analysis of participants´ faces during task perfor-
mance. Specifically, we quantified imitation as an automatic cross-correlational comparison
between the stimulus face and the participant’s facial expression, which enabled us to more
directly assess the effects of the imitation instruction on both actual facial imitation and on
emotion recognition performance.

2. Materials and Methods
2.1. Participants

Fifty-five undergraduate students (17 male) from various fields (27 non-social-sciences
students) between the ages of 18 and 31 years (M = 22.96, SD = 3.05) contributed to the
data. The data of six additional participants was excluded due to partially missing data
based on technical issues. Note that the sample size was determined by power analysis
(cf. Section 2.3). Participants were recruited via university e-mail-distribution lists and
received either course credit or financial compensation for their participation.
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2.2. Measures
2.2.1. Autism Spectrum Quotient

The participants filled out the Autism Spectrum Quotient (AQ; Baron-Cohen et al.
2001) in the validated German Version (Freitag et al. 2007). The AQ is a self-report measure-
ment with 50 items, screening for the degree of autistic traits. In the original publication,
the average score in the control group was about 16 for men and about 15 for women. A
score of 32 or more was considered a cut-off, that was reached by 80% of people with a
diagnosis on the autism spectrum but only 2% of the control group.

2.2.2. Stimuli

As in the study by Lewis and Dunn (2017), images of emotional faces were taken from
the “Facial Expressions of Emotion: Stimuli and Tests” (FEEST) stimuli set by Young et al.
(2002). These stimuli depict six basic emotions (anger, sadness, fear, surprise, happiness,
disgust) by 10 identities that are morphed with a neutral expression into four intensities
(25, 50, 75, 100% emotional intensity) yielding 240 images in total. Three male and three
female identities (MC02, MC05, MC06, MC07, MC08, MC10) were chosen as test identities
(144 stimuli), the other ones were included in the practice trials.

2.3. Research Design

This study followed a baseline-intervention-re-test design. The AQ score served
as a quasi-independent variable. The dependent variables were the correctness of the
emotion recognition task as well as the imitation score that was computed as similarity
of participants’ and stimulus’ facial expressions. A power analysis was calculated using
G*Power 3 (Faul et al. 2007) for a medium effect (d = 0.5) with a power (1 − β) = 0.80 in a
repeated-measures design yielding a minimum sample size of 34. For multilevel modeling,
a minimum of 50 level-2 units (participants) is needed to accurately estimate SE correctly
(Maas and Hox 2005).

2.4. Procedure

Participants were placed individually at a computer, about 60 cm away from the
screen. A regular off-the-shelf webcam (logitech C270 HD webcam or logitech C920 HD
PRO webcam) was placed on top of the screen (resolution 480 × 640 px, about 10 fps)
directed at the participant‘s face and upper body.

Participants gave written consent and filled out the AQ. Subsequently, the emotion
recognition task was carried out in a Python-based experiment using Psychopy2 V1.82
(Peirce 2007) with OpenCV2 (Bradski 2000) aligning behavioral task and image recording.
The experiment consisted of a practice block, a baseline block, an instruction to mimic, and
an imitation block. All instructions were given on the screen. The practice block introduced
the key assignment (one key per emotional category) covering images of four identities
each expressing all six emotions in a randomized order; images shown during practice were
not included in the subsequent experimental blocks. Practice trials consisted of a 500 ms
ISI, a 500 ms fixation cross, followed by the stimulus image for 1500 ms and then a blank
screen with the response options until a key was pressed. After each practice trial, feedback
on the key pressed and the correctness of answer was given. The baseline block opened
with the instruction to “carefully watch the whole face presented” and included 144 trials
(images of 6 emotions × 6 identities × 4 intensities) in a randomized order. Trials in the
experimental blocks (baseline und imitation) were constructed similarly to the practice
trials but did not include feedback. Breaks of individual length were included after every
48 trials in the two experimental blocks. Camera recording started with stimulus onset and
ended with the key-pressing response to the emotion recognition task, thereby defining
our visual observation window. Before entering the intervention block, participants were
instructed to “mimic the facial expression before each response” to the emotion recognition
task. The imitation block repeated the same 144 images in a newly randomized order with
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the same trial structure as in the baseline block. Key presses, reaction times, and camera
images were logged for every trial.

2.5. Data Preprocessing and Analysis

All test stimuli (FEEST, N = 144) as well as every image frame obtained from the camera
during the experiment (N = 185,898) were analyzed with the OpenFace 2.0 algorithm
(Baltrušaitis et al. 2015, 2018). Frames that did not reach a confidence of 0.80 for the facial
landmark detection were excluded from further analysis (N = 4837, or 2.6%). Then, scores
for Facial Action Units (AUs; selection displayed in Table 1) were generated with an
intensity between zero and five. We defined imitation as the uniform activity or inactivity
of each available AU. Using SciPy (Virtanen et al. 2020) and especially the pandas package
(McKinney 2010), pairwise correlations between the stimulus’ facial expression (in AUs)
and each frame of the participant’s facial expression (in AUs) were computed for each trial.
The highest resulting cross-correlation in each trial was taken as its imitation score. Related
SPSS syntax and Python code as well as processed and anonymized data of the participants
can be retrieved at Supplementary Materials (https://osf.io/gmjh6/).

Table 1. Action Units (AUs) used in this study.

AU Number Facial Action Code Name 1 Muscular Basis 1 Associated Emotional Expressions 2

01 Inner Brow Raiser Frontalis, Pars medialis Fear, Sadness, Surprise
02 Outer Brow Raiser Frontalis, Pars lateralis Surprise

04 Brow Lowerer Depressor, Glabelle, Depressor supercilii,
Corrugator Fear, Sadness, Disgust; Anger

05 Upper Lid Raiser Levator palpebrae superioris Surprise, Fear
06 Cheek Raiser Orbicularis oculi, Pars orbitalis Happiness
07 Lid Tightener Orbicularis oculi, pars palpebralis Anger, Disgust
09 Nose Wrinkler Levator labii superioris alaquae nasi Disgust

10 Upper Lip Raiser Levator labii superioris,
Caput infraorbitalis Happiness

12 Lip Corner Puller Zygomaticus major Happiness
14 Dimpler Buccinator
15 Lip Corner Depressor Depressor anguli oris (Triangularis) Sadness
17 Chin Raiser Mentalis Anger, Sadness, Disgust
20 Lip Stretcher Risorius with platysma Fear
23 Lip Tightener Orbicularis oris Anger

25 Lips Part Depressor Labii inferioris, or relaxation
of Mentalis, or Orbicularis Oris

26 Jaw Drop Masetter; relaxed Temporalis and
internal Pterygoid Happiness

1 The information was gathered from Cohn et al. (2007). 2 Top 4 discriminative AUs for each basic emotion as derived from Velusamy et al.
(2011).

The final analyses had two main objectives. First, we wanted to assess the between-
subjects effect of the AQ score on the facial emotion recognition (FER) performance and
on the imitation performance, as well as their changes following the imitation instruction.
Second, we were interested in the within-subjects effect of imitation on FER performance,
using imitation as a predictor for correct responses in each trial.

For the statistical analysis of the between-subject effects, block-wise means for FER
and imitation scores were computed to calculate repeated measures analyses of covariance
(ANCOVAs). Cohen’s d was further calculated to estimate the effect sizes of the imitation-
intervention on our outcomes.

To assess within-subjects’ effects, a multilevel logarithmic regression model was
chosen for its ability to take the dependency of data into account, e.g., nest responses
within participants. In our experiment, the trials were nested in participants, and block
was the repeated measure (x1ij). Stimuli were treated as level-1 and participants as level-2,
both also added as random effects. The participant-centered imitation score (x2ij level-1

https://osf.io/gmjh6/
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effect; for the within-participant variation was the main focus of this analysis) and the
grand-mean centered AQ (Xj level-2 effect) were added as fixed effects. A predicted level-1
interaction of imitation × block as well as two cross-level interactions, AQ × imitation and
AQ × block should be added. This complex model (Equation (1)) should be tested against
more restricted ones. All final statistical analyses were obtained with SPSS 25.0 (IBM
Corporation 2017), except for comparing model fits which were accomplished following
the guidelines by Sommet and Morselli (2017).

Logit
(

P(Yi=1)
1− P(Yi=1)

)
= B00 +

(
B10 + u1j

)
× x1ij + B20 × x2ij + B01 × Xj + B11 × x1ij × Xj + B21 × x2ij × Xj + u0j + ui0

i = stimulus
j = participant

(1)

3. Results
3.1. Descriptives
3.1.1. Autistic Traits

AQ scores ranged from 3 to 32 (M = 15.69, SD = 6.62), indicating substantial variability
of autistic traits in this neurotypical sample. This distribution is also aligning very well
with the AQ scores in the validation study by Baron-Cohen et al. (2001).

3.1.2. Baseline Block

The mean baseline accuracy of the FER, choosing the right one out of six emotions,
was M = 0.663, SD = 0.067, which is substantially above the chance rate of 1/6, or 0.167. The
mean baseline cross-correlation score for imitation was M = 0.108, SD = 0.09, representing
an overall small positive cross-correlation. Figure 1b shows the distribution of the averaged
raw participant’s expressions (in AUs). It is apparent that AU 01 (Inner Brow Raiser) and
AU 04 (Brow Lowerer) are most activated across all emotions. Albeit very small, the mean
AU activations also reflect some patterns that can be expected based on the emotional
stimuli they are supposed to imitate, see Figure 1a.

3.1.3. Intervention Effects

The imitation intervention increased correctly recognized emotions in the imitation
block (mean proportion change 0.012, 95% CI [0.00017; 0.024], t(54) = 2.033, p = 0.047).
Of all 55 participants, 31 (56.4%) were able to increase their recognition performance in
the imitation block, 6 (10.9%) had equivalent performance and 18 (32.7%) had a lower
performance in the imitation block. For the imitation performance, almost all participants
(54, or 98.2%) were able to increase their performance in the imitation block. As expected,
there was a prominent increase (as seen in an increase in the mean cross-correlation
coefficients of 0.171, 95% CI [0.148; 0.194], t(54) = 14.680, p < 0.001) in imitation performance
in the imitation block. Figure 1c indicates that the participants’ expressions now reflect the
expected AU-patterns to a much greater extent. For intervention effects, see Table 2.

Table 2. Descriptive statistics and change estimator.

Baseline Block Imitation Block Change

M SD M SD M Cohen’s d 1 95% CI 2

FER accuracy 3 0.663 0.067 0.675 0.066 0.012 0.177 [−0.158; 0.512]
Imitation 4 0.108 0.09 0.279 0.09 0.171 1.963 [1.535; 2.337]
1 Cohen’s d was calculated on the mean change given the averaged SDs of baseline and imitation block. 2 Note that the 95% CIs refer to the
estimator Cohen’s d and not the mean change. 3 Mean proportion correct. 4 Mean of cross-correlation coefficients.
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3.2. Between-Subjects Effects
3.2.1. Repeated Measures ANCOVAs

Due to the heterogeneity of covariances, two separate repeated measures ANCOVAs,
one for the recognition accuracy and one for imitation performance, were computed. The
continuous AQ score was treated as a covariate. A repeated measures ANCOVA for recog-
nition accuracy did not show a statistically significant main effect of block, F(1, 53) = 2.428,
p = 0.125, ηp

2 = 0.044. Thus, although there was a mean change in recognition accuracy
from baseline to imitation, the intervention effect on recognition accuracy was not signifi-
cant when AQ was considered as a covariate. Instead, there was a significant moderation
of the block effect by AQ score F(1, 53) = 6.140, p < 0.05, ηp

2 = 0.104. This effect reflects that
participants with higher AQ scores exhibited larger emotion recognition improvements
from the baseline to the imitation block, compared to participants with lower AQ scores.
For facial imitation scores, on the other hand, the repeated measure ANCOVA showed a
significant difference between the blocks (F[1, 53] = 33.364, p < 0.001, ηp

2 = 0.386), with
higher imitation scores in the imitation block as expected, but no moderation by AQ score,
F(1, 53)= 0.289, p = 0.593, ηp

2 = 0.005.

3.2.2. Regression with AQ

As the separate repeated ANCOVAs did not investigate interactions of change in
imitation and recognition accuracy, a regression of imitation change and AQ on change in
emotion recognition performance was conducted, resulting in R2 = 0.105, F(2, 52) = 3.064,
p = 0.055. Excluding the imitation change, which was a non-significant predictor, again,
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only the AQ score was predicting change in recognition performance, resulting in R2 = 0.104,
F(1, 53) = 6.140, p < 0.05. Overall, this analysis did not reveal an effect of FER change as a
result of imitation change per se, but the FER change in the imitation block was moderated
by AQ score (Figure 2).
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3.3. Within-Subjects Effects

As the next step, trial-wise comparisons were conducted to assess the degree to which
imitation was linked to the accuracy of emotion recognition within trials. For this purpose,
a multilevel logistic regression was conducted with N = 15,734 trials (level 1) by K = 55
participants (level 2). Block was again treated as a repeated measure. A participant-
centered imitation score and block (level-1 effects), as well as a grand-mean-centered AQ
(level-2 effect), were added as fixed effects, whereas stimuli and participants were treated
as random effects. Additionally, imitation × block was added as level-1-interaction while
AQ × imitation and AQ × block were added as cross-level interactions. Although AQ was
not the main interest here, the related fixed effects were included to reduce unexplained
variance. Model comparisons are displayed in Table 3.

The basic model (Model 1) resembles the general tendency for more correct than
incorrect emotion recognition answers (intercept). The random variance components of
stimuli and participants reveal a significant variance between units. In model 2, the fixed
effects block, imitation, and AQ, as well as the imitation × block level-1 interaction were
added. While imitation (in a given trial) did not influence recognition accuracy overall,
higher imitation did predict higher recognition accuracy in the imitation block. Interestingly,
there was no additional effect of block, suggesting that emotion recognition performance in
the baseline and imitation block differed mainly because of different degrees of imitation.
Model 3 added the cross-level effects of AQ × imitation and AQ × block. Changes in
the model were that the general negative effect of AQ on recognition accuracy became a
trend, which was qualified by the AQ × block interaction. In line with the results from
the between-subjects analyses reported above, this interaction indicates that people with a
higher AQ had a greater recognition improvement in the imitation block than those with
lower AQ. Further, the AQ × imitation interaction was non-significant. Note that this
was also not to be expected, because we decided to use participant-centered rather than
grand-mean-centered imitation scores (which focus on within-participant effects while
normalizing for individual differences in the overall degree of imitation). The main finding
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regarding within-participant effects was that imitation improved recognition accuracy in
the imitation block.

Table 3. Model comparison of multilevel logistic regressions on changes in recognition accuracy.

Effect Model 1 Model 2 Model 3

Fixed effects

Intercept 1.10 *** (0.16) 1.04 *** (0.17) 1.04 *** (0.16)

Level-1
Block (=1) 0.07 (0.04) 0.06 (0.04)
Imitation −0.07 (0.11) −0.05 (0.11)
Imitation * Block (=1) 2 0.40 ** (0.15) 0.40 ** (0.15)

Level-2
AQ −0.01(0.01) −0.02 † (0.01)

Cross-level
AQ * imitation −0.01 (0.01)
AQ * Block (=1) 2 0.01 ** (0.01)

Random Effects

Variance component
Level-1 (stimulus) 3.318 *** (0.425) 3.271 *** (0.419) 3.232 *** (0.419)
Level-2 (participant) 0.176 *** (0.038) 0.177 *** (0.039) 0.177 *** (0.039)

Goodness of fit

Deviance 1 78,927.384 77,992.939 77,999.512
∆χ 2 934.445 927.863
∆df 4 6
p 0.000 0.000

Note. For each model, coefficient estimates are given, SE are presented in brackets. † p < 0.10 * p < 0.05, ** p < 0.01,
*** p < 0.001. 1 -2 Log-Likelihood, 2 The coefficients for Block = 0 have been set to zero because of redundancy.

4. Discussion
4.1. Replication Aspects

In this study, we found that both emotion recognition performance and imitation
performance could be improved by the simple instruction to imitate. On the one hand, our
results therefore partly replicate the findings by Lewis and Dunn (2017), in the sense that
the instruction to imitate increased emotion recognition performance, and that imitation-
related improvements were larger in people with a higher AQ. On the other hand, Lewis
and Dunn (2017) offered the interpretation that this disproportional benefit was because
people with higher AQ scores are less likely to spontaneously imitate without instruction,
such that they would show larger emotion recognition benefits from voluntary imitation via
embodied cognition. The present results on actual imitation performance are particularly
relevant to evaluate this interpretation because Lewis and Dunn (2017) had not actually
measured imitation in their experiments. In the present study, we found that whereas
the improvement in emotion recognition from the baseline to the imitation block was
positively associated with the AQ score, the degree of enhancement of actual imitation was
not. These findings on imitation behavior are therefore difficult to reconcile with the above
interpretation by Lewis and Dunn (2017).

On another note, the effect of the imitation instruction on emotion recognition accuracy,
although statistically significant, was small. There also was a relatively large proportion
(32.7%) of participants who showed a negative FER change under imitation instructions,
although note that this proportion is not categorically different from the one found in the
study by Lewis and Dunn (2017), in which the same was true for 23.3% of their intervention
group with N = 30 (Exp. 2, comparable to ours). In our view, such findings are not
unexpected for combinations of relatively small effect sizes and limitations in measurement
precision but may call for more powerful designs in the future. Given that Lewis and Dunn
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(2017) did not find an effect from mere repetition of stimuli in their no-intervention group,
we had opted against a no-intervention group in the present study design. This decision
appears to be further legitimated by the finding that the factor block was not significant per
se when the effect of imitation was considered (see Section 3.3). We would like to note that
it remains a possibility that facial emotion recognition in people with a higher AQ could
have disproportionately benefited from repeated exposures to the stimuli, rather than from
imitation instructions per se. In our view, this alternative interpretation is not very likely,
particularly when considering other findings which indicate that neuronal repetition effects
are unrelated to autistic traits (Ewbank et al. 2016). If anything, repetition effects are even
reduced in people with a diagnosis of ASC, and particularly so for face stimuli (Ewbank
et al. 2017).

As a limitation, note that we did not collect information about any diagnoses in the
unselected sample of university students that participated in the present study. Although
we think that it is unlikely that this affected the present results, we therefore cannot
exclude the possibility that a few individual participants may have been affected by anxiety,
depression or other conditions that could have influenced emotion recognition.

4.2. New and Technical Aspects

In the present study, we developed a new method to quantify facial imitation that is in-
dependent of emotional labels but relies exclusively on the shared expression of participant
and stimulus face, in terms of automatically classified activation patterns of facial action
units, using the OpenFace toolkit (Baltrušaitis et al. 2015). As the automatic expression
analysis was not reported as unpleasant by any participant, it seems to be an objective and
irritation-free tool to assess facial expressive behavior, in both the general population and
probably even in people with autism. Indicating a degree of spontaneous imitation, we
could demonstrate that the imitation score as cross-correlation of AUs between stimuli and
participant’s face was significantly greater than zero (see Section 3.1.2), even when people
were not actively instructed to imitate (in the baseline block). Note also that the present
imitation score for the imitation block was much larger than the one during baseline, and
that a common effect size estimator (Cohen’s d = 1.963) indicated that this is a very large
effect. Further, it could be noted that although the imitation score during the imitation
block may appear moderate in absolute terms, a cross-correlation of 1 would require all
16 Action Units to be perfectly aligned between stimulus’ and participant’s facial expres-
sions. The present short stimulus presentation (1.5 s) and the concurrent task demands
(emotion recognition) may have been limitations to obtaining higher imitation scores. It
should also be noted that AU 01 and AU 04 were relatively active throughout all baseline
trials, probably reflecting the mental state of concentration. In fact, AU 04 (the corrugator),
was characterized as the “muscle of concentration” already by Darwin (Ekman 2003).

It is also an interesting finding that our neurotypical sample was in fact able to
substantially increase their imitation performance for an extended period of time on the
basis of a simple instruction. Our detailed examination of the individual trials showed that
a higher imitation score was only associated with the recognition accuracy in the imitation
block. In the baseline block, where imitation scores were much lower overall, this effect
could not be demonstrated. This could be due to technical limitations, such as reduced
sensitivity for subtle facial changes. Alternatively, it might also be due to the fact that
the static black and white stimuli from the FEEST were not particularly strong triggers
for spontaneous imitation, that participants were focused on the task, or both. In future
imitation studies, it might be rewarding to use dynamic emotional faces and task contexts
that are more related to real-life interactions.

4.3. Future Perspectives

The present study did not provide evidence for a link between autistic traits and either
spontaneous or voluntary imitation. Although this contradicts the (untested) hypothesis by
Lewis and Dunn (2017), our results seem more in line with findings of preserved voluntary
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imitation of facial expression in individuals with ASC (McIntosh et al. 2006; Stel et al. 2008).
When considering potential technical limitations to quantify subtle effects of spontaneous
imitation (see Section 4.3) in combination with the evidence for reduced spontaneous
imitation in ASC which is somewhat controversial (McIntosh et al. 2006; Oberman et al.
2009), the lack of association between autistic traits and imitation may not be entirely
unexpected. Nevertheless, we believe that it may be promising to pursue the present
research with a refined and extended setup (e.g., with stimuli that promote larger degrees
of imitation, with participants with a clinical diagnosis of ASC, and with more refined
automated facial expression analysis methods).

Even though imitation instructions did not promote disproportional enhancements in
facial imitation in people with higher AQ, people with higher AQ exhibited larger benefits
of imitation instructions for emotion recognition performance. While this finding seems
challenging to explain, we tentatively suggest that the benefits to emotion recognition of
people with high AQ are not directly linked to more facial imitation per se, but rather to a
different way of processing that is promoted by imitation instructions. For instance, such
instructions could attenuate or eliminate a reduction in social attention or mentalizing
in people with high AQ. Recent research has shown differences in brain processing of
the very same facial expressions depending on whether participants engage in emotion
recognition or mentalizing tasks (Kang et al. 2018), and also that people with high AQ may
have reduced spontaneous mentalizing (Nijhof et al. 2017). Albeit plausible, we wish to
make explicit that this is a speculation that was not based on a priori hypotheses, and thus
would need to be tested in a more systematic manner. At the same time, it seems clear
that systematic future empirical research will benefit from a coordinated development of
both theories about psychological constructs and their operationalization/measurement
(Olderbak and Wilhelm 2020).

Although the face is a prominent vehicle for emotional communication, emotions are
also powerfully transmitted via the human voice or via body motion (Castellano et al. 2008).
Much of the available evidence suggests a tight correspondence between impairments in
facial and vocal emotion recognition (Gray and Tickle-Degnen 2010; Philip et al. 2010; for
a recent review, see Young et al. 2020). Although comparatively little research exists on
imitation of vocal characteristics during auditory communication, it would be an interesting
question for future research whether instructions to imitate voices or bodily motions, can
potentially enhance emotion recognition in the respective sensory domains as well.

Regarding the potential effects of participant age and sex, we note that the young adult
(18–31) age range of the present sample coincides with a performance peak of emotion
recognition abilities during adulthood (Olderbak et al. 2019). As a limitation, our sample
was predominantly female, such that we did not analyze sex differences. While female
participants consistently outperform males in facial emotion recognition, there is a relative
lack of research on sex differences in facial imitation (but see Sonnby-Borgström et al. 2008).

As a result of the delayed response mode in the present experimental paradigm, we
also have no information about the point in time at which participants recognized the facial
emotion. It is reasonable to assume that a correctly recognized emotion is substantially
easier to imitate. In that sense, both the time course and correctness of overt emotion
recognition could be a moderator for imitation behavior. This issue could be addressed in
future studies that record immediate behavioral responses, real-time indicators of neuronal
processing such as EEG or MEG, or both (Schirmer and Adolphs 2017).
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